Appendix

We collect in this Appendix all the proofs of the results presented in the paper. Section [A]contains
the main proofs, while Section [B] contains technical results used in Section [A] For completeness’
sake, we recall existing theoretical results mentioned in the paper in Section Finally, reference to
a concentration result as well as a quick summary of the properties of conditional expectation that
are used in Section [Alare collected in Section [D]and [El

A Proofs of the main results

Proof of Lemma In the proof, we first obtain a bias—variance decomposition of the mean
squared error, and then proceed to lower bound the variance term for infinitely many 7.

Since the diversity condition does not hold, there exists § > 0 such that, for infinitely many n,

E ZWﬁ)i(X)] >4, (A.6)
i=1

Set n as in Eq. (A-6). We define the auxiliary estimator 7,, as

)= n(X)Wy(z) forany x€[0,1)¢. (A7)

According to Lemma 3]

E[n(X) = in(X)F| = E [n(X) = 7,(X) | +E [[7,(X) = (P -

We now proceed to lower bound the variance term. First, we condition with respect to X, X{,,; and
© to obtain

B {7, () = 2 (X)P| X, X(og, ©] = Var (7,(X) = 7 (X)] X, X{u), ©)
(Eq. (B.12))
= Var (Z (Y; — n(Xy)) Wn,i(X)’X, X[n],@>

i=1
(definition of 77,, (Eq. (A.7)) and 7, (Eq. 2.4)))

n
= Var (Z EiWn,i(X) X, X[n]’ ®>

i=1

(Eq. @.1p)
Z X) Var (&;| X, X[, ©)

(UW—property + independence of the random variables €;)

Z X) Var (&)

(each ¢; is independent from X, X, and 0)

B [[7,(X) - ()P |X. Xy, 0] = S W2
=1

By the tower property of the conditional expectation (Prop. [2)),
_ ~ 2 — ~ 2
E (7, () = Fn()?] = E [E [[7,(X) = 2 (X)P|X, X0, 0] | = 0° [Z Wﬁ,ioo] .
i=1
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Finally, recall that n. was chosen such that E Y27} W2 (X)] > 4. Thus
E[17,(X) = u(X)]"] = 602,

and we can conclude. O

Proof of Lemma[2] According to the contrapositive of Prop. 6 in[Stone| (I977), since we assumed
that 7,, has non-negative weights and does not satisfy the locality condition, there exists a bounded
continuous function 7 : [0, 1] — R such that the following does not hold:

> Wai(X)n(X;) — 0 in probability .
1=1

Thus we can choose € > 0 and § > 0 such that
P(In(X) =m,(X)| =€) >4, (A.8)

for infinitely many n—recall that we defined 77, (z) = >, W, (X)n(X;). According to
Lemma 3] for any n,

E[In(X) = 2 (X)PP] = [In(X) = 7,(X)*] + B [17,(X) = 7 ()] -
In particular,
E [n(X) = i (X)F] 2 B [In(X) = 7,(X)F] -
Let n be such that Eq. (A:8) holds. Then

(Markov’s inequality)
E[In(X) = (X)?] > 622,

(Eq. (A8))

Since the last display holds for infinitely many n, we can conclude. O

Proof of Theorem[I} Note that the first assumption of Lemma I]is satisfied. The major part of the
proof is to show that the second assumption of Lemma[I] namely Eq. (A-6), is also satisfied.

In this proof, we write W, ;(X) short for W25 (X). Let n € N\ {0} be as in the nearest-neighbor
property. By the definition of the asymptotic weights and the deep tree assumption, for any 1 < i <

n,
]1XieA<X>} [ﬂxieA(X)]
W, i(X) = Be | €A | 5 g | ZX€AX) | A9

Let us denote by W, (1)(X) the asymptotic weight corresponding to the nearest-neighbor of X.
Since

SWR(X) =W (X)) as.,
=1
we have

E

S wz,m] 2 & (2 0 ()]

iz E {(]E@ []IXM(X)EA(X)D?

v

(Eq. (A9))

v

(E [E@ []lx(l)(X)eA(X)H)Q
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(x — 2 is convex + Jensen’s inequality)

1 2
= %P(X(1>(X) € A(X))
s[Swaoo]=2
=1

(nearest-neighbor-preserving property)

Since ng does not depend on n, the second assumption of Lemmais satisfied for § = £2/n? and
we can conclude. O

Proof of Theorem[2, The proof of this result relies on Theorem|[I] For both the randomized spill
tree and the random projection tree, the UW-property is satisfied. Moreover, by assumption, they
are deep trees with almost surely at most ng sample points per leaf. Thus we only have to check that
the nearest-neighbor-preserving property is satisfied, which we achieve thanks to Theorem [5] with
k=1

We first focus on the randomized spill tree case. Let us fix = € [0,1]¢, 6 € (0,1/3), and ¢ € (0, 1).
The hypotheses of Theorem [3] are satisfied: provided that 1 < ang/2, there is an event E with
probability greater than 1 — 3¢ such that

8log1/4 1/do
no ’

P (X1 (2) ¢ A(x)|E) < % (

By definition of ng, 1 < ang/2 holds for any « such that
do \ @
dg—1
a < (4log1/6)%~! (16005) - Qg ,

and in this case, we have P (X(1)(z) ¢ A(z) ‘E) < 1 — ¢. Since the previous statement is true for
any x € [0, 1]¢, we have in fact proved that

P)(;Kkl)()() S 14()()‘12) >e€.
Now, since P (A|B) P (B) < IP(A) for any events A and B, we obtain
P (X1)(X) € A(X)) > P (X1)(X) € A(X)|E)P(E) > (1 —35) > 0.

In other words, the nearest-neighbor-preserving property of Theorem|I]is satisfied and we can con-
clude.

The proof for random projection trees is similar, with the difference that we have to check whether
1 < ¢p3% log 1/6. This is true since dy > 2, § € (0,1/3) and one can take ¢y > 1 in the statement
of Theorem@ Then, with E' defined as before, according to Theorem El,

810g1/6)1/d°

P (X(1)(x) ¢ A(z)|E) < codo(do + log o) ( o

2cod? do
Now, ng > 8log1/é ( 0 0) , therefore

1—e
8log1/6\ /% 11—
o2 <Og/> <l-e

no 2

2cod3 (8 log 1/8)%/ o

Moreover, it also holds that ng > exp ( [

) . Thus

8log1/8 /% log nl/%
codo logng <§0/> = codggli/odo (8log 1/5)1/d0
N

< cod? (8log 1/5)"/

log n(l)/ do
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(logz/x < 1/logx for any x > 1)
(8log 1/8)"/ %

9 1—e¢
< cody 5 o
2¢od5 (8log1/9)

8log1/6\ /% 1-
Codo IOgTLQ <Og/> < T&‘

no
We deduce
l—-e 1-¢
P (Xo(e) ¢ A)|E) < 105+ 1o m1 e
We conclude the proof with the same argument used in the randomized spill trees case. O

Proof of Prop. I In this proof we write W), ;(X) short for W25(X). We are going to use
Lemmalto show that 7),, v__ is inconsistent.

For any n € N\ {0}, itholds that >, W, ;(X) = 1 almost surely since each cell contains exactly
one sample point. Let (a,,),,~, be a deterministic sequence such that diam (A(X)) < a,, holds with

probability greater than 1 € (0, 1). Set § = 77/2 and define N as in Lemma@ Letn > N. We have
E lz W i(X) ]1diam(A(X))§an1 = P (diam (A(X)) < an) > 7.

On the event {diam (A(X)) < a,, }, forany 1 < i < n, then || X; — X|| > a,, implies || X; — X|| >
diam (A(X)). In turn it holds that X; ¢ A(X), i.e, W, ;(X) = 0. Therefore,

n
[Z Wn,z ]ldlam(A(X <a,;| - [

X) Lgiam(A(X))<an 11|X1-X|<an]
=1

3
=[5

E [Z Wi.i(X) ]lllXi—XISan] > 1.
=1

Define E as the event {37 ; 1 x,— x|j<a, < N }. According to the law of total expectation,

Wi i(X) 1 x, X||<a,,‘| .

Thus we have obtained

E | > WailX) L xan | =B |3 Wai(X) L, x<a, | F| P (E)
E > WiilX) Ljx, - xj<a, |[E| P (EC) .
i=1
Thus
. ZWn’i(X)ﬂ“Xi’Xl‘Sa" E|P(E) =E [ZWn,i(X)ﬂllxiXKan
=1

i=1

—E > WailX) Ijx,—x<a, [ B | P(E)

>n—P(E) .
(X Wai(X) 1 x,—x|/<a, < 1 almost surely)
According to Lemma 4] we have PP (E€) < § and thus

E > WnilX)1x,-x|<a,|E (A.10)

(VRS
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Now, according to the Cauchy-Schwarz inequality for discrete sequences, conditionally to E,

n 2 n n n
(Z W.i(X) 11|xi_X|§an> <Y W2 X)) Nx,—xj<a, S N> Woi(X)?. (AdD)
i=1 i=1 i=1 =1

We write
E ZWT?J(X)] > E [ZWﬁ,i(X) E|P(E)
i=1 i=1
(law of total expectation + monotony)
2
1 n
> B <z; Woi(X)1x,_x < an> E|P(E)
(Eq. (A.TT))
N
1 n
> N (E ZW71,,i(X)]1\|Xi—X\|§an D) ) ]P)(E)
i=1 i
(t — t% convex + conditional Jensen’s inequality)
E iWQ.(X) > L )
p o - N 4 '
(Eq. (B12)
Since N only depends on quantities that are fixed with respect to n, we can conclude thanks to
Lemmalll O

Proof of Theorem [3| The sketch of the proof is the following. First, we use Lemma [3] to find
a radius p that violates the locality condition for any subsample of the original data. This radius
depends on m, the size of this subsample. But since m is constant by assumption, p violates the
locality condition for any n. Finally we conclude with Lemma 2]

Lete € (0,1). Set
1/d

1A —or(§+1)
B § ,’nfrnauxTrd/2

Note that p does not depend on n. To any subset S C {1,...,n} corresponds the local average
estimator 775, build upon (X;),.s. We denote by WWS“ its weights. We extend this notation to
WS, =Wp3 ifie Sand W, = 0 otherwise. According to Lemma it holds that

E > €.

n
Do WRi(X) Lyx-x2p
=1

Then, since the weights corresponding to 7, satisfy W, ; = E [W,7;] (where the expectation is with
respect to the subsampling), it holds that

E >e.

D Wai(X) Ljx, x|z
=1

We conclude with Lemmal[2] O

B Auxiliary results

In this section, we collect some auxiliary results used in the proofs throughout this paper.

Our first result is a standard bias-variance decomposition used in the proof of Lemma [I] and
Lemmal2l
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Lemma 3 (Bias-variance decomposition). Suppose that the observations satisfy Eq. 2.1). Then,
Sor any local average estimator 1, satisfying the UW-property,

E [ n(X) = in(X)F| = E [n(X) = 7,(X) ] +E [[7,(X) = (0P -

Proof. Let n be an integer. We first decompose the mean squared error as
E[n(X) = i (X)]*] = E [[n(X) = 7,(X) + 7,(X) = (X
= E[In(X) = 7, (X) "] +E [[7,(X) = (X
+2E[(n(X) =7, (X)) (7,(X) = 7 (X))] -
Further inspection of the double-product term shows that

E [(n(X) = 7,(X)) (71, (X) = (X)) = E [E [(n(X) = 7,(X)) (7,,(X) = 7n (X)) | X, X[, ©]]
(tower property)

=E [(n(X) = 7,(X)) E [7,(X) — (X)X, X[y, ©]] -
(n(X) and 7,,(X) are o(X, X ], ©)-measurable by the UW-property)

Additionally,
@,,(X) is 0(X, X}, ©)-measurable by the UW-property)

—Zn Wi i(X) —E | > W, (X)Y;|X
i=1
(definition of 7,, (Eq. (A77)) and 7),, (Eq. (2:4)))

:Z X;) ZE i (X)Y3] X, X1, ©]

(linearity)

X, ©

i=1

(Wh,i(X) is 0(X, X[, ©)-measurable by the UW-property)
By irrelevance of independent information (Prop. [2),
E [Yi|X, X}, 8] = E[Yi|X)] ,
and by Eq. 1), E [Y;| X;] = n(X;). We conclude that
E [7,(X) — 7.(X)|X, X}, 0] =0, (B.12)

and therefore the double-product term vanishes. We have obtained the following decomposition for
the mean squared error:

E[In(X) = tn(X)IP] = E [In(X) = 7, ()P + B [17,(X) = (X
O

The following result is used in the proof of Prop. [I]to control the number of sample points falling in
a certain ball around X.

Lemma 4 (Controlling the number of sample points near X). Let § € (0,1/2). Under the
assumptions of Lemma [I| we can choose constants 0 < m < M < +oo such that, for any n €
N\ {0}, m < a,n'/? < M. Set

d 41 4
C;:w(l_F /1_|_2mfmm>7

mfmin
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(C + 1)M fraxm®?
r(4+1)
Then, for any n > N := max (N, N1),

P (Z]llxi—x”gan > N) <.

=1

d
M max
NO = 78 f = d) .

and Nj:= ( 5

Proof. Set O the boundary of [0, 1]%. We first show that for any fixed z € [0, 1] far away from the
boundary, that is, « such that d (x, ) > a,, then

P (Zﬂlxi—ms% > N) <6/2.

i=1

Set z € [0,1]? such that d (z,8) > a,, and p := p(B(z,a,)). We write

P (Zﬂm—ms% > N) <P (Z]MX —all<an > No)

i=1

1 < No
=P |- > Ljx, s, P>~

n n

1 — No

- Z 1Xi—al<an —P| > 2 —p

n — n

‘We notice that
p=p(B(z,an))
(definition of p)

> fmintiLes (B (2, a,) N[0, 1]7)
(¢ has bounded density on [0, 1]%)
= fmin,U/Leb(B ((Ea an))
(we assumed d (z,0) > ay)

d/2,.d
_fminﬂ—/an

T (441
(volume of the hypersphere in dimension d)

/'nfminﬂ-d/2

> Jmin® -
b= nl’ (% +1) ’
(an > m/n/%)

where 11 ¢ is the Lebesgue measure on R?. The converse direction is similar, and we write

. d/2 M d/2
M i T~ min __ <)< M finaxm ™~ man__ (B.13)
nF(§—|—1) nF(§—|—1)
Therefore,
NO ]\/[fmaxﬂ'd/2

= > D,
(C+n T(¢+1)n
and we deduce that Ny /n — p > pC'. As a consequence,

n 1 n
P (Zﬂm—zns% > N) <P ( - > 1yx,—af<an —P
=1

=1

>pC>.
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Set
1 n
Zn = E ZﬂllXi—wHSan .
=1

The random variable Z,, is a normalized sum of independent 0—1-valued Bernoulli random vari-
ables taking value 1 with probability p. Note that ) . E {ﬂﬁ Xi—xl\gan} = np. According to the
Bernstein’s inequality (Lemma @) our choice of C' and the lower bound on p,
nC?p )
P Zn - > C < 2 e < —.
(I p|l > pC) < eXp( 2+2C/3)—2

We have proved that, for any fixed = such that d (z, ) > a,,

n
P (Z]I|Xiw|<an > N) < 5/2

=1

We now focus on the points that are near the boundary of [0, 1]¢. Since we assumed that X has
bounded density on [0, 1]¢, it holds that

P(d(X,0) < an) < fmaxiLes ({ar € [0, 1" s.t.d (2,0 (0,1]%) < an) })

< fmax 4d - %
(the unit cube has 2d (d — 1)-dimensional faces)
AM frmaxd
= d
(an < M/n*/%)
]
Pd(X,0) San) < 5.
(n > Ny)
and we can conclude. O

Lemma 5 (Relation between locality and sample size). Suppose that the data satisfy Eq. 2-1)
and that X has bounded density. Consider an infinite random forest estimator 7, whose base trees
satisfy the two properties listed in Theorem Let ¢ € (0,1). Then, for any

(1—e) (241
p < [nfmangdp )

1/d

we have

E

> Wuil(X) ]lllxi—xep] >e.
=1

Proof. The intuition behind the proof is very simple: if p is small enough with respect to the size of
the cells, since X has bounded density on [0, 1]9, then it is very unlikely that X falls into balls of
radius p centered in the sample points—see the Right panel of Fig. [I]

First, we notice that

E

D Wi X) Lyx, - x2p
=1

n 1 .

Since the leaves of the tree contain exactly one data point, the leaves are non-empty, Therefore,

E [Z Wm(X)ll|X,.,_X|2,,1 =E lzﬂxieA(Xﬂhxi—xup} :
i=1

=1
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Again, since N(A(X)) = 1 almost surely, we can set unambiguously A; the cell containing data
point X;, and X; € A(X) is equivalent to X € A;. We write

P(X; € A(X)and | X — X;|| > p|X},,0) =P (X € 4; and | X — X;|| > p|X .}, 0)

By the union bound,

> P (X; € A(X) and [|X — X;| > p| X}, 0) > P (
=1

n

> P(X; € A(X) and | X — X,|| > p| X[, ©) > 1 -

i=1
‘We deduce that

n

> P(X; € A(X)and | X — X;l| > p) > 1-

i=1

and we can conclude.

Xinl, 9)
o)

>P (X € [0,1)4\
U; 4i = [0.1]9
0)

o 1-p (
(union bound)
>1—-n P (X € B(Xi,p)| X[, 0)
(satisfies the bounded density assumption)
> 1 =7 fuax - Vol (B (X1, p))
1 frna 7 2
rg+1) °

i=1

n

UB(XMJ)

i=1

i=1

nfmaxﬂ-d/2pd
r(4+1)

)

Figure 2: Proof of Lemma[5] The black dots correspond to sample points, the circles around them

are of radius p. The cells form a partition of [0, 1]

2

. Here X belong to the same cell as X; (in blue).
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C Previous results

Theorem 4 (Consistence of local average estimators Stone), (1977, Theorem 1). Consider the lo-
cal average estimator 7y, defined in Eq. 2.4) and suppose that the following conditions are satisfied.

1. There is a C > 1 such that, for every nonnegative Borel function f on RY, and for any
n>1,
D W a(X)] £(X0)

i=1

E < CE[f(X)].

2. There exists D > 1 such that P (3, |Wy, ;(X)| < D) =1, foralln > 1;
3.3 W i(X)| 1 x,—x|>a — 0 in probability for all a > 0;

4. >, Wy i(X) — 1in probability;

5. max; [W,, ;(X)| — 0 in probability.

Then the local average estimator 7, is consistent.

Theorem 5 (Nearest-neighbor search guarantees/Dasgupta and Sinha} 2015}, Theorem 7). There
is an absolute constant c( for which the following holds. Suppose . is a doubling measure on R of
intrinsic dimension dy > 2, i.e.,

Ve e[0,1], Vr>0, Va>1, 0 < u(B(z,ar)) < a®u(B(z,7)).
Pick any query x € [0,1]¢ and draw X1, ..., X,, independently from . Let ng be as before the
maximal number of sample points in a leaf. For any 6 € (0,1/3), with probability at least 1 — 36

over the choice of data:

e For the randomized spill tree, if k < ang/2,

dok k,log1/6)\ /™
P (tree fails to return the k-nearest neighbors of x) < codo (8 max(k, log 1/ )> .

o no

e For the random projection tree, if k < co(3k)% max(k,log 1/6),

8 max(k,log1/0) ) L/do

P (tree fails to return the k-nearest neighbors of x) < codok(do+logng) (
no

Theorem 6 (Convergence w.r.t. number of trees (Scornet, 2016, Theorem 3.1)). Define K, (-, ) :
[0,1]¢ x [0,1]¢ — [0, 1] the random forest connection function as

K, (z,y) =P (z and y in the same cell|D,,) .

Consider a continuous or discrete random forest, that is, assume K,, piecewise-constant or continu-
ous for any fixed D,,. Then, conditionally on the data D, for almost every query points x € [0,1]%,
we have

M, (2) m M,V () -
Theorem 7 (Infinite forests have smaller risks (Scornet, 2016, Theorem 3.3)). Suppose that
Y =n(X)+e,

where ¢ is a centered Gaussian random variable with finite variance o, independent of X. Assume
also that ||n|| ., < occ. Then, for all T,n € N\ {0},

E (2 (X) = 1) ] = E [l (X) = (P + 7 Bx., [Vare (n,a(X)]
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D A concentration inequality

The following result is known as the Bernstein’s inequality.

Lemma 6 (Bernstein’s inequality (Boucheron et al., 2013, Eq. (2.10))). Let Z1, ..., Z, be inde-
pendent random variables. Assume that there exist positive numbers b and v such that

Vi<i<m, |Z;|<b a.s, and ZE[Z?]gv.

Then, for any t > 0,

t2
P (Zz - E[Z] > t) < exp (Q(U—i—bt/?))> .

E Conditional expectation

In this section, we recall the basic properties of the conditional expectation that are used throughout
this paper. We refer to Billingsley| (2008], Chapter 6, Section 34) for a proof of the following facts.

Proposition 2 (Basic properties of conditional expectation). Ler X and Y be integrable random
variables, let G and H be subalgebras of F. Then the following hold:

1. (linearity) For any real numbers o, [3,

ElaX + 8Y|G] = aE[X|G] 4+ BE[Y|G] a.s.

\S)

. (monotonicity) If X <Y a.s., then E[X|G] <E[Y|G] a.s.

w

. (conditional Jensen) If f is a convex function such that f(X) is integrable, then

E[f(X)IG] < f(E[XIG]) as.

N

. (measurability) If Y is G-measurable and XY is integrable, then
E[XY|G] =YE[X|]F] as.

)

. (tower property) If H C G, then
E[E[X|G)|H]|=E[X|H] as.

6. (irrelevance of independent information) If H is independent of o (G, X), then
E[Xl|o(G,H)]=E[X|G] a.s.
In particular, if X is independent of H, then E [ X|H] = E[X] a.s.
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