A Proof of Proposition 4.1

Proof. Taking h(t) = f''(t), a = f'(0) and b = f(0) in Eq (5), we have

$$(f'(0)t + f(0)) + \int_0^\infty (t - \mu)_+ h(\mu) d\mu$$

= $(f'(0)t + f(0)) + \int_0^t (t - \mu) f''(\mu) d\mu$
= $(f'(0)t + f(0)) + (t - \mu) f'(\mu) \Big|_{\mu=0}^t + \int_0^t f'(\mu) d\mu$ (integration by parts)
= $f(0) + \int_0^t f'(\mu) d\mu$
= $f(t)$.

Conversely, if $f(t) = (at+b) + \int_0^\infty (t-\mu)_+ h(\mu) d\mu,$ calculation shows

$$f'(t) = a + \int_0^t h(\mu) d\mu, \quad f''(t) = h(t).$$

Therefore, f is convex if h is non-negative.

To prove Eq. (6), we substitute $f(t) = f'(0)t + f(0) + \int_0^\infty (t-\mu)_+ f''(\mu)d\mu$ into the definition of *f*-divergence,

$$D_{f}(p \mid\mid q) = \mathbb{E}_{q} \left[f\left(\frac{p(x)}{q(x)}\right) - f(1) \right]$$

= $\mathbb{E}_{q} \left[f'(0) \frac{p(x)}{q(x)} + f(0) + \int_{0}^{\infty} (p(x)/q(x) - \mu)_{+} f''(\mu) d\mu - f(1) \right]$
= $[f'(0) + f(0) - f(1)] + \int_{0}^{\infty} \mathbb{E}_{q} \left[\left(\frac{p(x)}{q(x)} - \mu\right)_{+} \right] f''(\mu) d\mu.$

This completes the proof.

Proof of Proposition 4.2 B

Proof. By chain rule and the "score-function trick" $\nabla_{\theta}q_{\theta}(x) = q_{\theta}(x)\nabla_{\theta}\log q_{\theta}(x)$, we have

$$\begin{aligned} \nabla_{\theta} D_{f}(p \mid\mid q_{\theta}) &= \mathbb{E}_{q_{\theta}} \left[\nabla_{\theta} f\left(\frac{p(x)}{q_{\theta}(x)}\right) + f\left(\frac{p(x)}{q_{\theta}(x)}\right) \nabla_{\theta} \log q_{\theta}(x) \right] \\ &= \mathbb{E}_{q_{\theta}} \left[f'\left(\frac{p(x)}{q_{\theta}(x)}\right) \nabla_{\theta} \left(\frac{p(x)}{q_{\theta}(x)}\right) + f\left(\frac{p(x)}{q_{\theta}(x)}\right) \nabla_{\theta} \log q_{\theta}(x) \right] \\ &= \mathbb{E}_{q_{\theta}} \left[-f'\left(\frac{p(x)}{q_{\theta}(x)}\right) \left(\frac{p(x)}{q_{\theta}(x)}\right) \nabla_{\theta} \log q_{\theta}(x) + f\left(\frac{p(x)}{q_{\theta}(x)}\right) \nabla_{\theta} \log q_{\theta}(x) \right] \\ &= -\mathbb{E}_{q_{\theta}} \left[\rho_{f} \left(\frac{p(x)}{q_{\theta}(x)}\right) \log q_{\theta}(x) \right], \end{aligned}$$

where $\rho_f(t) = f'(t)t - f(t)$. This proves Eq. (7).

To prove Eq. (8), we note that for any function ϕ , we have by the *reparamertization trick*:

$$\nabla_{\theta} \mathbb{E}_{q_{\theta}}[\phi(x)] = \mathbb{E}_{x \sim q_{\theta}}[\phi(x) \nabla_{\theta} \log q_{\theta}(x)] \quad \text{(score function)} \\ = \mathbb{E}_{\xi \sim q_{0}}[\nabla_{x} \phi(x) \nabla_{\theta} g_{\theta}(\xi)] \quad \text{(reparameterization trick)},$$

where we assume $x \sim q_{\theta}$ is generated by $x = g_{\theta}(\xi), \ \xi \sim q_0.$

Taking $\phi(x) = \rho_f(p(x)/q_\theta(x))$ in Eq. (7), we have

$$\begin{aligned} \nabla_{\theta} D_{f}(p \mid \mid q_{\theta}) &= -\mathbb{E}_{x \sim q_{\theta}} \left[\rho_{f} \left(\frac{p(x)}{q_{\theta}(x)} \right) \nabla_{\theta} \log q_{\theta}(x) \right] \\ &= -\mathbb{E}_{\xi \sim q_{0}} \left[\nabla_{x} \rho_{f} \left(\frac{p(x)}{q_{\theta}(x)} \right) \nabla_{\theta} g_{\theta}(\xi) \right] \\ &= -\mathbb{E}_{\xi \sim q_{0}} \left[\rho_{f}' \left(\frac{p(x)}{q_{\theta}(x)} \right) \nabla_{x} \left(\frac{p(x)}{q_{\theta}(x)} \right) \nabla_{\theta} g_{\theta}(\xi) \right] \\ &= -\mathbb{E}_{\xi \sim q_{0}} \left[\rho_{f}' \left(\frac{p(x)}{q_{\theta}(x)} \right) \left(\frac{p(x)}{q_{\theta}(x)} \right) \nabla_{x} \log \left(\frac{p(x)}{q_{\theta}(x)} \right) \nabla_{\theta} g_{\theta}(\xi) \right] \\ &= -\mathbb{E}_{\xi \sim q_{0}} \left[\gamma_{f} \left(\frac{p(x)}{q_{\theta}(x)} \right) \nabla_{x} \log \left(\frac{p(x)}{q_{\theta}(x)} \right) \nabla_{\theta} g_{\theta}(\xi) \right], \end{aligned}$$

where $\gamma_f(t) = \rho'_f(t)t$.

C Tail-adaptive *f*-divergence with Score-Function Gradient Estimator

Algorithm 2 summarizes our method using the score-function gradient estimator (7).

Algorithm 2 Variational Inference with Tail-adaptive *f*-Divergence (with Score Function Gradient) Goal: Find the best approximation of p(x) from $\{q_{\theta} : \theta \in \Theta\}$. Initialize θ , set an index β (e.g., $\beta = -1$). for iteration do Draw $\{x_i\}_{i=1}^n \sim q_{\theta}$. Set $\hat{F}(t) = \sum_{j=1}^n \mathbb{I}(p(x_j)/q(x_j) \ge t)/n$, and $\rho_i = \hat{F}(p(x_i)/q(x_i))^{\beta}$. Update $\theta \leftarrow \theta + \epsilon \Delta \theta$, where ϵ is stepsize, and $\Delta \theta = \frac{1}{2} \sum_{j=1}^n [\alpha_j \nabla_{\alpha_j} \log q_{\alpha_j}(x_j)]$

$$\Delta \theta = \frac{1}{z_{\rho}} \sum_{i=1} \left[\rho_i \nabla_{\theta} \log q_{\theta}(x_i) \right],$$

where $z_{\rho} = \sum_{i=1}^{n} \rho_i$. end for

D More Results for Bayesian Neural Network

	Average Test RMSE							
Dataset	$\beta = -1.0$	$\beta = -0.5$	$\alpha = -1$	$\alpha = 0$	$\alpha = 0.5$		$\alpha = 2.0$	$\alpha = +\infty$
Boston	2.828	2.948	3.026	2.956	2.990	2.937	2.981	2.985
Concrete	5.371	5.505	5.717	5.592	5.381	5.462	5.499	5.481
Energy	1.377	1.461	1.646	1.431	1.531	1.413	1.458	1.458
Kin8nm	0.085	0.088	0.087	0.088	0.083	0.084	0.084	0.083
Naval	0.001	0.001	0.003	0.001	0.004	0.005	0.004	0.004
Combined	4.116	4.146	4.156	4.161	4.154	4.135	4.188	4.145
Wine	0.636	0.632	0.632	0.634	0.634	0.633	0.635	0.634
Yacht	0.849	0.788	1.478	0.861	1.146	1.221	1.222	1.234
Protein	4.487	4.531	4.550	4.565	4.564	4.658	4.777	4.579
Year	8.831	8.839	8.841	8.859	8.985	9.160	9.028	9.086
	Average Test Log-likelihood							
dataset	$\beta = -1.0$	$\beta = -0.5$	$\alpha = -1$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 2.0$	$\alpha = +\infty$
Boston	-2.476	-2.523	-2.561	-2.547	-2.506	-2.493	-2.516	-2.509
Concrete	-3.099	-3.133	-3.171	-3.149	-3.103	-3.106	-3.116	-3.109
Energy	-1.758	-1.814	-1.946	-1.795	-1.854	-1.801	-1.828	-1.832
Kin8nm	1.055	1.017	1.024	1.012	1.080	1.075	1.074	1.085
Naval	5.468	5.347	4.178	5.269	4.086	4.022	4.077	4.037
Combined	-2.835	-2.842	-2.845	-2.845	-2.843	-2.839	-2.850	-2.842
Wine	-0.962	-0.956	-0.961	-0.959	-0.971	-0.968	-0.972	-0.971
Yacht	-1.711	-1.718	-2.201	-1.751	-1.875	-1.946	-1.963	-1.986
Protein	-2.921	-2.930	-2.934	-2.938	-2.928	-2.930	-2.947	-2.932
Year	-3.570	-3.597	-3.599	-3.600	-3.518	-3.529	-3.524	-3.524

Table 2 shows more results in Bayesian networks with more choices of α in α -divergence. We can see that our approach achieves the best performance in most of the cases.

Table 2: Test RMSE and LL results for Bayesian neural network regression.

E Reinforcement Learning

In this section, we provide more information and results of the Reinforcement learning experiments, including comparisons of algorithms using score-function gradient estimators (Algorithm 2).

E.1 MuJoCo Environments

We test six MuJoCo environments in this paper: *HalfCheetah*, *Hopper*, *Swimmer(rllab)*, *Humanoid(rllab)*, *Walker*, and *Ant*, for which the dimensions of the action space are 6, 3, 2, 21, 6, 8, respectively. Figure 4 shows examples of the environment used in our experiments.

Figure 4: MuJoCo environments used in our reinforcement learning experiments. From left to right: HalfCheetah, Hopper, Swimmer(rllab), Humanoid(rllab), Walker, and Ant.

E.2 Different Choices of α

In this section, we present the average reward of α -divergences with different choices of α on Hopper and Walker with both score-function and reparameterization gradient estimators. We can see from Figure 5 that $\alpha = 0.5$ and $\alpha = +\infty$ (denoted by $\alpha = \max$ in the legends) perform consistently better than standard KL divergence ($\alpha = 0$), which is used the original SAC paper.

Figure 5: Results on Hopper and Walker with different choices of α .

E.3 Tail-adaptive *f*-divergence with score function estimation

In this section, we investigate optimization with score function gradient estimators (Algorithm 2). The results in Figure 6 show that our tail-adaptive f-divergence tends to yield better performance across all environments tested.

Figure 6: Results of average rewards with score function gradients.