
A Proof of Proposition 4.1

Proof. Taking h(t) = f ′′(t), a = f ′(0) and b = f(0) in Eq (5), we have

(f ′(0)t+ f(0)) +

∫ ∞
0

(t− µ)+h(µ)dµ

= (f ′(0)t+ f(0)) +

∫ t

0

(t− µ)f ′′(µ)dµ

= (f ′(0)t+ f(0)) + (t− µ)f ′(µ)

∣∣∣∣t
µ=0

+

∫ t

0

f ′(µ)dµ (integration by parts)

= f(0) +

∫ t

0

f ′(µ)dµ

= f(t).

Conversely, if f(t) = (at+ b) +
∫∞

0
(t− µ)+h(µ)dµ, calculation shows

f ′(t) = a+

∫ t

0

h(µ)dµ, f ′′(t) = h(t).

Therefore, f is convex if h is non-negative.

To prove Eq. (6), we substitute f(t) = f ′(0)t+ f(0) +
∫∞

0
(t− µ)+f

′′(µ)dµ into the definition of
f -divergence,

Df (p || q) = Eq
[
f

(
p(x)

q(x)

)
− f(1)

]
= Eq

[
f ′(0)

p(x)

q(x)
+ f(0) +

∫ ∞
0

(p(x)/q(x)− µ)+f
′′(µ)dµ− f(1)

]
= [f ′(0) + f(0)− f(1)] +

∫ ∞
0

Eq

[(
p(x)

q(x)
− µ

)
+

]
f ′′(µ)dµ.

This completes the proof.

B Proof of Proposition 4.2

Proof. By chain rule and the “score-function trick”∇θqθ(x) = qθ(x)∇θ log qθ(x), we have

∇θDf (p || qθ) = Eqθ
[
∇θf

(
p(x)

qθ(x)

)
+ f

(
p(x)

qθ(x)

)
∇θ log qθ(x)

]
= Eqθ

[
f ′
(
p(x)

qθ(x)

)
∇θ
(
p(x)

qθ(x)

)
+ f

(
p(x)

qθ(x)

)
∇θ log qθ(x)

]
= Eqθ

[
−f ′

(
p(x)

qθ(x)

)(
p(x)

qθ(x)

)
∇θ log qθ(x) + f

(
p(x)

qθ(x)

)
∇θ log qθ(x)

]
= −Eqθ

[
ρf

(
p(x)

qθ(x)

)
log qθ(x)

]
,

where ρf (t) = f ′(t)t− f(t). This proves Eq. (7).

To prove Eq. (8), we note that for any function φ, we have by the reparamertization trick:

∇θEqθ [φ(x)] = Ex∼qθ [φ(x)∇θ log qθ(x)] (score function)
= Eξ∼q0 [∇xφ(x)∇θgθ(ξ)] (reparameterization trick),

where we assume x ∼ qθ is generated by x = gθ(ξ), ξ ∼ q0.
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Taking φ(x) = ρf (p(x)/qθ(x)) in Eq. (7), we have

∇θDf (p || qθ) = −Ex∼qθ
[
ρf

(
p(x)

qθ(x)

)
∇θ log qθ(x)

]
= −Eξ∼q0

[
∇xρf

(
p(x)

qθ(x)

)
∇θgθ(ξ)

]
= −Eξ∼q0

[
ρ′f

(
p(x)

qθ(x)

)
∇x
(
p(x)

qθ(x)

)
∇θgθ(ξ)

]
= −Eξ∼q0

[
ρ′f

(
p(x)

qθ(x)

)(
p(x)

qθ(x)

)
∇x log

(
p(x)

qθ(x)

)
∇θgθ(ξ)

]
= −Eξ∼q0

[
γf

(
p(x)

qθ(x)

)
∇x log

(
p(x)

qθ(x)

)
∇θgθ(ξ)

]
,

where γf (t) = ρ′f (t)t.

C Tail-adaptive f -divergence with Score-Function Gradient Estimator

Algorithm 2 summarizes our method using the score-function gradient estimator (7).

Algorithm 2 Variational Inference with Tail-adaptive f -Divergence (with Score Function Gradient)
Goal: Find the best approximation of p(x) from {qθ : θ ∈ Θ}.
Initialize θ, set an index β (e.g., β = −1).
for iteration do

Draw {xi}ni=1 ∼ qθ. Set ˆ̄F (t) =
∑n
j=1 I(p(xj)/q(xj) ≥ t)/n, and ρi = ˆ̄F (p(xi)/q(xi))

β .
Update θ ← θ + ε∆θ, where ε is stepsize, and

∆θ =
1

zρ

n∑
i=1

[ρi∇θ log qθ(xi)] ,

where zρ =
∑n
i=1 ρi.

end for
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D More Results for Bayesian Neural Network

Table 2 shows more results in Bayesian networks with more choices of α in α-divergence. We can
see that our approach achieves the best performance in most of the cases.

Average Test RMSE
Dataset β = −1.0 β = −0.5 α = −1 α = 0 α = 0.5 α = 1.0 α = 2.0 α = +∞
Boston 2.828 2.948 3.026 2.956 2.990 2.937 2.981 2.985
Concrete 5.371 5.505 5.717 5.592 5.381 5.462 5.499 5.481
Energy 1.377 1.461 1.646 1.431 1.531 1.413 1.458 1.458
Kin8nm 0.085 0.088 0.087 0.088 0.083 0.084 0.084 0.083
Naval 0.001 0.001 0.003 0.001 0.004 0.005 0.004 0.004
Combined 4.116 4.146 4.156 4.161 4.154 4.135 4.188 4.145
Wine 0.636 0.632 0.632 0.634 0.634 0.633 0.635 0.634
Yacht 0.849 0.788 1.478 0.861 1.146 1.221 1.222 1.234
Protein 4.487 4.531 4.550 4.565 4.564 4.658 4.777 4.579
Year 8.831 8.839 8.841 8.859 8.985 9.160 9.028 9.086

Average Test Log-likelihood
dataset β = −1.0 β = −0.5 α = −1 α = 0 α = 0.5 α = 1.0 α = 2.0 α = +∞
Boston -2.476 -2.523 -2.561 -2.547 -2.506 -2.493 -2.516 -2.509
Concrete -3.099 -3.133 -3.171 -3.149 -3.103 -3.106 -3.116 -3.109
Energy -1.758 -1.814 -1.946 -1.795 -1.854 -1.801 -1.828 -1.832
Kin8nm 1.055 1.017 1.024 1.012 1.080 1.075 1.074 1.085
Naval 5.468 5.347 4.178 5.269 4.086 4.022 4.077 4.037
Combined -2.835 -2.842 -2.845 -2.845 -2.843 -2.839 -2.850 -2.842
Wine -0.962 -0.956 -0.961 -0.959 -0.971 -0.968 -0.972 -0.971
Yacht -1.711 -1.718 -2.201 -1.751 -1.875 -1.946 -1.963 -1.986
Protein -2.921 -2.930 -2.934 -2.938 -2.928 -2.930 -2.947 -2.932
Year -3.570 -3.597 -3.599 -3.600 -3.518 -3.529 -3.524 -3.524

Table 2: Test RMSE and LL results for Bayesian neural network regression.

E Reinforcement Learning

In this section, we provide more information and results of the Reinforcement learning experiments,
including comparisons of algorithms using score-function gradient estimators (Algorithm 2).

E.1 MuJoCo Environments

We test six MuJoCo environments in this paper: HalfCheetah, Hopper, Swimmer(rllab), Hu-
manoid(rllab), Walker, and Ant, for which the dimensions of the action space are 6, 3, 2, 21,
6, 8, respectively. Figure 4 shows examples of the environment used in our experiments.

Figure 4: MuJoCo environments used in our reinforcement learning experiments. From left to right: HalfChee-
tah, Hopper, Swimmer(rllab), Humanoid(rllab), Walker, and Ant.

E.2 Different Choices of α

In this section, we present the average reward of α-divergences with different choices of α on Hopper
and Walker with both score-function and reparameterization gradient estimators. We can see from
Figure 5 that α = 0.5 and α = +∞ (denoted by α = max in the legends) perform consistently better
than standard KL divergence (α = 0), which is used the original SAC paper.
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Figure 5: Results on Hopper and Walker with different choices of α.

E.3 Tail-adaptive f -divergence with score function estimation

In this section, we investigate optimization with score function gradient estimators (Algorithm 2).
The results in Figure 6 show that our tail-adaptive f -divergence tends to yield better performance
across all environments tested.
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Figure 6: Results of average rewards with score function gradients.
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