A Negative association properties of ESR measures
Proposition 1. There exist ESR measures that are not SR.

Proof. Recall [11, Thm. 4.1] that a real bivariate affine polynomial p(z, y) is stable if and only if
02pOyp — p Ouyp = 0.

For an E-DPP with a kernel L € R?*?, this is exactly I}, 5, > det(L)?, which is clearly true for all
p > 0 as L must be positive semi-definite.

However, stability does not hold in general. To obtain a counterexample, consider the generating
polynomial p(z, y, z) for an E-DPP of dimension 3 (writing d = det(L) as a shorthand):

p(z,y,z) = d? + 10 yz+ Byxz+ Bszy 4+ det(L[1, 2])Pz + det(L[1, 3])Py + det(L[2, 3])Px + zyz.

If p(z,y, z) is SR, p must be stable through conditioning [11, Theorem 4.1]; hence, p(z,y, 1) must
also be stable. Writing d;; = det(L[3, j]), this requires that

p(x,y,1) = d’ + diy + (d3y + dys) + (diy + dis)y + (ds + Dy
be stable. Since p(x,y, 1) is a real bivariate affine polynomial, we must then have
(dys + dis)(diy +dis) > (d” + diy)(d5s + 1).

Finally, one can verify that this last inequality is easily violated for several choices of (non-diagonal)
positive semi-definite matrices.

Theorem 1. There exists € > 0 such that forany p € [1 —¢,1 +¢] andn € N, the set {L € R"*™ :
E-DPP(L,p) is SR} is strictly greater than the set of block-diagonal matrices with 2 x 2 blocks.
Proof. We write d = det(L[S U {i}))? and when possible d;;, = det(L[{i, j, k}])P.
Let L = 0 € R™*". The associated E-DPP is SR if and only if P;;(z) > 0 where P;;(z) is defined
forany 1 <i+# j<nas
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where we write )’ = {S € [n],i ¢ S,j ¢ S} and z = (#1, ..., 2,) where components z; and z;
are removed. Now, choose k € [n]\{7, 7}, and write Z the vector z without component z;. Write
also Y, ={S €)',k ¢ S}. Then,

Pij(z) =) dsz% + 2y dsz%)(D dhz% + 2y dE7)
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Hence, L yields a SR E-DPP measure if and only if the following inequalities hold for all i, 7, k:
(B/2)> < AC; A>0; C>0. (A.])
When n = 3, Eq. (A.1) reduces to the following arithmetic-geometric inequality, as )}, = {(0}:

(dldjk + djdik — dl‘jdk —d
2

2
ljk) < (did; — dij)(djrdir, — didiji) (A2)

One can easily obtain 3 positive semi-definite matrices L which verify Eq. (A.2) strictly for p = 1;
in particular, by continuity, there exists € > 0 such that the E-DPP generated by the kernel L and
power p € [1 — €, 1 + €] will still verify Eq. (A.2).

Then, as a block-diagonal matrix such that each diagonal block yields SR E-DPPs also yields a SR
E-DPP, we can thus generate block-diagonal matrices of any size n such that the blocks are either
L or 2 x 2 matrices, which all yield SR E-DPps forp € [1 —¢€,1 +¢]. O

B r-closeness

Proposition 2. Let i be an SR measure over 21"/, and define v to be the ESR measure such that
1(S) = au(S)P for a given o € R. Then

) < S)~IP=1] < 0.
r(p,v) < sonax | {u( ) } 00

Proof. Let p,v be as in the proposition statement, and consider S € supp(v): v(S) > 0. Recall
that > . v(T) = L.

AC) )
w(S) () Yo u(T)P
If p <1,wehave ), pu(T)? > 1and p(S)? > p(S), and so
. - T) 1 u(S)? - 1
min Sp1<ZT'u( = < R0 L —
U S S T T @y = u®) ey <M S i sy
where the left inequality is obtained by noticing that % > min (2, %).
Similarly, for p > 1, we have > |, u(7T")? < 1 and u(T")? < p(T'), and so
, - S)P n(S)” > 1(T) - 1
min Sp1<'u( < < T <maxpu(S)'P=——
PSS G S ) S W@ S Sy = ) = e

O

C Bounds on mixing times

Theorem 2. Let 1, v be measures over 2" such that ;. is SR and v is ESR. Sampling from v via
Alg. 1 with p as a proposal distribution has a mixing time 7(¢) such that

1
Tg(€) < 2r(u,vP)log —.
€

Proof. Alg. 1 has a state-independent proposal distribution p, and hence its mixing time is governed
by a ratio of probabilities: Cai [14] showed that, after ¢ iterations,

1 )t
maxy v(U)/u(U)

where v (U | S) is the probability of being in state U after ¢ iterations when starting from set S,
and drv is the total variation distance.

rg%XdTV(V(t)(’ | S), vy (- | 1)) = (1 -

”(g) log L < 2r(u,v?)log <. O

Hence, following [14, Cor.1], we obtain 7s(¢) < 2maxy (0
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Theorem 3. Let v be a k-homogeneous ESR measure over 21", The mixing time for Alg. 2 with
initialization .S is bounded in expectation by

. 2 1
Tg(€) < #12512 2nk r(p,v)"log 555

Proof. This bound is based on a comparison method [17], and relates the mixing time to the spectral
gap. Let 1 = 3 > po > ... > —1 be the eigenvalues of the state transition matrix of the chain.
The spectral gap is v = 1 — max{|ul; p is an eigenvalue and px # 1}. ~ directly translates into a
bound on the mixing time [18]:

Ts(y) < %log (ﬁ) .

The comparison method yields a bound on v if we know a bound on 7 for a related chain with
stationary distribution p. Specifying [17, Thm 2.1] to this case yields v > ya; /e, where

a1 = min #(S) > 71
ST () T orlp)
_ w(T) minf{1, u(U)/pu(T) } w(T)
02 = WX ) mind L, o(0) (1)) = " o) ST

Anari et al. [5] show that ¥ > 7. Hence, we obtain 7g(v) < 2nk - r(p, v)? - log ﬁ O

D Bounds for E-DpPs with LP-kernel proposal

We require the following power-mean inequality:

Theorem 8 (Specht [45]). Let x; > 0 and w; > 0 for 1 < ¢ < N such that Zl w; = 1. Let
p < q € R such that pq # 0. Then, letting k = 28X%i

min x; ’

1<Mq('w;:n)< g—p k1—1 v p kY —KP 0
~ My(w;x) — q k1—KP q—p kP —1 '
where the power mean M, (w; x) is defined as

M, (w;z) = (ZN ) wmf)i

1=

Theorem 9. Let L € P" be a positive definite matrix and S C [n). Then,
det(L[S])? > det(LP[S]), 0<p<1,
det(L[S])? < det(LP[S)), p>1.

Proof. From Lemma 1, there exists a vector w in the probability simplex, of size (‘g‘), such that

det(L[S]) = ZJQHW‘:‘S‘ wy HieJ A

Since t — tP is convex for p > 1, Jensen’s inequality shows that
P < P — P
det(L[S])P < ngn]’mzls‘ wy HMAl det(LP[9]),

where the latter equality follows due to L and L? sharing the same eigenbasis. The same reasoning
for p < 1 gives the other side of the inequality. O

Theorem 7. Let i be the distribution induced by a DPP with kernel L?, and v be the corresponding
E-DPP such that v/(S) £ det(L[S])? /Z,. Then r(pt,v) < (|2, p) where r(k, p) is defined by

(Pa=) (4pe0) ™ g <y

kP—1 K—KP

r(k,p) = ( KP—1 )p((pfl)(f‘ﬁl))p_l for p>1

p(k—1) KP—K
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Proof. We show the result for general DPPs; the result for k-DPPs follows the same exact reasoning.
For 0 < p < 1, it follows from Thm. 9 that det(L[S])? > det(LP[S]). Hence,

Zy= Y det(L[S])" > > det(LP[S]) = det(I + LP),
SCln] SCln]

det(L[S])?

which entails It (LP[S]) -

% < 1 whereby it remains to bound
P

Let S C [n] of size k, and let A be the vector of L’s eigenvalues. We write A% = J,_¢ A;, and

denote by A"* the (}7)-vector (A%) scn],s|=«- Using Lemma 1, there exists w € R(%) that sums to
1 such that

det(L[S])? (X1s1=k ws A% )P B (Ml(w;)\/\k))l’
deU(LP[S]) ~ 3 jsyp wsOW)S N, (s A
<r(p)’.

Where the last inequality follows from Thm. 8. To lower bound r,(.5), the same reasoning gives us

det(L[S]?
% > 1 and hence
det(Z + LP) det LP[S]
§) > L) det LP[S]
7‘;0( ) = Zp = Hlén (detL[S])p
M. (,wl./\Ak) P
> (0t > -
- <M1(wl;A/\k)) —r(p) 9
a+b

where the second inequality follows
p>1.

o4 = min(g, %). The same reasoning yields the result for

Finally, some algebra shows that for fixed p, 7 is an increasing function of , and so 7 (ky, p) is upper
bounded by (x5 /2))-
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Figure 4: Evolution of the upper bound for r(p, k) from Thm. 7, which measures the r-closeness
between the E-DPP with kernel L and the DPP with kernel L?.

E Mixing time as a function of ground set size for E-DPPs
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Figure 5: Influence of ground set size n on mixing time
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F Additional Nystrom sampling results
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Figure 6: Lo reconstruction error
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Figure 7: Frobenius norm reconstruction error
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