A Proof of Theorem 3

We will use the following observation.

Lemma 1. Suppose X,w1,...,w, are independent real-valued random variables whose dis-
tributions are symmetric around 0. Assume also that the distribution of X has no atoms (i.e.
P(X =xz) = 0 for all x € R), and fix any bounded positive function 1 : R — R, with the

property
P(t) + (=) = 1. (18)
Then for any constants a1, . . . ,a, € R and any non-negative integers k1, . . . , k, whose sum is even,
we have
E jl;[le w(X—sz:wJ‘ 51;[ [ ]

Proof. Using that X 4 —X, wj 4 —wj and that ), k; is even, we have

II wfjlﬁ(X +) wjay)| =E|]] wf'j¢(_(X + D wjay))
j=1 j J=1 J

Averaging these two expressions we combine (18) with the fact that X is independent of {w;}7_,
and its law has no atoms to obtain the desired result. s

We now turn to the proof of Theorem 3. To this end, fix d > 1, a collection of positive integers
n= (nl-)fzo, and let N € M, , (n, d). Let us briefly recall the notation for paths from §5.2. Given
1 <p<mngand1 < q < ng, we defined a path  from p to q to be a collection {7(j)} d_, of neurons
so that v(0) = p, v(d) = ¢, and 7(j) € {1,...,n;}. The numbers ~(j) should be thought of as
neurons in the j*" hidden layer of \/. Given such a collection, we obtain for each j a weight

() . @)
Wi = WG A0G) (19)
between each two consecutive neurons along the path . Our starting point is the expression
d
Z H w'(‘/j) 1{act(j(),.)>0}’ 20)
pathsy j=1 i
from p to q

where act() are defined as in (10). This expression is well-known and follows immediately form the
chain rule (c.f. e.g. equation (1) in [CHM™15]). We therefore have

d 2K

Zye = Z H H ka {dct(] Dy >0}

paths y1,...,v2Kk j=1 k=1
from p to q

We will prove a slightly more general statement than in the formulation of Theorem 3. Namely,
suppose I' = (1, ...,72x) is any collection of paths from the input of A to the output (the paths
are not required to have the same starting and ending neurons) such that for every 8 € T'(d),

#{yeT| y(d)=p} iseven.
We will show that

d 2K d

1\ Tl
H H w’Yk {mct(]) 5)>0} - H <2) H M|(I{l sl @1

j=1k=1 j=1 a€l(j—1)
BET(4)

To evaluate the expectation in (21), note that the computation done by N is a Markov chain with

respect to the layers (i.e. given ActU™) the activations at layers 7, ..., d are independent of the
weight and biases up to and including layer j — 1.) Hence, denoting by F<4_; the sigma algebra
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generated by the weight and biases up to and including layer d — 1, the tower property for expectation
and the Markov property yield

d 2K
(4) )
H H W, 1{act(7>(.)>0}
j=1k=1 TRy
[da—1 2K
=E H H w'Yk {act(]>( )>O} H Wy {act( )(d)>0} ‘ '7:<d 1
j 1k=1

12K
=E ];[ ];[ {act(])( )>0}

Next, observe that for each 1 < 5 < d, conditioned on ActY™Y the families of random variables

d—1
H wl| {act<d>(d)>0} | Act ] N 02)
{wfj?@, act(J yn 7" are independent for different 3. For j = d this implies

(d—1)| _ (d—1)
Hw {act(d)(d)>0} | Act ‘| - H E H 'U} {’lCt(d)(d)>0} ‘ Act

r(d
R P
(23)
Consider the decomposition
act(ﬁd) = actl(ﬂd’zg + /\t(p )67 (24)
where
ac é)ﬁ Z Act{d—1) w&d)ﬁ
ael(d—1)
act(F)B = act(d) actfﬂ)ﬁ = bgd) + Z Actl(xd_l) wid)ﬁ
agl(d—1)

—(d
Let us make several observations about acté}a and act{ﬂdzi when conditioned on Act'*™Y . First, the
. . — (d—-1) . . .. . —
conditioned random variable act;’ 3 Vs independent of the conditioned random variable act%d P v,
. — (d " ~1) . . . .
Second, the distribution of acté)é conditioned on Act(~1) is symmetric around 0. Third, since we

assumed that the bias distributions (%) for A" have no atoms, the conditional distribution of actiﬂy)ﬂ

1)

also has no atoms. Fourth, act(r‘?g is a linear combination of the weights {w((j)ﬂ}aep(j,l) with

given coefficients {Act&d_l)}aep(j,l). Since the weight distributions ©(?) for A" are symmetric
around 0, the above five observations, together with (24) allow us to apply Lemma 1 and to conclude
that

w1\ “
vak faett®) 0y | ATV | = <2) || (25)

BET(d)
ael(d—1)

Combining this with (22) yields

d 2K
H H w’Yk {act(J)( )>0}
j=1k=1
d—1 2K 1\ @] w
=k H H w’Yk {act(])( y>0} (2) H M|Fa s(d)|”
J=1 k=1 BET(d)

a€el(d—1)

To complete the argument, we must consider two cases. First, recall that by assumption, for every
B € T'(d), the number of € T" for which v(d) = S is even. If forevery j < dandeach v € T'(j — 1)
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the number of v € I' passing through « is even, then we may repeat the preceding argument to
directly obtain (21). Otherwise, we apply this argument until we reach o € T'(j — 1), 8 € T'(j)
so that the number |y 5(j)| of paths in I" that pass through « and § is odd. In this case, the right
hand side of (22) vanishes since the measure ;{9 is symmetric around 0 and thus has vanishing odd
moments. Relation (21) therefore again holds since in this case both sides are 0. This completes the
proof of Theorem 3. ]

B Proof of Theorem 1

In this section, we use Theorem 3 to prove Theorem 1. Let us first check (11). According to Theorem

3, h
we have N .
E [Zz%,q] = Z H (2) H /”L\lj“a g(d)]

I=(y1.72) J=1 a€l(G—1)
paths from p to q BET(4)

Note that since y is symmetric around 0, we have that ;17 = 0. Thus, the terms where y; # 72 vanish.

() _ 2

Using ps , we find

) 41 1
E[Zp,q = Z H§ o
paths vy j=1

from p to q

as claimed. We now turn to proving (12). Using Theorem 3, we have

0G|
E[Z, )= ), H<> ||

T=(yk)poy I=1 BET(4)
paths from p to q acl(j—1)

2 2

d ,u4 (M (MéJ)

= > 11 1{\r<a 1= 1} {|r<j71>|:2}+T1{\r<j>|:2}
I=(y)i_, J=1 IT(5)=1 IT()=1

paths from p to q

ITa,p(j)| even Vo, 8

where we have used that ;) = 1) = 0. Fix T = (Y1)5_,. Note that T' gives a non-zero

contribution to E [Z} | only if

()
2

|f‘a15(j)‘ is even, Vi, a, .

For each such T, we have |F(_ J )| € {1, 2} for every j. Hence, for every I that contributes a non-zero
term in the expression above for E [Z;; q] , we may find a collection of two paths ' = (7, ~2) from p

to q such that ~ ~
L()=T0G),  [Tas(i)|=2TapG)l, Viap.
We can thus write E [Z ] as
N\ 2
> O 11 i 1 +L2 ) 1 + (ng)
o T [IrG-1I=1 [P(i—1)|=2
= (7 32) el MR (ol el 2 {NHk)
paths from p to q

Lrgy=2y | >

(26)
where we introduced

B ~ B Vj,a,B8, T()=T(
| # {F = (W)j=1» & path fromptoq| 2\ri,ﬂ<j>\:(\]f)a,a<(§>)l}}

(T) = Y - Vi,oB, T()=T@) |’ @7
#9T = (&)j—1 » Y& path fromptoq | a5 ()|=| T ()]}

which we now evaluate.
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Lemma 1. For eachT' = (’yk)izl with ~yy, paths from p to q, we have
A(D) = 3#UITG-DI=1LIPG)=2) = 3#{7 | ING-DI=2, T(G)I=1} (28)

Proof. We begin by checking the first equality in (28) by induction on d. Fix I' = (y1,2) . When
d = 1, we have |[I'(0)| = |I'(1)] = 1. Hence ;3 = =2 and A(T") = 1 since both the numerator
and denominator on the right hand side of (27) equal 1. The right hand side of (28) is also 1 since
IT'(j)| = 1 for every j. This completes the base case. Suppose now that D > 2, and we have proved
28) foralld < D — 1. Let

Jei=min{j =1,....d| [T(G)| =1}.

If J« = 1, then we are done by the inductive hypothesis. Otherwise, there are two choices of
= {3 }3_, for which

L) =T0G),  Tap)l=[Tasl) J < g

These choices correspond to the two permutations of {7k };_,. Similarly, there are 6 choices of
I = {4, }4_, for which

LG)=T@G),  2[lap()l=Tas(],  J<ju

The six choices correspond to selecting one of two choices for v; (1) and three choices of an index
k = 2,3, 4 so that 4 () coincides with 1 (5) for each j < j,. If j. = d, we are done. Otherwise, we
apply the inductive hypothesis to paths from I'(j,) to I'(d) to complete the proof of the first equality
in (28). The second equality in (28) follows from the observation that since |T'(0)| = |T'(d)| = 1,
the number of j € {1,...,d} for which |I'(j — 1)| = 1, |I'(j)| = 2 must equal the number of j for
which |[T'(j — 1)| = 2, |F( )| = 1. O

Combining (26) with (28), we may write E [Z2 ] as
AN 2
M(J)

d (]) 3 ) 21 ( > X -
> ITA- {m 1)|= 1}+2</‘2 ) {|F<H>\:z}+74 {re)=2r|- (29
T=(v1,72) =1 IT(5)1=1 IT()|=1

paths from p to q

(7)

Observe that since 15" = 2/nj_1, we have
d=1 4 d R
(#{F = (’Yk)i:l paths from p to Q}) H nZ ”S : H (Uéj))
=1 j=1
Hence,

1
E[Z,,] = 2EXa(n,22)],

where the expectation on the right hand side is over the uniform measure on paths (1, y2) from the
input of A" to the output conditioned on 1 (0) = v2(0) = p and 71 (d) = v2(d) = ¢, and

d
Xa(y72) =[] <2/74 : 1{\1“(3 1)|= 1} +6- 1{|F(j71)\:2} + 1{|F(j)|_2}> » I'=(1,72)-
j=1 ()=t IT(5)|=1

‘We now obtain the upper and lower bounds in (12) on E [Z4 } in similar ways. In both cases, we

use the observation that the number of I' = (71, 72) for which |T'(j)| = 1 for exactly k values of
1<j<d-1is

d—1
[Iri- > 10w
j=1 IC{1,...,d—1} jeI

The value of X, corresponding to every such path is at least 281 since ﬁflj ) > 1 for every j and is at
most 6/i4 mq. for the same reason. Therefore, using that for all £ € [0, 1], we have

log(1+¢) > =,
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we obtain

E[X, > sz“ S I

Hj=1 ”J IC{1,...d—1} j€I
[I|=d—1—k

sy S UG

k=0 IC{1,..d-1} ;&I jer

|I|=d—1—k
d—1 d—1
1 1 1
=2 1+ — > 2 = —
H ( ’ ”j) - o 2 Z nj
Jj=1 Jj=1

This completes the proof of the lower bound. The upper bound is obtained in the same way:

d—1
~ k+1
ElXd < —71r— > (6fama)™ > J[ns -
Hj:l LY - IC{1,....d—1} j€I
[I|=d—1—k

d—1 Gﬁ d—1 1

~ 4, max ~ ~

- 6/144,max H (1 + n ) S 6/144,ma:r: exp 6#4,ma:1: Z Tli . (30)

J J

Jj=1 Jj=1

The upper bounds for E [Z25] for K > 3 are obtained in essentially the same way. Namely, we
return to the expression for E [Zf)f; ] provided by Theorem 3:

. d 1\ IT0)] ")
— - J
E [Zp,q] - Z H (2) H HiTa s ()"
P={y 25, J=1 BEL(j)
~1 paths from p to q a€l(j—1)

As with the second and fourth moment computations, we note that ., ,(;) vanishes unless each
[T« 5(j)| is even. Hence, as with (29), we may write

d N\ ITO)
1
E[ZG]= >  AxD 1:[ (2) [T s o0 (D

I={7x}i_1 i=1 BET ()
~ paths from p to q a€l(j—-1)

where Ak (I') is the analog of A(T") from (27). The same argument as in Lemma 1 shows that
(2K)! #{1<i<d| IL(H)I<K}
Age(T) < (K! |
Combining this with

-1 d )

K
an:”é(H(ﬂg )> /2%,
1 7 j

Jj=

-1

(#{F = (yk)le paths from p to q})

—

j=

which is precisely the weight in (31) assigned to collections I" with |T'(j)
d — 1, yields

= K forevery 1 <j <

E [72K] < - 1 LB Xy (s v) [ 9000) = b, () = .

where the expectation is over umformly chosen collections I' = (71, ..., vk ) of paths from the input
to the output of A and

d

| .

_ T ok -G 2K)! )
Xa(r)=]]2 o | T
j=1 a€el(j—1)

BeT(J)
ITG)I<K
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To complete the proof of the upper bound for E [ngq( ] we now proceed just as the upper bound
for the 4'" moment computation. That is, given K < min{n;}, the number of collections of paths
I'= ('Vk) _, which |I'(j)| < K for exactly m values of j is bounded above by

d—1

K-1
I > Ilo-
j=1 IC{1,....d—1} j€I

[I|=d—1—m

The value of X4 on each such collection is at most (CK)m, where Cp = 2K-1 (21?)

fixed constant. Hence, just as in (30),

is a large but

-1
E[Xa(T')] < Ck exp CKZ o
J

This completes the proof of Theorem 1. |

C Proof of Theorem 2

We have
— 1 1) & 1
_ 4 2 2
Var[Z2] - M (1 B M) Z anu‘hn B W Z mel ydmq mez ydmo (32)
m=1 mi1F£ma

Fixing p, ¢ and using that the second sum in the previous line has M (M — 1) terms, we have
L >z z? - L > (2,-2 Vs 1LYz

M2 Pmysqmy T Pmosqmy M2 p,q Pmq:9my "~ Pmgrdmy M p.q°

miF#ma mi1#ma

Hence, using that E [Z;f’q] is independent of the particular values of p, g, we fix some p, ¢ and write

E [Var[2]] = # > EZ)-E|Z2 0 PR an] (33)
mi#ma

To estimate the difference in this sum, we use Theorem 3 to obtain

d 1\ TG
E [Z;l,q} = Z 1_[1 <2) H/ﬂra s = Z H C5( (34)

T=(vk)pey I= =(yk) =y I=1
Yk :P—q Yk:P—4
d 1\ [TO) o)
2 2 _ - J
E [thqupqu} - Z | | (2> | |/J|I:aﬁ(j)| E I | Cj( (35)
P=(yx)i, 751 o.p =(7r)p—s
Y1,72:P1—7q1 '71772 p1—>fh
V3,74 P2q2 Y3,Y4:P2—>q2

Note that since the measures ;1) of the weights are symmetric around zero, their odd moments
vanish and hence the only non-zero terms in (34) and (35) are those for which

TG, PG| e {12}, [Tap()l, Tas()| € {2,4}, Vi a,B.

Further, observe that each path v from some fixed input neuron to some fixed output vertex is
determined uniquely by the sequence of hidden neurons v(j) € {1,...,n;} through which it passes

for j = 1,...,d — 1. Therefore, we may identify each collection of paths I" = (Wk)izl in the sum

(34) with a unique collection of paths T’ = (%)izl in (35) by asking that v, (j) = 4 (j) for each k
and all 1 < j < d — 1. Observe further that under this bijection,

j#ld = C;(T)=CyT). (36)
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For j = 1,d, the terms C;(T") and C;(T") are related as follows:

C1(1) = Cu(D) (g2 + - Laray-1y) 37
= ~(d
Ca(T) = Ca(D) | 1(jp(p)=1y +2.1{ 1P (@) =2 }+2u51 ). 1{ IF(@)|=2 } . (38)
[T(d—1)|=2 IT'(d—1)|=1

We consider two cases: (i) ¢m, # Gm, (-e. |[(d)| = 2) and (i) ¢m, = gm, (i.e. [[(d)| = 1 and
Dm, 7# Pms,)- In case (i), we have

C1 (F) = Cl (f) (1{\F(1)\:2} + ﬁil)l{‘r(l)‘:1}> > Cl (f) and Cd(F) > QCd(f)
Hence, using (37) and (38), we find that in case (i)
i A s = E[Z) ] 22E[22 72 ]

Pmqs9mq " Pmgiqmo
In case (i) we therefore find

d—1 1

1 1
4 2
E [me,qm] -E [meltqml} >E [mepqml} z (2) €Xp 9 Z n; ? 39
i=1

where the last estimate is proved by the same argument as the relation (12) in Theorem 1. To
obtain the analogous lower bound for case (ii), we Write ¢ = Gm, = ¢ms,, Pm, 7 Pm,- In this case,
combining (36) with (38), we have

C;T)=C;(T) j=2,...,d

Moreover, continuing to use the bijection between I" and T above, (37) yields in this case

_ ~C' , if T(1)] =1
ey - { A ri=1
0 , if T'(1)]=2
Hence, E [Zf,"q] —E [212)1 qu)Q q] becomes
o d 1 d
Z (Cl (F) -1 (F)> H Cj (F) = (1 ~(1)> Z H Cj ()
T=(3)} i=2 Ha ™/ r=(yi_, 3=1
Yh:P—>q Vi :P—>q
IT(1)|=1

Using that if |I'(0)| = |['(1)| = 1, then

(1) ~(1)
fa ' 2p
' ==—="=
Cl( ) 9 n% 5
we find .,
2
4 2 2 _ ~(1)
E [Zp,q] —E [Zpl qsz,q] Y (”4 1) Z H Cj(F)~ (40)
"o P=(y)t_, 3=2
YVi:p—q
IT(1)[=1

Writing p for any neuron in the first hidden layer of A/, we rewrite the sum in the previous line as

d d
o JIem=nm > J]c@=mE[Z,],

F:(’Ykl;; 1J=2 D=(g) g J=2
Vk:P 4 Yi:D—q
IT(1)|=1

where the point is now that we are considering paths only from p to ¢q. According to (12) from
Theorem 1, we have



Combining this with (40) yields

T
L

4 1 1
4 2 2 ~(1)
E [Zp-,q] -E [Zm,qsz,q] 2 n2n (/‘4 - 1) P\ 5 o

01 j=2 7
Combining this with (33), (39) and setting

_ #{m #mal| gmy, =gm,} _ (o —Dnona _ no—1
M(M —1) nong(nong —1)  ngng — 1’
we obtain
B [Falz] > & (1o L) (54 2022 (50 1) o4 Y (LS5 L
Z 2 Vi n " Hy p 5 i, )

proving (15). Finally, the upper bound in (14) follows from dropping the negative term in (33) and
applying the upper bound from (12). O
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