A Static Network Models

A.1 Proof of Theorem[T]

Proof. We use Y to denote the hypothesis class, which has the size of || = 2™. By Fano’s inequality
[12], we have for any Y,

) I(Y*, A) +log 2

PV £Y")>1—
Y #Y") = oz V|
1 Y ,A)+10g2. 0
nlog?2

Our main step is to give an upper bound for the mutual information 7(Y™*, A) in order to apply Fano’s
inequality. By using the pairwise KL-based bound from [35| p. 428] we have
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Among the equations above, (a) holds because A is symmetric, and A;;’s are independent and
identically distributed given Y, while (b) holds because for every ¢ and j, we have

P(Aijlyi = y5) P(Aijly: # yj)

P(Aijly: = yj) log o—=——5 > > P(Ayjly; # y;) log =",

Azi; i ) P(Ajlys # yj) ; ! T P(Asly = y5)
given that p > ¢. Next we use formula (16) from [10]:
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By Fano’s inequality [12]] and by plugging (3) and (2) into (), for the probability error to be at least
1/2, it is sufficient for the lower bound to be greater than 1/2. Therefore

n?  (p—9)°
I(Y*, A)+log2 T oy +log?2 1
- nlog2 -2
By solving for n in the inequality above, we obtain that if
(p—q)? o 2log2  4log2
g(l—q) = n n?

P(Y#Y)>1-—
Y#£Y)2 nlog2

; “)
then we have that P(Y # Y) > i
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A.2  Proof of Corollary

Proof. Starting from the probability distribution of the adjacency matrix A, we have
exp(ﬂ Ziq Aijyiyj)
ZA’G{OJ}"X” exp(8 ZKJ- A;jyiyj)
iy exp(BAijviy;)
B Hi,<j(1 + eXp(Byiyj))
_ H exp(BAijyiy;)
ios 1+ exp(Byiy;)

= [1P(Aislyi, ).

P(A]Y) =

i<j
N i exp(BAi;jyiy;) _ e — 0 — _exp(B)
Thus, A;; is Bernoulli with parameter T (Brin) - We denote p = P(A4;;|y; = y;) = Trexp(8)’
and g = P(A;;|y; # y;) = %. Plugging p and q into (4)) and requiring the probability error
to be at least 1/2, we obtain that if
2log2 4log2
2(cosh f— 1) < —e= 2082 5)
n n
YR 1

then we have that P(Y #Y) > 3. O

A.3 Moment Generating Function of Multivariate Gaussian Distribution

We introduce the following result from [24] p. 40], which will later be used in the proof of Theorem 2]
and

Lemma 2. Let x ~ N,(p, %), Q = xT Az, A= AT. Then the moment generating function of Q is
given by
Mo(t) = Exnn, (1,5) [exp(thAx)]
N / exp(te Az — 3(x —p) 'S (@ —p)")

RS -

Furthermore, if (X1 — 2t A) is symmetric positive definite, we have
Mg (t) =|I — 2t%1/2Axn1/2|71/2
- exp (tuT2*1/2(21/2A21/2) (- 2t21/2A21/2)*1E*1/2u).

A.4 Proof of Theorem

First, we start with a required technical lemma:

Lemma 3. The model considered in Definition[3)is equivalent to the following Modified Latent Space
Model:

Letd € Z*, ;€ R% and pu # 0,0 > 0. A modified Latent Space Model with parameters (d, j1, o) is
an undirected graph of n nodes with the adjacency matrix A, where each A;; € {0,1}. Each node
is in one of the two classes {+1, —1}. The distribution of true labels Y* = (y5,...,y) is uniform,
i.e., each label y} is assigned to +1 with probability 0.5, and —1 with probability 0.5.

For every node i, the nature generates a latent d-dimensional vector z; € R? according to the
Gaussian distribution N4(0, o1).

The adjacency matrix A is distributed as follows: if y; = y; then A;j is Bernoulli with parameter
exp(—||z; — x;||3); otherwise A;; is Bernoulli with parameter exp(—||z; — x; + 2y} pu|3).
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Proof. We claim that the Modified Latent Space Model is equivalent to the classic Latent Space Model
considered in Deﬁnition by defining x; = z; — y;u for every node 4. Since z; ~ Ny(y;p, 0°I), we
have z; ~ Ny4(0,02I). As aresult,

e if y; =y, Aj; is Bernoulli with parameter exp(—||z; — z;]|3) = exp(—|l2; + yjpu — z; —
y;iull3) = exp(—[lz; — ;]13).

e ify; = 1,57 = —1, Aj; is Bernoulli with parameter exp(—||z; — z;|3) = exp(—||2; + p —
zj + pl3) = exp(—|lzi — x; + 2pl3).

e ify; = —1,y; = 1, Aj; is Bernoulli with parameter exp(—||z; — z;13) = exp(—||z; — pu —
i — nl3) = exp(=|lzi — z; — 2ul3).

This completes the proof of the lemma. O

Now, we provide the proof of the main theorem.

Proof. Since X and Y are independent, we have the following equalities

P(Aijlyiy;) = / P(Aij, zi, x5|yi, y;)da;da;

X, %5

/ P(z4, 25yi, v )P(Aijlyi, Y5, T4, 25)daida; ©
]Ji,ﬁljj

]P)({Ei, {EJ)P(A” ‘yz, ij ZTi, x])d:clda;]

ZTi,Tyj

Eiﬁi,x]‘ []P)(Alj |yia Yj, T, 1‘])]

The second last equality holds because in the modified model, latent vectors are independent of
their labels. Now we are interested in the expectations E,, ., [P(A;; = 1|y; = y;, %, ;)] and
Eqy, 2, [P(Aij = 1|y; # yj, i, ;)]. By definition we know

B, o, [P(Aij = 1yi = yj, 26, 3;5)] = Ea, 2, [exp(—||z; — 2;][3)],

and

Baio; [P(Aij = 1y # Y5, i, x;)]
= P(yl = ]-7yj = _]-‘yl # yj) ' ]EIz,I][P(AZJ = 1|yl = layj = _17xi7xj)]
+ Py = =1,y = Ly # y5)  Bay o, [P(Aij = 1ys = —1,y; = 1,4, 25)]
1
= i(Ewi;a?j [P(Aij = 1|yi = Lyj = —1,.1’1',1?3‘)] +]E$i,93j [P<Aij = 1|yi = _Lyj = 1,.%1',%]‘)]).
Since x;, z-; follow the distribution N4 (0, o>1), we have z; — xj ~ Ng(O0, 20°1), z; — i+ 2y ~

Ny (2y;p, 202T). Thus we can use Lemmain Appendix A.3 with ¢ = —1 and obtain the following
results:

Eu; 0, [P(Aij = 1|y = yj, 24, 3;)] = (do* + 1)74/2

4 2
Evyo, [P(Ai; = Lys = Ly; = —Las )] = (40 +1)=%2 - exp(——14la

402 + 1 (7

- Al 13
d
]F‘Iq‘,vmj []P’(A” = 1|y1 = 71>yj = ]-axivxj)] = (402 + 1) /2. eXp(740-2 +21).
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Notice that 0 < Eg, o, [P(As; = 1ys # yj, zi, 25)] < B, o, [P(Asj; = 1ys = yj, 24, 25)] < 1. By
using the pairwise KL-based bound from [35} p. 428] we have

1Y+, A) < IJJIQ >N KL(Papy [[Papy)
Yeyy'ey
< ’
< Jmaxy KIL(Pajy || Pajy’)
P(AJY)
Yiey & (AY)log 557
n’ P(Aijlyis y5)
< — max ]P)A,L ) 1o SR SEALAL A YA
4 yi,yj,ygyy}A (Aislyi: vs) g[P’(Aij|y§,y;.)

= — max E P(A;;|yi,ys, iy lo Lo
4 Z Jc;,ﬂcj i |y1 J K3 j)] g ]E:cl-,mJ [IED 1,]|y27 y]7 Z;, x])]

YiYj 7y17y

B, o, [P(Aijlys = yj, wi, 25)]

By, 2, P(Aijlys # yj, T, 75)]

By, 2, P(Aij = 1y: # yj, T, 5)]
=n*(40” + 1)1 72 3, ®)

= > By, o [P(Aijlyi = y5, %5, 2;)] - log

ij

bS

<9 Ea, 0, [P(Aij = Ly = yj, w3, 2;5)] - log

where (c) holds because for every ¢ and j, we have

Exi,x]‘ []P)(Aij =0ly; = ijxivxj)]

Eq:z; [P(Aij = Oy # yj, i, 7))

1= Ea, 0, [P(Aij = 1y = yj, 23, 2]
1= Ey, o, [P(Aij = Uy # yj, 24, 25)]
1— (402 +1)7P/2

1 — (402 + 1)=4/2 - exp(— 2l )

Ey, 2, [P(Aij = Olys = yj, x4, 25)] - log

= (1 = Ey, o, [P(Aij = 1y = y;, i, 75)]) - log

=(1—(40%+1)"%?) . log

< 0.

Thus, we only need to consider the case for A;; = 1.

By Fano’s inequality [12] and by plugging the result (8) into (I), for the probability error to be at
least 1/2, it is sufficient for the lower bound to be greater than 1/2. Therefore we obtain that if

log2 log2

(40 + 1) 71723 < ©

2n n?’

then for any estimator Y, P(Y # Y*) > 1.
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B Dynamic Network Models

B.1 Proof of Lemmall]

Proof. For the first part, starting from the left-hand side, we have

KL(Pajy [ Pajyr) = 3 _P(AJY) log W

A
H P(AkllAT ayk>yl)
= Z P(A”|ATU , Yis yj) . log Hk<l ]P(A ) Kl ks
A k<l kl‘ Tklvyk7yl)

i<j

P(Ai|Ary, yi 1
= P(Ai‘|ATij7yi7y‘) . log LL
§ <i<j ! ! Z P Akl|A‘rkmy;gayZ

(

k<l (

P(Ari|Arys Ui, Wi

(HP(A”'A””"M“ 8 B Al Ay 1 ]
Tkl )

i<j
]:P(AkllAT 7yk7yl)

= P(Ar|Ar,, vk, i) - log -
Zg( ( | ki ) ]P)(Akl‘ATmay;c?yl/)

= K]L(PAMAWJ WisYj ||PAij|ATi_7~ ,yéay;)

~— [ — ~— | —

n
< (2) m.a.XKL(PAij\Aw Y HPAiﬂATU W) (10)

Y]

The proof for the second part follows the same approach. O

B.2 Proof of Theorem 3

Proof. For simplicity we use the shorthand notation f;; = f, | (A7,;). By using the pairwise
KL-based bound from [35} p. 428] and Lemmam we have

. 1
I(Y* A) < E ST KL(Payy |[Pay)
YeyyY’'ey

X KL(Papy || Pajy)

IN

n
= y;rjl%j{{yé ( ) Hzlgb'x KL(PA“‘AW YirYi HPA”"AW ’yi*yﬁ')
P(Ay|Ar v = yy5)
P(Aij| Az, yi # y5)

1 —sz‘j>
1—qfs;

n
> HZH;X Z IP(AZ] ‘ATij y Ui = yj) : IOg
e

pfij
qfij

max (pfij log + (1 = pfi;) log

max KL(pfijllqfij)

2 qfi; 1 —qfi;
_[n fz‘j(P—Q)2
\2 r%XQ(l—inj)
< (" (p—q)? (11

n> H}f}xpfijw +(1 —pfij)m
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By Fano’s inequality [12] and by plugging into (T), for the probability error to be at least 1/2, it
is sufficient for the lower bound to be greater than 1/2. Therefore

n’-n  (p—q)°
- I(Y*, A) +log2 Caiop Tlog2 1
I[D(Y#y)zl_wzl_ 2 q(-q > 1
nlog 2 nlog2 2
By solving for n in the inequality above, we obtain that if
2
— -2
b=g)” =2, (12)
g(1—q) = n*—n

then we have that P(Y # Y) >

1
z.
B.3 Proof of Theoremd

First, we start with a required technical lemma:

Lemma 4. The model considered in Definition[0|is equivalent to the following Modified Dynamic
Latent Space Model:

Letd € Zt,u € Riand p # 0,0 > 0. Let F = {fk},(;)o be a set of functions, where fi :
{0,1}* — (0, 1]. A modified Latent Space Model with parameters (d, uu, o, F') is an undirected graph
of n nodes with the adjacency matrix A, where each A;; € {0,1}. Each node is in one of the two
classes {41, —1}. The distribution of true labels Y* = (yi,...,y}) is uniform, i.e., each label y is
assigned to +1 with probability 0.5, and —1 with probability 0.5.

For every node i, the nature generates a latent d-dimensional vector x; € R? according to the
Gaussian distribution Ny(0, 0°1).

The adjacency matrix A is distributed as follows: if y; = y; then A;j is Bernoulli with parameter
Jir ) (Ar,)) -exp(— ||z — x5]|3); otherwise Ay is Bernoulli with parameter fi.. (A, )-exp(—||z; —
j + 25 ull3).

Proof. We claim that the Modified Dynamic Latent Space Model is equivalent to the model considered

in Definition [ by defining z; = z; — y;u for every node i. Since z; ~ Ng(y;u, 02I), we have
x; ~ Ng4(0,0°T). As aresult,

e if y; =y, Aj; is Bernoulli with parameter f|;, |(A-,) - exp(—||zi — z[3) = fir, (Ar,,)-
exp(—lzi +yfp — x5 — yiull3) = fir,|(Ar;) - exp(=llz; — z;]3),

e if yf = 1,y5 = —1, Ay; is Bernoulli with parameter f|,, |(A,,) - exp(—|lz; — z3) =
firit (Ar) - exp(=llai + p = x5 + pl3) = fir(Ary) - exp(=loi — 25 + 2pl[3).

e if yf = —1,y7 = 1, A;; is Bernoulli with parameter f. |(A-,;) - exp(—||zi — zl3) =
firijt(Aryy) - exp(=llwi — p = x5 = pll3) = fir,;(Ar,,) - exp(=lzi — z; — 2u]3).

This completes the proof of the lemma. O
Now, we provide the proof of the main theorem.

Proof. Since X and Y are independent, we have the following equalities

HJ)(AAij|"4'ri] » Yi, yj) = / ]P(Avja Ly Ty |AT7‘,J' y Yis yj)dxvdx]

ZTi,Tj

/ P(lﬁi, '1:_]|A7'” »Yis yj) : ]P)(ATJ |AT¢j s YirsYjy Ly x])dxzdx]
ZTi,Tj

P(xi, 25)P(Ai| Az, Yis i, T, ) dsda

TirTj

Ezi,azj []P)(Aile'rijayiayj7$i7$j)]~ (13)
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The second last equality holds because in the modified model, latent vectors are independent of their
labels. Using Lemmal[2)in Appendix A.3 and following the analysis in (7)), we have

Eo, .0, [P(Aij = 1lys = yj, 25, 25)] = fir,y) - (40° +1)7%2

a2 Al pll3 14)
Ee, o, [P(Aij = 1yi # yj, 26, 75)] = fir,) - (40 +1)72 - exp(—

402 417

Using the pairwise KL-based bound from [33] p. 428] and Lemma[I] we have

/\

I<Y*7A) = |y|2 Z Z KH“ PA|Y||PA|Y’)
YeyyY'ey

KIL(P Pyyy
YfggaX ( A|Y|| A|Y)

n
< max ( )Ina,XKL(PA”|AT”,y“y]|| A”\AT”,y”y)

yz,y,,y“yj
(A1J|AT yYi = yg)
max max P(Ai|Ar, .y = lo L
Yirls Vi) ( ) Z il Ariys Y = ;) - log P(Aij|Ar yi # 95)
()

= max

ylayjaylay 2
:vI T UP)
xl T []P)

< )maXZExl o [P(Aijlyi = yj, Aryj, i, 25)]

IN

ma'XZEaf1 T] 7]‘AT”7y7ay]7x77xj)]

A1J|Aﬂjaymyj;xwx])]
A1J|Aﬂjaymy]ax“x])]

(
(

sz‘@j[ (A1]|yl = yj7A‘ri]'7xi7xj)]

]E;v.“zj [P(A”klh # yj7ATij7xi7xj)]

< <;L> maxEx T [IP)(A” = 1|y7, = yj,ATij,ZL'i,SL'j)]
2,7

]Ezi»fﬁj []P)(Alj = 1|y2 = yj7AT7‘,jaxl'vxj)]

]E$i7$j []P)(AU = 1|y7 7é yj7AT¢jamiaxj)]

-log

- log

— (" max fi., |(A ).(402+1)*d/2.10g 1/ exp(— 4 pll3 )
2 i, [7ij] Tij 102 1
= () ma i) - 4040 1)
n —_] =
< (5)atao? + 02
=2(n? — n)(40® + 1) 7172 ) 3. (15)

By Fano’s inequality [12] and by plugging into , for the probability error to be at least 1/2, it
is sufficient for the lower bound to be greater than 1/2. Therefore

L * _ 1-d/2|,,||12
IF’(Y%Y)ZI—I(Y ,A)+10g22172(n n)(40? + 1)~ |||z + log 2 2}.
nlog2 nlog 2 2

By solving for n in the inequality above, we obtain that if

(4o + 1) 2|3 <

n—2
————log2 1
S 2 =) 0g2, (16)

then we have that P(Y # Y) >

1
3-
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C Directed Network Models

C.1 Proof of Theorem

Proof. For simplicity we use the shorthand notation 0j; = 2;11 Aji, to denote the number of
(0ji+1)(1yi=y,]s+1)
= and
R ] 22:11_(0k1:+1)(1[yi:yk]5+1.)
0 < o04; <i— j— 1. This is because a node can never connect to its previous nodes according to
the definition. Additionally oy; < i —m — 1 for £ < m since the first m nodes are not connected to

each other.

directed edges from node j to the first 7 nodes. Thus we have w;; =

From Algorithmwe can observe that w;; < -- and @;; > min wj;. Thus we have @;; > minw;; >
2([yi=y;]s+1)
(i—m)(i+m—1)(s+1)

every [ > m.

by assuming 0;; = 0, oy; =7 —m — 1 forevery k < m, and o;; =i — 1 — 1 for

By using the pairwise KL-based bound from [33] p. 428] and Lemma [I| we have

1
(V" 4) < 5 > Y KL(Papy||Papy)

YeEYY'ey
< max KL(P Pay:
< max KL(Payy [ Pajy)
< " KL(P P
- Y}’I’;’f/ié(y 2 I’I}%X ( AjilATji791 ----- Yi AjilA-rjivylla---ay;)

n - mu?ji
max max mwj; - log ——
Y,Y’'ey \ 2 7% mw

Ji
1
(Z) IOg 2m
(n—m)(n+m—1)(s+1)

(n=m)(n+m—1)(s+1)
2m

IN

IN

= (n?*—n)/2-log

2
< (n2—n)/2-log%. a7

By Fano’s inequality [12] and by plugging into , for the probability error to be at least 1/2, it
is sufficient for the lower bound to be greater than 1/2. Therefore

2 2(s
Yo I(Y*, A) +log2 wonog MUt 4 log2 1
p(y#y)zl_wzl_ 2 %8 T o8 > =,
nlog2 nlog?2 2
By solving for n in the inequality above, we obtain that if
1 -2
logs+ < n log2 — 2logn, (18)
8m n?—n
or equivalently,
s4+1 2(n—2)/(n2—n)
< 19
8m n? ’ (19
then we have that P(Y # Y) > i O

C.2 Proof of Theorem

Proof. From Algorithmwe can observe that w;; < -- and w;; > min wj;. Thus we have for any

node j € {i —m,...,i— 1}, Wj > minjegpm,. -1} Wji > % by assuming ¥; = yx
forevery k € {i —m,...,i— 1}. Similarly, for any node j € {1,...,i —m — 1}, we have w;; >
Minjeq1, . imm—1} Wji > % by assuming y; = yy, forevery k € {1,...,i—m—1}.

By using the pairwise KL-based bound from [35} p. 428] and Lemmal|I] we have
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1
I(Y*,A) < P Z Z KL(Pajy [ Pajy+)

YeYY'ey

PAJ“LlATjivyiv"'vyg)

< /
< KIL(Pajy || Pajy+)
< — KIL(Py .. .
= Y{l’yl_?‘éy m(n m) je{i—nﬂ}LiiX,l—l} ( A]zlA‘rji sY1y-5Yi
n—m
- ( 2 ) i’,j'E{lT.&};’(—m—l} KL(PA-ji‘A’j/i”yl """ vi HPAJ’"“‘AUW Y yé')
1 _
<m(n —m)log —— + nom log
2 m(1—p)
s+1 (n—m—1)(s+1)
s+1 n—m (mn—m-—1)(s+1)
m(n —m)log +( 9 ) og mi=p)
n? s+1 n? n(s+1)
< —1 —log ————=
=78 +4 Ogm(l—p)

n? (10 (5 +1)2

— | log + log n) .
mp(1 — p)

4

(20)

By Fano’s inequality [12] and by plugging into , for the probability error to be at least 1/2, it

is sufficient for the lower bound to be greater than 1/2. Therefore

n? ( +1)2
Ry I(Y*,A) +log2 T (10% mp(i—p) T log n) + log 2

P(Y £Y)>1-— >1-

Y

nlog?2 - nlog?2

By solving for n in the inequality above, we obtain that if
(s +1)2 o 2log2  4log2
mp(l—p) =~ n n?

log logn,

or equivalently,
(S+ 1)2 - 22(7172)/712
mp(l—p) = n

)

then we have that P(Y # Y) >

(SIS

19

DN =

21
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