
Appendix – Proof of Theorem

We first prove statement (i). Let ! 2 ⌦ and x := ⇠i(!); we will omit the !-dependence hereafter.
Let v :=  h

✓,s(Zi�s+1:i). It follows from (8) that
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It follows by rearranging the terms in (12) that
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By subtracting f(z, ✓) from both sides, taking the norm, and squaring, we obtain
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We may thus rewrite (6) as
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and it follows that the normalising constant is given by
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We now bound the function described in (13) from above and below by unnormalised Gaussian
probability densities. First note that by the triangle inequality and the assumption of global Lipschitz
continuity we have the lower bound
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Similar reasoning yields the upper bound
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Thus for h > 0, there exist constants ch, Ch > 0 that do not depend on ! such that
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where we have defined ch :=
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the definition of the AM method ��1 > 0. (13) now gives
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where we note that the lower and upper bounds in (14) do not depend on v. In what follows, we
will omit the dependence of p and K on v and ✓, and write ph(·) := p(·|v, ✓, ⌘, h) and Kh :=
K(v, ✓, ⌘, h), in order to emphasise the dependence of these quantities on h.

The interpretation of (14) is that, up to normalisation, the random variable ⇠i has a Lebesgue density
that lies between the densities of two centred Gaussian random variables.
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Integrating each of the three terms in (14) with respect to x and using the formula for the normalising
constant of a Gaussian measure on Rd, we obtain from the hypotheses ⌘ = kh

⇢ and 1�Lf,✓��1h > 0
that
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Note that KC,h and Kc,h are the normalising constants for the Gaussian random variables ⇣C,h ⇠
N(0, (⌘2/Ch)Id) and ⇣c,h ⇠ N(0, (⌘2/ch)Id) respectively, where Id denotes the d ⇥ d identity
matrix.

Since ⇢+ 1 � 0, the upper and lower bounds in (15) are respectively finite and strictly positive. This
proves (i).

To prove (ii), observe that (15) yields that, for all 0 < h < (Lf,✓��1)�1 and v 2 Rd, we have
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The upper bound decreases to 1 as h decreases to zero, since Lf,✓, ��1 and h are all strictly positive.
By the second inequality in (14),
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Since the preceding inequalities hold for arbitrary v 2 Rd, we may set v = 0 in (13). Using this
fact and the fact that (16) implies that limh!0 Kc,hK
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0 := x(⌘2/ch)�1/2. Since this is just a scaling, we have by the change of variables formula that
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where we have used (15) in the first equation, and where Cr, C
0
r > 0 do not depend on h.

To prove (iii), we set r = 2 and ⇢ � s + 1
2 in (ii) to obtain E[k⇠ik2]  ch

(2s+3). Since s is the
number of steps of the Adams–Moulton method of order s+ 1, the random variable ⇠

h
i satisfies the

assumption in the statement of Theorem 3 in Teymur et al. (2016). It then follows from that result that

sup
0ihT

EkZi � x(ti)k  ch
2(s+1)

(Note: the s used here is different to s in the referenced paper, since we follow the usual convention
in numerical analysis texts where the implicit multistep method of order s has s� 1 steps.)
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Appendix – MCMC Psuedo-code

Algorithm for sampling p(✓, Z|Y )

1 INPUT ✓
[1]

2 ⇠
[1] ⇠ p(⇠)

3 FOR 1  k  K

4 �
[k,k]  p(Y |Z,�)p(Z|✓[k], ⇠[k])p(✓[k])

5 ✓
⇤ ⇠ q(·|✓[k])

6 �
[⇤,k]  p(Y |Z,�)p(Z|✓⇤, ⇠[k])p(✓⇤)

7 ↵
[k]  min(1,�[⇤,k]

/�
[k,k])

8 r
[k] ⇠ U [0, 1]

9 IF r
[k]

< a
[k]

10 ✓
[k+1]  ✓

⇤

11 ⇠
[k+1] ⇠ P⇠

12 k  k + 1
13 ELSE

14 ✓
[k+1]  ✓

[k]

15 k  k + 1
16 END

17 END

18 OUTPUT ✓
[2]
, . . . , ✓

[K]
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