
Supplementary material for:

Alternating Optimization of Decision Trees,

with Application to Learning Sparse Oblique Trees

Miguel Á. Carreira-Perpiñán Pooya Tavallali

Electrical Engineering and Computer Science, University of California, Merced

http://eecs.ucmerced.edu

October 26, 2018

Abstract

This is supplementary material for the “main paper” (Carreira-Perpiñán and Tavallali, 2018). We
provide: pseudocode for the TAO algorithm; details on the convergence and computational complexity;
additional experiments.

1 Tree Alternating Optimization (TAO)

Fig. 1 shows pseudocode for the TAO algorithm.

input training set {(xn, yn)}
N

n=1 ⊂ R
D × {1, . . . ,K}

initial tree T (from CART, or random)
repeat

for i ∈ nodes of T , visited in reverse BFS
if i is a leaf then
yi ← majority label of the training points that reach i

else

θi ← minimizer of the reduced problem, eq. (4)
until stop
postprocess T : remove dead branches & pure subtrees
return T

Figure 1: Pseudocode for the tree alternating optimization (TAO) algorithm, assuming a constant label
at the leaves. Visiting each node in reverse breadth-first search (BFS) order means scanning depths from
depth(T ) down to 1, and at each depth processing (in parallel, if so desired) all nodes at that depth. “stop”
occurs when either the objective function decreases less than a set tolerance or the number of iterations
reaches a set limit.

1



1.1 Convergence

Optimizing the misclassification loss L is NP-hard in general (Megiddo, 1988; Hoffgen et al., 1995; Guruswami
and Raghavendra, 2009) and we have no approximation guarantees for TAO at present. That said, TAO
performs very well in our experiments, drastically improving over CART and other approaches. We discuss
here convergence in the sense of alternating optimization (as in k-means), i.e., when no more progress can
be made by optimizing one subset of nodes given the rest.

If the optimization of the misclassification error over each node is exact (e.g. for axis-aligned trees with
a constant label at each leaf) then TAO will monotonically decrease L and stop after a finite number of
iterations (passes over all nodes of the tree), when none of the nodes’ parameters change. This is because 1)
the search space is finite, given by all the possible assignments of training points to leaves (in fact, the tree
can be seen as a mechanism to assign each point to a leaf); and 2) for each such assignment encountered
during TAO iterations we solve the optimization over the node parameters exactly. (Strictly speaking, this
ignores the possibility of cycling in parameter space without reducing the loss.)

If the optimization of the misclassification error over each node is approximated via a surrogate loss, as
with oblique trees, the solution is inexact and can even increase the misclassification loss L over that of the
current parameters. We do observe this as tiny oscillations in the value L when TAO is converging (since it
is then harder to improve L via the surrogate). We can always avoid this by updating the parameters only if
L decreases, in which case TAO will monotonically decrease L and stop after a finite number of iterations as
before. However, experimentally we find slightly better trees by simply ignoring these tiny oscillations and
continue training, in effect letting the surrogate drive the decision functions. We then stop either when we
reach a maximum number of iterations or when the parameters do not change anymore. In our experiments,
we find TAO needs around 7 iterations to achieve best results. All these arguments apply when we optimize
the loss plus an ℓ1 penalty for sparsity.

1.2 Computational complexity

For oblique trees, the complexity of one TAO iteration (pass over all nodes) is upper bounded by the tree
depth times the cost of solving an SVM on the whole training set, and is typically quite smaller than that.
Let us see this. Consider all the nodes i at a given depth. Each node solves a reduced problem on a “care”
subset Ci of the training set, of size Ni. The subsets Ci from these nodes are disjoint so their aggregated
size is at most N , and typically quite less (because of removing “don’t care” points, or because the tree is
not complete so there are missing nodes at that depth). Each node solves an SVM on its subset Ci in time
O(DNα) for α ≥ 1 (exactly what this is depends on the SVM solver; Bottou and Lin, 2007, section 4.2).
Hence, since

∑

i
Nα

i
≤

(
∑

i
Ni

)α
≤ Nα if α ≥ 1, solving all the SVMs at the same depth is at most as costly

as solving a single SVM on all N points. The overhead of propagating points through the tree to determine
the subsets is negligible compared to this.

For axis-aligned trees, the complexity of one TAO iteration (pass over all nodes) is comparable to that
of running CART to grow a tree of the same size. This is because the enumeration procedure over features
and thresholds is essentially the same (except that we evaluate the binary loss of the reduced problem rather
than the impurity), and can be done efficiently via incremental computation.

2



2 Additional experiments

We induce an initial tree for TAO using the CART algorithm (greedy growing and pruning) either for
axis-aligned trees (enumeration over features/thresholds) or oblique trees (coordinate descent over weights,
picking the best of several random restarts as suggested by Murthy et al., 1994). The node optimization in
oblique trees uses as surrogate an ℓ2-regularized linear SVM with slack hyperparameter C = 1. For sparse
oblique trees, we use an ℓ1-regularized linear SVM with slack penalty hyperparameter C ≥ 0, so the TAO
sparsity hyperparameter is λ = 1/C. Both are implemented with LIBLINEAR (Fan et al., 2008). The rest
of our code is in Matlab. In this set of experiments, we used the following stopping criterion for TAO. With
axis-aligned trees, TAO stops when the parameters do not change (2–4 iterations in practice). With (sparse)
oblique trees, we stop TAO when the misclassification loss in the training set decreases but by less than
0.5%, or the number of iterations (passes over all nodes) reaches 14 (in practice TAO stops after around 7
iterations).

2.1 Axis-aligned trees

Bertsimas and Dunn (2017) have recently advocated the use of mixed-integer optimization (based on branch-
and-bound) to find the globally optimum tree in their OCT algorithm. Because of its worst-case exponential
cost, they stop OCT after 2 hours at most and return the best tree found thus far. We follow their experi-
mental setup (data partition into 50% training, 25% validation, 25% test) on several of their datasets (from
Lichman, 2013). For CART and TAO we use 10 random partitions and report mean and standard deviation
training and test accuracy. For OCT we report the single test accuracy provided by Bertsimas and Dunn
(2017). (We cannot replicate their experiments because the OCT code is not available online, and relies
on a commercial MIO solver.) Table 1 shows the results. In all cases, TAO has the best training and test
accuracy, sometimes by a considerable margin. Its runtime was less than 0.05 seconds on all datasets.

dataset depth OCT CART TAO

Balance 2 (67.1) 70.0±2.7 (63.9±2.7) 72.5±1.6 (69.5±2.9)
scale 3 (68.9) 75.8±1.4 (71.1±1.4) 76.9±1.1 (71.6±1.9)
(625× 4, 3) 4 (71.6) 81.0±2.3 (77.9±2.3) 84.0±1.5 (79.8±3.1)

Banknote 2 (90.1) 90.3±0.3 (88.9±0.3) 91.9±0.4 (90.6±0.9)
authentication 3 (89.6) 95.0±1.3 (93.9±1.3) 96.0±0.5 (95.7±1.2)
(1372× 4, 2) 4 (90.7) 97.7±0.8 (96.2±0.8) 98.9±0.7 (97.2±0.7)

Blood 2 (75.5) 76.0±0.4 (75.2±0.9) 78.0±0.8 (75.8±2.0)
transfusion 3 (77.0) 79.0±1.2 (76.7±1.2) 79.5±1.0 (77.0±2.0)
(748× 4, 2) 4 (77.0) 80.0±1.1 (76.6±1.1) 81.6±1.3 (77.2±1.3)

Breast 2 (91.9) 93.5±1.3 (91.0±1.3) 95.0±0.5 (92.7±2.2)
cancer-diagnostic 3 (91.5) 95.0±0.6 (93.0±0.6) 97.0±0.6 (93.1±1.4)
(569× 30, 2) 4 (91.5) 97.4±0.7 (93.0±0.7) 98.0±0.5 (93.2±0.5)

Spambase 2 (84.3) 83.5±2.1 (83.6±2.5) 86.5±0.7 (86.1±1.0)
3 (86.0) 87.8±0.7 (86.9±1.3) 90.0±0.4 (89.1±1.0)

(4601× 57, 2) 4 (86.1) 90.7±0.5 (89.5±1.0) 91.8±0.3 (90.3±0.8)

Table 1: Axis-aligned trees: mean± stdev training (test) classification accuracy for different datasets (sample
size × dimensionality, # classes), tree depths and optimization methods.

3



2.2 Oblique trees

We run TAO on an axis-aligned tree induced by CART. We use datasets (without applying any normalization
ot them) as in Norouzi et al. (2015b) and follow their experimental setup to partition the data into training,
validation and test. We compare with CART (axis-aligned and oblique) and with the CO2 algorithm of
Norouzi et al. (2015b,a) (two versions, greedy and non-greedy). Figure 2 shows the results (note that the
green and brown validation curves for the CO2 algorithms are missing, because they were not provided in
the original papers). Again, with very few exceptions, TAO beats all methods, often by a large margin.

Because TAO does a better job at optimizing the misclassification loss, it can overfit faster (as a function of
the tree depth) than other algorithms. This can be seen comparing the TAO curves for the training accuracy,
which always increase, with those for validation and test accuracy, which increase and then eventually flatten
or decrease slightly. This is not a problem with TAO, which is doing its job well. It is a model selection
problem, which can be controlled with cross-validation to select the best tree size (namely, the smallest tree
size that achieves about best validation accuracy).

4



Satimage (3 104×36, 6) Connect4 (67 557×126, 3) Pendigits (7 494×16, 10) MNIST (60 000×784, 10)

2 4 6 8 10 12

60

70

80

90

100

tr
a
in
in
g
a
cc
u
ra
cy

2 4 6 8 10 12
65

70

75

80

85

90

95

100

2 4 6 8 10 12
30

40

50

60

70

80

90

100

2 4 6 8 10 12
20

40

60

80

100

CART axes-aligned

CART oblique

CO2 greedy

CO2 non-greedy

TAO

2 4 6 8 10 12

60

70

80

90

100

va
li
d
a
ti
o
n
a
cc
u
ra
cy

2 4 6 8 10 12
65

70

75

80

85

90

95

100

2 4 6 8 10 12
30

40

50

60

70

80

90

100

2 4 6 8 10 12
20

40

60

80

100

2 4 6 8 10 12

60

70

80

90

100

depth

te
st

a
cc
u
ra
cy

2 4 6 8 10 12
65

70

75

80

85

90

95

100

depth
2 4 6 8 10 12

30

40

50

60

70

80

90

100

depth
2 4 6 8 10 12

20

40

60

80

100

depth

Letter (10 500×16, 26) Segment (2 310×19, 7) SensIT (78 823×100, 3)

2 4 6 8 10 12
0

20

40

60

80

100

tr
a
in
in
g
a
cc
u
ra
cy

2 4 6 8 10 12
40

50

60

70

80

90

100

2 4 6 8 10 12
65

70

75

80

85

90

95

100

2 4 6 8 10 12
0

20

40

60

80

100

va
li
d
a
ti
o
n
a
cc
u
ra
cy

2 4 6 8 10 12
40

50

60

70

80

90

100

2 4 6 8 10 12
65

70

75

80

85

90

95

100

2 4 6 8 10 12
0

20

40

60

80

100

depth

te
st

a
cc
u
ra
cy

2 4 6 8 10 12
40

50

60

70

80

90

100

depth
2 4 6 8 10 12

65

70

75

80

85

90

95

100

depth

Figure 2: Oblique trees: training and test classification accuracy for different datasets (sample size ×
dimensionality, # classes), tree depths and optimization methods.

5



2.3 Sparse oblique trees in MNIST

Fig. 3 shows the test error of TAO trees and various models on MNIST vs. two model size measures:
inference runtime in number of operations (scalar multiplications) and number of parameters. For all models
shown other than trees, the number of scalar multiplications at inference is roughly equal to the number of
parameters. For trees, inference requires following a single root-leaf path (dependent on the input instance),
which involves a small subset of the parameters of the tree, so the number of scalar multiplications at
inference is much smaller than the number of parameters; we report the mean over all training instances.

10
2

10
3

10
4

0

5

10

15

1

2

3
4

5

6

7

depth 4
depth 6
depth 8
depth 10
depth 12
TAO axis-aligned
TAO oblique
CART axis-aligned
CART oblique

te
st

er
ro
r

mean number of operations (inference)

10
3

10
4

10
5

0

5

10

15

1

2

3
4

5

6

7

depth 4
depth 6
depth 8
depth 10
depth 12
TAO axis-aligned
TAO oblique
CART axis-aligned
CART oblique

number of parameters

model from http://yann.lecun.com/exdb/mnist number of parameters test error

1 linear classifier 7 850 12.0
2 one-vs-all linear classifiers 55 280 7.6
3 2-layer neural net with 300 hidden units 28 200 4.7
4 2-layer neural net with 1 000 hidden units 794 000 4.5
5 3-nearest-neighbor classifier 47 040 000 5.0
6 one-vs-all classifiers where each classifier consists of

50 000 boosted decision stumps (each operating over a
feature and threshold)

50 000 7.7

7 3-layer neural net with 500+100 hidden units 443 610 2.5

Figure 3: Test error vs. model size measures for different models on MNIST. Top left : inference runtime in
number of operations (scalar multiplications). Top right : number of parameters. The curves correspond to
sparse oblique trees of different depths (color-coded), initialized from a CART tree that is either axis-aligned
(dotted line) or oblique (solid line). The markers correspond to the initial CART trees (◦, +) or to other
models labeled 1–7 (see table). Values outside the axes limits are projected on the boundary of the plots.
Bottom table: models from http://yann.lecun.com/exdb/mnist and their numeric values for number of
operations (scalar multiplications) and number of parameters.

6



References

D. Bertsimas and J. Dunn. Optimal classification trees. Machine Learning, 106(7):1039–1082, July 2017.

L. Bottou and C.-J. Lin. Support vector machine solvers. In L. Bottou, O. Chapelle, D. DeCoste, and
J. Weston, editors, Large Scale Kernel Machines, Neural Information Processing Series, pages 1–28. MIT
Press, 2007.

M. Á. Carreira-Perpiñán and P. Tavallali. Alternating optimization of decision trees, with application to
learning sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems (NEURIPS), volume 31, pages
1217–1227. MIT Press, Cambridge, MA, 2018.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear
classification. J. Machine Learning Research, 9:1871–1874, Aug. 2008.

V. Guruswami and P. Raghavendra. Hardness of learning halfspaces with noise. SIAM J. Comp., 39(2):
742–765, 2009.

K.-U. Hoffgen, H. U. Simon, and K. S. Vanhorn. Robust trainability of single neurons. J. Computer and
System Sciences, 50(1):114–125, Feb. 1995.

M. Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml, 2013.

N. Megiddo. On the complexity of polyhedral separability. Discrete & Computational Geometry, 3(4):
325–337, Dec. 1988.

S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique decision trees. J. Artificial
Intelligence Research, 2:1–32, 1994.

M. Norouzi, M. Collins, D. J. Fleet, and P. Kohli. CO2 forest: Improved random forest by continuous
optimization of oblique splits. arXiv:1506.06155, June 24 2015a.

M. Norouzi, M. Collins, M. A. Johnson, D. J. Fleet, and P. Kohli. Efficient non-greedy optimization of
decision trees. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems (NIPS), volume 28, pages 1720–1728. MIT Press, Cambridge,
MA, 2015b.

7


