
Appendix
We collect in this Appendix all the proofs of the results presented in the paper. Section A contains
the main proofs, while Section B contains technical results used in Section A. For completeness’
sake, we recall existing theoretical results mentioned in the paper in Section C. Finally, reference to
a concentration result as well as a quick summary of the properties of conditional expectation that
are used in Section A are collected in Section D and E.

A Proofs of the main results

Proof of Lemma 1. In the proof, we first obtain a bias–variance decomposition of the mean
squared error, and then proceed to lower bound the variance term for infinitely many n.

Since the diversity condition does not hold, there exists δ > 0 such that, for infinitely many n,

E

[
n∑
i=1

W 2
n,i(X)

]
≥ δ . (A.6)

Set n as in Eq. (A.6). We define the auxiliary estimator ηn as

ηn(x) :=

n∑
i=1

η(Xi)Wn,i(x) for any x ∈ [0, 1]d . (A.7)

According to Lemma 3,

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
.

We now proceed to lower bound the variance term. First, we condition with respect to X,X[n] and
Θ to obtain

E
[
|ηn(X)− η̂n(X)|2

∣∣∣X,X[n],Θ
]

= Var
(
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
)

(Eq. (B.12))

= Var

(
n∑
i=1

(Yi − η(Xi))Wn,i(X)

∣∣∣∣∣X,X[n],Θ

)
(definition of ηn (Eq. (A.7)) and η̂n (Eq. (2.4)))

= Var

(
n∑
i=1

εiWn,i(X)

∣∣∣∣∣X,X[n],Θ

)
(Eq. (2.1))

=

n∑
i=1

W 2
n,i(X) Var

(
εi
∣∣X,X[n],Θ

)
(UW-property + independence of the random variables εi)

=

n∑
i=1

W 2
n,i(X) Var (εi)

(each εi is independent from X , X[n] and Θ)

E
[
|ηn(X)− η̂n(X)|2

∣∣∣X,X[n],Θ
]

=

n∑
i=1

W 2
n,i(X)σ2 .

By the tower property of the conditional expectation (Prop. 2),

E
[
|ηn(X)− η̂n(X)|2

]
= E

[
E
[
|ηn(X)− η̂n(X)|2

∣∣∣X,X[n],Θ
]]

= σ2 E

[
n∑
i=1

W 2
n,i(X)

]
.
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Finally, recall that n was chosen such that E
[∑n

i=1W
2
n,i(X)

]
≥ δ. Thus

E
[
|ηn(X)− η̂n(X)|2

]
≥ δσ2 ,

and we can conclude.

Proof of Lemma 2. According to the contrapositive of Prop. 6 in Stone (1977), since we assumed
that η̂n has non-negative weights and does not satisfy the locality condition, there exists a bounded
continuous function η : [0, 1]d → R such that the following does not hold:

n∑
i=1

Wn,i(X)η(Xi) −→ 0 in probability .

Thus we can choose ε > 0 and δ > 0 such that

P (|η(X)− ηn(X)| ≥ ε) ≥ δ , (A.8)

for infinitely many n—recall that we defined ηn(x) =
∑n
i=1Wn,i(X)η(Xi). According to

Lemma 3, for any n,

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
.

In particular,
E
[
|η(X)− η̂n(X)|2

]
≥ E

[
|η(X)− ηn(X)|2

]
.

Let n be such that Eq. (A.8) holds. Then

E
[
|η(X)− η̂n(X)|2

]
≥ E

[
|η(X)− ηn(X)|2

]
≥ P (|η(X)− ηn(X)| ≥ ε) ε2

(Markov’s inequality)

E
[
|η(X)− η̂n(X)|2

]
≥ δε2 .

(Eq. (A.8))

Since the last display holds for infinitely many n, we can conclude.

Proof of Theorem 1. Note that the first assumption of Lemma 1 is satisfied. The major part of the
proof is to show that the second assumption of Lemma 1, namely Eq. (A.6), is also satisfied.

In this proof, we write Wn,i(X) short for W∞n,i(X). Let n ∈ N \ {0} be as in the nearest-neighbor
property. By the definition of the asymptotic weights and the deep tree assumption, for any 1 ≤ i ≤
n,

Wn,i(X) = EΘ

[
1Xi∈A(X)

N(A(X))

]
≥ EΘ

[
1Xi∈A(X)

n0

]
. (A.9)

Let us denote by Wn,(1)(X) the asymptotic weight corresponding to the nearest-neighbor of X .
Since

n∑
i=1

W 2
n,i(X) ≥W 2

n,(1)(X) a.s. ,

we have

E

[
n∑
i=1

W 2
n,i(X)

]
≥ E

[
W 2
n,(1)(X)

]
≥ 1

n2
0

E
[(

EΘ

[
1X(1)(X)∈A(X)

])2
]

(Eq. (A.9))

≥ 1

n2
0

(
E
[
EΘ

[
1X(1)(X)∈A(X)

]])2
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(x 7→ x2 is convex + Jensen’s inequality)

=
1

n2
0

P
(
X(1)(X) ∈ A(X)

)2
E

[
n∑
i=1

W 2
n,i(X)

]
≥ ε2

n2
0

.

(nearest-neighbor-preserving property)

Since n0 does not depend on n, the second assumption of Lemma 1 is satisfied for δ = ε2/n2
0 and

we can conclude.

Proof of Theorem 2. The proof of this result relies on Theorem 1. For both the randomized spill
tree and the random projection tree, the UW-property is satisfied. Moreover, by assumption, they
are deep trees with almost surely at most n0 sample points per leaf. Thus we only have to check that
the nearest-neighbor-preserving property is satisfied, which we achieve thanks to Theorem 5 with
k = 1.

We first focus on the randomized spill tree case. Let us fix x ∈ [0, 1]d, δ ∈ (0, 1/3), and ε ∈ (0, 1).
The hypotheses of Theorem 5 are satisfied: provided that 1 ≤ αn0/2, there is an event E with
probability greater than 1− 3δ such that

P
(
X(1)(x) /∈ A(x)

∣∣E) ≤ c0d0

α

(
8 log 1/δ

n0

)1/d0

.

By definition of n0, 1 ≤ αn0/2 holds for any α such that

α ≤ (4 log 1/δ)
d0−1

(
c0d0

1− ε

) d0
d0−1

=: α0 ,

and in this case, we have P
(
X(1)(x) /∈ A(x)

∣∣E) ≤ 1 − ε . Since the previous statement is true for
any x ∈ [0, 1]d, we have in fact proved that

P
(
X(1)(X) ∈ A(X)

∣∣E) ≥ ε .
Now, since P (A|B)P (B) ≤ P (A) for any events A and B, we obtain

P
(
X(1)(X) ∈ A(X)

)
≥ P

(
X(1)(X) ∈ A(X)

∣∣E)P (E) ≥ ε(1− 3δ) > 0 .

In other words, the nearest-neighbor-preserving property of Theorem 1 is satisfied and we can con-
clude.

The proof for random projection trees is similar, with the difference that we have to check whether
1 ≤ c03d0 log 1/δ. This is true since d0 ≥ 2, δ ∈ (0, 1/3) and one can take c0 ≥ 1 in the statement
of Theorem 5. Then, with E defined as before, according to Theorem 5,

P
(
X(1)(x) /∈ A(x)

∣∣E) ≤ c0d0(d0 + log n0)

(
8 log 1/δ

n0

)1/d0

.

Now, n0 ≥ 8 log 1/δ
(

2c0d
2
0

1−ε

)d0
, therefore

c0d
2
0

(
8 log 1/δ

n0

)1/d0

≤ 1− ε
2

.

Moreover, it also holds that n0 ≥ exp
(

2c0d
3
0(8 log 1/δ)1/d0

1−ε

)
. Thus

c0d0 log n0

(
8 log 1/δ

n0

)1/d0

= c0d
2
0

log n
1/d0
0

n
1/d0
0

(8 log 1/δ)
1/d0

≤ c0d2
0

1

log n
1/d0
0

(8 log 1/δ)
1/d0
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(log x/x ≤ 1/ log x for any x > 1)

≤ c0d2
0

1− ε
2c0d2

0 (8 log 1/δ)
1/d0

(8 log 1/δ)
1/d0

c0d0 log n0

(
8 log 1/δ

n0

)1/d0

≤ 1− ε
2

.

We deduce
P
(
X(1)(x) /∈ A(x)

∣∣E) ≤ 1− ε
2

+
1− ε

2
= 1− ε .

We conclude the proof with the same argument used in the randomized spill trees case.

Proof of Prop. 1. In this proof we write Wn,i(X) short for W∞n,i(X). We are going to use
Lemma 1 to show that η̂n,V∞ is inconsistent.

For any n ∈ N\{0}, it holds that
∑n
i=1Wn,i(X) = 1 almost surely since each cell contains exactly

one sample point. Let (an)n≥1 be a deterministic sequence such that diam (A(X)) ≤ an holds with
probability greater than η ∈ (0, 1). Set δ = η/2 and define N as in Lemma 4. Let n ≥ N . We have

E

[
n∑
i=1

Wn,i(X)1diam(A(X))≤an

]
= P (diam (A(X)) ≤ an) ≥ η .

On the event
{

diam (A(X)) ≤ an
}

, for any 1 ≤ i ≤ n, then ‖Xi −X‖ > an implies ‖Xi −X‖ >
diam (A(X)). In turn it holds that Xi /∈ A(X), i.e, Wn,i(X) = 0. Therefore,

E

[
n∑
i=1

Wn,i(X)1diam(A(X))≤an

]
= E

[
n∑
i=1

Wn,i(X)1diam(A(X))≤an 1‖Xi−X‖≤an

]

≤ E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

]
.

Thus we have obtained

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

]
≥ η .

Define E as the event
{∑n

i=1 1‖Xi−X‖≤an ≤ N
}

. According to the law of total expectation,

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

]
= E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣E
]
P (E)

+ E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣Ec

]
P (Ec) .

Thus

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣E
]
P (E) = E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

]

− E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣Ec

]
P (Ec)

≥ η − P (Ec) .

(
∑n
i=1Wn,i(X)1‖Xi−X‖≤an ≤ 1 almost surely)

According to Lemma 4, we have P (Ec) ≤ δ and thus

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣E
]
≥ η

2
. (A.10)
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Now, according to the Cauchy-Schwarz inequality for discrete sequences, conditionally to E,(
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

)2

≤
n∑
i=1

W 2
n,i(X) ·

n∑
i=1

1‖Xi−X‖≤an ≤ N ·
n∑
i=1

Wn,i(X)2 . (A.11)

We write

E

[
n∑
i=1

W 2
n,i(X)

]
≥ E

[
n∑
i=1

W 2
n,i(X)

∣∣∣∣∣E
]
P (E)

(law of total expectation + monotony)

≥ 1

N
E

( n∑
i=1

Wn,i(X)1Xi−X ≤ an

)2
∣∣∣∣∣∣E
P (E)

(Eq. (A.11))

≥ 1

N

(
E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≤an

∣∣∣∣∣E
])2

P (E)

(t 7→ t2 convex + conditional Jensen’s inequality)

E

[
n∑
i=1

W 2
n,i(X)

]
≥ 1

N
· η

2

4
· (1− η/2) .

(Eq. (B.12))

Since N only depends on quantities that are fixed with respect to n, we can conclude thanks to
Lemma 1.

Proof of Theorem 3. The sketch of the proof is the following. First, we use Lemma 5 to find
a radius ρ that violates the locality condition for any subsample of the original data. This radius
depends on m, the size of this subsample. But since m is constant by assumption, ρ violates the
locality condition for any n. Finally we conclude with Lemma 2.

Let ε ∈ (0, 1). Set

ρ :=
1

2

[
(1− ε)Γ

(
d
2 + 1

)
mfmaxπd/2

]1/d

.

Note that ρ does not depend on n. To any subset S ⊆ {1, . . . , n} corresponds the local average
estimator η̂Sm build upon (Xi)i∈S . We denote by WS

m,i its weights. We extend this notation to
WS
n,i = WS

m,i if i ∈ S and WS
n,i = 0 otherwise. According to Lemma 5, it holds that

E

[
n∑
i=1

WS
n,i(X)1‖Xi−X‖≥ρ

]
≥ ε .

Then, since the weights corresponding to η̂n satisfyWn,i = E
[
WS
n,i

]
(where the expectation is with

respect to the subsampling), it holds that

E

[
n∑
i=1

Wn,i(X)1‖Xi−X‖≥ρ

]
≥ ε .

We conclude with Lemma 2.

B Auxiliary results

In this section, we collect some auxiliary results used in the proofs throughout this paper.

Our first result is a standard bias-variance decomposition used in the proof of Lemma 1 and
Lemma 2.
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Lemma 3 (Bias-variance decomposition). Suppose that the observations satisfy Eq. (2.1). Then,
for any local average estimator η̂n satisfying the UW-property,

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
.

Proof. Let n be an integer. We first decompose the mean squared error as

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X) + ηn(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
+ 2E [(η(X)− ηn(X)) (ηn(X)− η̂n(X))] .

Further inspection of the double-product term shows that

E [(η(X)− ηn(X)) (ηn(X)− η̂n(X))] = E
[
E
[
(η(X)− ηn(X)) (ηn(X)− η̂n(X))

∣∣X,X[n],Θ
]]

(tower property)

= E
[
(η(X)− ηn(X))E

[
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
]]
.

(η(X) and ηn(X) are σ(X,X[n],Θ)-measurable by the UW-property)

Additionally,

E
[
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
]

= ηn(X)− E
[
η̂n(X)

∣∣X,X[n],Θ
]

(ηn(X) is σ(X,X[n],Θ)-measurable by the UW-property)

=

n∑
i=1

η(Xi)Wn,i(X)− E

[
n∑
i=1

Wn,i(X)Yi

∣∣∣∣∣X,X[n],Θ

]
(definition of ηn (Eq. (A.7)) and η̂n (Eq. (2.4)))

=

n∑
i=1

η(Xi)Wn,i(X)−
n∑
i=1

E
[
Wn,i(X)Yi

∣∣X,X[n],Θ
]

(linearity)

E
[
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
]

=

n∑
i=1

Wn,i(X)

{
η(Xi)− E

[
Yi
∣∣X,X[n],Θ

]}
.

(Wn,i(X) is σ(X,X[n],Θ)-measurable by the UW-property)

By irrelevance of independent information (Prop. 2),

E
[
Yi
∣∣X,X[n],Θ

]
= E [Yi|Xi] ,

and by Eq. (2.1), E [Yi|Xi] = η(Xi). We conclude that

E
[
ηn(X)− η̂n(X)

∣∣X,X[n],Θ
]

= 0 , (B.12)

and therefore the double-product term vanishes. We have obtained the following decomposition for
the mean squared error:

E
[
|η(X)− η̂n(X)|2

]
= E

[
|η(X)− ηn(X)|2

]
+ E

[
|ηn(X)− η̂n(X)|2

]
.

The following result is used in the proof of Prop. 1 to control the number of sample points falling in
a certain ball around X .
Lemma 4 (Controlling the number of sample points near X). Let δ ∈ (0, 1/2). Under the
assumptions of Lemma 1, we can choose constants 0 < m < M < +∞ such that, for any n ∈
N \ {0}, m ≤ ann1/d ≤M . Set

C :=
Γ
(
d
2 + 1

)
log 4

δ

mfmin

(
1 +

√
1 + 2mfmin

)
,
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N0 :=
(C + 1)Mfmaxπ

d/2

Γ
(
d
2 + 1

) and N1 :=

(
8Mfmaxd

δ

)d
.

Then, for any n ≥ N := max (N0, N1),

P

(
n∑
i=1

1‖Xi−X‖≤an > N

)
≤ δ .

Proof. Set ∂ the boundary of [0, 1]d. We first show that for any fixed x ∈ [0, 1]d far away from the
boundary, that is, x such that d (x, ∂) ≥ an, then

P

(
n∑
i=1

1‖Xi−x‖≤an > N

)
≤ δ/2 .

Set x ∈ [0, 1]d such that d (x, ∂) ≥ an and p := µ(B (x, an)). We write

P

(
n∑
i=1

1‖Xi−x‖≤an > N

)
≤ P

(
n∑
i=1

1‖Xi−x‖≤an > N0

)

= P

(
1

n

n∑
i=1

1‖Xi−x‖≤an −p >
N0

n
− p

)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

1‖Xi−x‖≤an −p

∣∣∣∣∣ > N0

n
− p

)
We notice that

p = µ(B (x, an))

(definition of µ)

≥ fminµLeb
(
B (x, an) ∩ [0, 1]d

)
(µ has bounded density on [0, 1]d)

= fminµLeb(B (x, an))

(we assumed d (x, ∂) ≥ an)

=
fminπ

d/2adn
Γ
(
d
2 + 1

)
(volume of the hypersphere in dimension d)

p ≥ mfminπ
d/2

nΓ
(
d
2 + 1

) ,
(an ≥ m/n1/d)

where µLeb is the Lebesgue measure on Rd. The converse direction is similar, and we write

mfminπ
d/2

nΓ
(
d
2 + 1

) ≤ p ≤ Mfmaxπ
d/2

nΓ
(
d
2 + 1

) . (B.13)

Therefore,
N0

(C + 1)n
=
Mfmaxπ

d/2

Γ
(
d
2 + 1

)
n
≥ p ,

and we deduce that N0/n− p > pC. As a consequence,

P

(
n∑
i=1

1‖Xi−x‖≤an > N

)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

1‖Xi−x‖≤an −p

∣∣∣∣∣ > pC

)
.
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Set

Zn :=
1

n

n∑
i=1

1‖Xi−x‖≤an .

The random variable Zn is a normalized sum of independent 0–1-valued Bernoulli random vari-
ables taking value 1 with probability p. Note that

∑
i E
[
12
‖Xi−x‖≤an

]
= np. According to the

Bernstein’s inequality (Lemma 6), our choice of C and the lower bound on p,

P (|Zn − p| > pC) ≤ 2 exp

(
− nC2p

2 + 2C/3

)
≤ δ

2
.

We have proved that, for any fixed x such that d (x, ∂) ≥ an,

P

(
n∑
i=1

1‖Xi−x‖≤an > N

)
≤ δ/2 .

We now focus on the points that are near the boundary of [0, 1]d. Since we assumed that X has
bounded density on [0, 1]d, it holds that

P (d (X, ∂) ≤ an) ≤ fmaxµLeb

({
x ∈ [0, 1]d s.t. d

(
x, ∂

(
[0, 1]d

)
≤ an

)})
≤ fmax · 4d · an

(the unit cube has 2d (d− 1)–dimensional faces)

≤ 4Mfmaxd

n1/d

(an ≤M/n1/d)

P (d (X, ∂) ≤ an) ≤ δ

2
,

(n ≥ N1)

and we can conclude.

Lemma 5 (Relation between locality and sample size). Suppose that the data satisfy Eq. (2.1)
and that X has bounded density. Consider an infinite random forest estimator η̂n whose base trees
satisfy the two properties listed in Theorem 3. Let ε ∈ (0, 1). Then, for any

ρ <

[
(1− ε)Γ

(
d
2 + 1

)
nfmaxπd/2

]1/d

,

we have

E

[
n∑
i=1

Wni(X)1‖Xi−X‖≥ρ

]
≥ ε .

Proof. The intuition behind the proof is very simple: if ρ is small enough with respect to the size of
the cells, since X has bounded density on [0, 1]d, then it is very unlikely that X falls into balls of
radius ρ centered in the sample points—see the Right panel of Fig. 1.

First, we notice that

E

[
n∑
i=1

Wni(X)1‖Xi−X‖≥ρ

]
= E

[
n∑
i=1

EΘ

[
1Xi∈A(X)

N(A(X))

]
1‖Xi−X‖≥ρ

]
.

Since the leaves of the tree contain exactly one data point, the leaves are non-empty, Therefore,

E

[
n∑
i=1

Wni(X)1‖Xi−X‖≥ρ

]
= E

[
n∑
i=1

1Xi∈A(X) 1‖Xi−X‖≥ρ

]
.
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Again, since N(A(X)) = 1 almost surely, we can set unambiguously Ai the cell containing data
point Xi, and Xi ∈ A(X) is equivalent to X ∈ Ai. We write

P
(
Xi ∈ A(X) and ‖X −Xi‖ ≥ ρ

∣∣X[n],Θ
)

= P
(
X ∈ Ai and ‖X −Xi‖ ≥ ρ

∣∣X[n],Θ
)

= P
(
X ∈ Ai \ B (Xi, ρ)

∣∣X[n],Θ
)
.

By the union bound,

n∑
i=1

P
(
Xi ∈ A(X) and ‖X −Xi‖ ≥ ρ

∣∣X[n],Θ
)
≥ P

(
X ∈

n⋃
i=1

Ai \ B (Xi, ρ)

∣∣∣∣∣X[n],Θ

)

≥ P

(
X ∈ [0, 1]d \

n⋃
i=1

B (Xi, ρ)

∣∣∣∣∣X[n],Θ

)
(
⋃
iAi = [0, 1]d)

≥ 1− P

(
X ∈

n⋃
i=1

B (Xi, ρ)

∣∣∣∣∣X[n],Θ

)
(union bound)

≥ 1− n · P
(
X ∈ B (Xi, ρ)

∣∣X[n],Θ
)

(satisfies the bounded density assumption)
≥ 1− n · fmax ·Vol (B (X1, ρ))

n∑
i=1

P
(
Xi ∈ A(X) and ‖X −Xi‖ ≥ ρ

∣∣X[n],Θ
)
≥ 1− nfmaxπ

d/2ρd

Γ
(
d
2 + 1

) .

We deduce that
n∑
i=1

P (Xi ∈ A(X) and ‖X −Xi‖ ≥ ρ) ≥ 1− nfmaxπ
d/2ρd

Γ
(
d
2 + 1

) ,

and we can conclude.

•
•
X

•
Xi

•

•

•

•

•

•

A(X) = Ai

Figure 2: Proof of Lemma 5. The black dots correspond to sample points, the circles around them
are of radius ρ. The cells form a partition of [0, 1]2. Here X belong to the same cell as Xi (in blue).
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C Previous results

Theorem 4 (Consistence of local average estimators Stone, 1977, Theorem 1). Consider the lo-
cal average estimator η̂n defined in Eq. (2.4) and suppose that the following conditions are satisfied.

1. There is a C ≥ 1 such that, for every nonnegative Borel function f on Rd, and for any
n ≥ 1,

E

[
n∑
i=1

|Wn,i(X)| f(Xi)

]
≤ C E [f(X)] .

2. There exists D ≥ 1 such that P (
∑
i |Wn,i(X)| ≤ D) = 1, for all n ≥ 1;

3.
∑
i |Wn,i(X)|1‖Xi−X‖>a → 0 in probability for all a > 0;

4.
∑
iWn,i(X)→ 1 in probability;

5. maxi |Wn,i(X)| → 0 in probability.

Then the local average estimator η̂n is consistent.

Theorem 5 (Nearest-neighbor search guarantees Dasgupta and Sinha, 2015, Theorem 7). There
is an absolute constant c0 for which the following holds. Suppose µ is a doubling measure on Rd of
intrinsic dimension d0 ≥ 2, i.e.,

∀x ∈ [0, 1], ∀r > 0, ∀a ≥ 1, 0 < µ(B (x, ar)) < ad0µ(B (x, r)) .

Pick any query x ∈ [0, 1]d and draw X1, . . . , Xn independently from µ. Let n0 be as before the
maximal number of sample points in a leaf. For any δ ∈ (0, 1/3), with probability at least 1 − 3δ
over the choice of data:

• For the randomized spill tree, if k ≤ αn0/2,

P (tree fails to return the k-nearest neighbors of x) ≤ c0d0k

α

(
8 max(k, log 1/δ)

n0

)1/d0

.

• For the random projection tree, if k ≤ c0(3k)d0 max(k, log 1/δ),

P (tree fails to return the k-nearest neighbors of x) ≤ c0d0k(d0+log n0)

(
8 max(k, log 1/δ)

n0

)1/d0

.

Theorem 6 (Convergence w.r.t. number of trees (Scornet, 2016, Theorem 3.1)). DefineKn(·, ·) :
[0, 1]d × [0, 1]d → [0, 1] the random forest connection function as

Kn(x, y) = P (x and y in the same cell|Dn) .

Consider a continuous or discrete random forest, that is, assume Kn piecewise-constant or continu-
ous for any fixed Dn. Then, conditionally on the data Dn, for almost every query points x ∈ [0, 1]d,
we have

η̂n,VT
(x) −−−−−→

T→+∞
η̂n,V∞(x) .

Theorem 7 (Infinite forests have smaller risks (Scornet, 2016, Theorem 3.3)). Suppose that

Y = η(X) + ε ,

where ε is a centered Gaussian random variable with finite variance σ2, independent of X . Assume
also that ‖η‖∞ <∞. Then, for all T, n ∈ N \ {0},

E
[
|η̂n,VT

(X)− η(X)|2
]

= E
[
|η̂n,V∞(X)− η(X)|2

]
+

1

T
EX,Dn

[VarΘ (η̂n,A(X))] .
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D A concentration inequality

The following result is known as the Bernstein’s inequality.
Lemma 6 (Bernstein’s inequality (Boucheron et al., 2013, Eq. (2.10))). Let Z1, . . . , Zn be inde-
pendent random variables. Assume that there exist positive numbers b and v such that

∀1 ≤ i ≤ n, |Zi| ≤ b a.s., and
∑
i

E
[
Z2
i

]
≤ v .

Then, for any t > 0,

P

(∑
i

Zi − E [Zi] > t

)
≤ exp

(
− t2

2(v + bt/3)

)
.

E Conditional expectation

In this section, we recall the basic properties of the conditional expectation that are used throughout
this paper. We refer to Billingsley (2008, Chapter 6, Section 34) for a proof of the following facts.
Proposition 2 (Basic properties of conditional expectation). Let X and Y be integrable random
variables, let G andH be subalgebras of F . Then the following hold:

1. (linearity) For any real numbers α, β,

E [αX + βY |G] = αE [X|G] + βE [Y |G] a.s.

2. (monotonicity) If X ≤ Y a.s., then E [X|G] ≤ E [Y |G] a.s.

3. (conditional Jensen) If f is a convex function such that f(X) is integrable, then

E [f(X)|G] ≤ f (E [X|G]) a.s.

4. (measurability) If Y is G-measurable and XY is integrable, then

E [XY |G] = Y E [X|G] a.s.

5. (tower property) IfH ⊆ G, then

E [E [X|G]|H] = E [X|H] a.s.

6. (irrelevance of independent information) IfH is independent of σ (G, X), then

E [X|σ (G,H)] = E [X|G] a.s.

In particular, if X is independent ofH, then E [X|H] = E [X] a.s.
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