Appendix

A Dual Norms of Coupled Nuclear Norms

In this section, we describe dual norms of coupled nuclear norms. Dual norms help us in developing
optimization procedures and theoretical analysis.

The dual norm of the tensor nuclear norm for 7~ € R™ %™k (Yang et al., 2015; Yuan and Zhang,
2016) is defined as

1712 = (T @y2® -+ QYk)- )

max
llyill2=1,1<i<K

Below, we provide dual norms for the two coupled nuclear norms (2) and (3) with a K-mode tensor

W e Rm*Xnx and a K’'-mode tensor V € R™ %"k These dual norms can be easily de-
rived by taking spectral norms with respect to each tensor while considering the common factors on
coupled modes.

Theorem 3. The dual norm of [|[W, V||ccp,(r1,F) (e, F) i

WV o0 s = {A W01 @+ @ 0 @),

1 max
lzi][2=1,I=1,....K

max Vi @ @ T @ yrr) 5. (10
2uyl,\|2:1,w:1,...,K'\a< v @ yK>} (10)

Proof. By the (3), we have
R
W:Z%Iu®~-®l’ai®"'$m,
i=1

and

R
VZZﬁiyu@---@xai@-”ywu
i=1

with x4;, 2 = 1,..., R in common.
Taking the dual norms (spectral norms) (9) of them lead to

[W]2 = W, p1 @p2® -+ ® px),

max
lpilla=1,1<i<K
and
V]2 = max V1 ®¢@p®--@qx),
llgill2=1,1<i<K’
However, since by definition, each x,; is common to both tensors, p, = qq4.-

Further, due to ||[W]. < A; and ||V||. < Ag spectral norms of the coupled tensors also need to be
scaled accordingly. This completes the proof. |

We give following dual norm of (3) without proofs.

W(1)+i11/1vf(2)zw HW’ V”ZCPv()\l»/\zaLL()\S,F)*

= {/\1 max <W(1)7$§1)®"-®xa®~-~x%)>,
2P la=1,1=1,...,K;||@q |l2=1

2 max W, ng) ® - ® JU(I?)>7
e [l2=1,1=1,....K

A3 max <Vayl®"'®$a®"'y1(/>}. (11
lyir l2=1,1'=1,...K'\a

Dual norms for other coupled nuclear norms can be developed in a similar manner.
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B Optimization

In this section, we describe our extensions to the Frank-Wolfe optimization method to solve the
proposed completion models specified in Section 3.1.

First, we point out that any coupled completion models (4) and (5) for partially observed tensors X
and Y can be expressed as

i X 12

Wff%}gwfw( )+ (), (12)
where W is hypothesis class based on the coupled nuclear norm, and fyy(-) and fy,(-) are loss
functions for X’ and ), respectively. We can convert (4) into (12) by taking fyy (X) = £(|Q1 (W) —
N@)[E L) = 51200) = 2)[E and W = V.V | W, V]ep, (0, 5)2,F) - Similarly,
we can convert (5) and other completion models regularized using coupled nuclear norms into the
format of (12). An optimization problem with the formulation of (12) is solvable using the Frank-
Wolfe method (Jaggi, 2013; Yang et al., 2015).

B.1 Approximating the Coupled Spectral Norm

With the Frank-Wolfe optimization (Jaggi, 2013; Yang et al., 2015), learning models regularized by
the nuclear norms only require to compute the spectral norm of tensors. To compute the spectral
norm of a tensor, Yang et al. (2015) proposed an approximation method that recursively computes
the largest singular vector of each mode. Their approximation method is listed in Algorithm 1. We
use the build-in MATLAB functions: [u, s,v] = svd(U, 1) to find the largest singular vectors u and
v and singular value s of a matrix U, and reshape(u, [n1, . .., ny]) to reshape a vector u € R™1m2™
to a tensor of dimensions 121 X 1o X -+ X ny.

Lines 4-9 in ApproxSpectral() compute the topmost orthogonal vectors of a 4-mode tensor. This
is based on the subroutine 1 of (Yang et al., 2015). In lines 11-16, it considers a 2K _mode tensor
and recursively call itself to compute the topmost orthogonal vectors for the modes 1, - -- , 251
and using them computes the topmost orthogonal vectors of remaining modes. This is based on the
subroutine 2 of (Yang et al., 2015).

Input: 4 € R72xm2 XNk
Output: z1,...,xx
if K == 4 then
M = reshape(A, [n1n2, ngny))
(u, s,v) =svd(M, 1)
My = reshape(u, [n1, n2])
(@1, s,x2) = svd(Micpe, 1)
Myighe = M x4 CLI ) CU;—
9:  (x3,8,24) = svd(Myight, 1)
10: else
11: A’ = reshape(A, [Tll crrMgK—1,NgK—147 """ nQKD
122 wu,s,v=svd(A,1)
13:  Ajepy = reshape(u, [n1,...,n9x-1])
14: (1, ,x9x-1) = ApproxSpectral(Ac )
150 Apighe = A x4 T X+ XgK1 x;—K—l
16:  (zox-141, -+ ,Tox) = ApproxSpectral(A,ignt)
17: end if

AN O A ol s

Algorithm 1: ApproxSpectral(A) based on (Yang et al., 2015)

We use the algorithm ArppoxSpectral(.) to approximate spectral norms of coupled nuclear norms
(derived in the previous section) as given in Algorithm 2. In this algorithm, for simplicity, we
consider only two tensors .4 and B that are coupled on the first mode. The line 4 in the Algorithm
2 computes the top left singular vector, u., of the concatenated matrix of unfolded A and B on
the mode 1 which is common to both tensors. Lines 5 and 6, remove the first mode from the A
and B using the common singular vector u., and in lines 7 and 8, singular vectors with respect to
other modes are computed. Alternatively, we can use the Lanczos method instead of svd(-,-) in
Algorithms 1 and 2.
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1: Input: Tensor A € R Xm2XXnK and B € R™1*"2X X" coupled on mode-1
2: Output: uc, wo, ..., Wk, Vo, ..., VK’

3 Y =[Aq); Ba)

4: uc,s,v =svd(Y, 1)

5: A =A X1 Ue

6: B=EB X1 Ue _

7: wa, ..., wg = ApproxSpectral(.A)

8: vg,...,vxs = ApproxSpectral(B)

Algorithm 2: ApproxCoupledSpectral(A, 5)

The proposed approximation method is convex, leading to a global solution for the proposed comple-
tion models (4) and (5). The approximation method can be further extended for multiple couplings of
tensors by first computing singular vectors along all the coupled modes and then finding the largest
singular vectors with respect to uncoupled modes. A limitation with the approximation method is
the high computational cost in computing SVD for high dimensional coupled tensors.

B.2 Optimization Procedure

In order to solve the proposed completion models, we extend the Frank-Wolfe optimization method
proposed in (Yang et al., 2015). In Algorithm 3, we give procedures for solving the coupled model
(4) regularized by [|[W, V||cep,(r,,F)(2,F)- The most important step we want to highlight is the line
8, where the coupled factorization of the dual formulation of V fy,,(X') and V f,,()) are obtained by
using the Algorithm 1. Here, we use the coupled spectral norm (10) to update the gradient steps after
factorizing the largest singular vectors including the common top most singular vector on mode 1.
In lines 9 and 10, we compute projections of spectral norms of each tensor and update the learning
models in lines 14 and 15.

1: Input: X € R™"1*"2X"X"K with the mapping to the observed element by 1,

Y € R xnmaxXni with the mapping to the observed element by €2,. Regularization
parameters A; and A,. Initial WO and V°. Maximum number of iterations 7.

2: Output: WT', VT

3:t=0

4: repeat

50 t=t+1

6 fw(X") = 31UV — 2 (X)|R

7. ) = 3192000 - 20)|F

8 Ue,Way ..., WEK,V2, ...,k = ApproxCoupledSpectral(Vyy fyy (X?), Vi, fy (V1))
9: W:lescent = _)‘1“0 w2, - QWk

10: Vctlescent = XU, Vg, QUK

11:  if linesearch == True then

12: Using an appropriate line search method (e.g.Yang et al., (2015))
13:  else

14: Wt+1 = Wt + H%Wflescent

15: Vt+1 = Vt + H%chescent

16:  endif
17: until t=T

Algorithm 3: A Frank-Wolfe optimization method for coupled tensors

We can extend the Algorithm 3 to optimize completion models that are regularized using other
coupled nuclear norms.
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C Proofs of Theoretical Analysis

In this section, we present the proofs of the theoretical results given in Section 4. To prove excess
risk bounds, we need to know the expectation of the sum of spectral norms for coupled tensors,
which we derive in the next subsection.

C.1 Expectation of Coupled Spectral Norms

We recall that the spectral norm of a K-mode tensor X € R™* %" ig

Xll2 = X
12 HyinI:nl?f(gigK< Y1 ®Y2 @ ®YK),

and from (Nguyen et al., 2015) we know that it is equivalent to

||XH2 = sup ||X X1Y1 X2 ... XK1 yK_1H2. (13)
Y1,Y2,.., YKk —1ES™

We use the definition of spectral norm in (13) to bound the summation of spectral norms of two
coupled tensors. Though we can use tensor of any dimensions for our proof, it is often difficult to
write with indexes for high dimensional tensors. For convenience, throughout our proofs, we use

two tensors 3-mode tensors, 7 € R™"*™*"™ and Y € R"*"*" and describe them as K-mode and
K’-modes tensors, respectively.

The next theorem gives the expectation of two coupled tensors.

Theorem 4. Let K-mode tensor T € R™ ™" gnd K'-mode tensor U € R™ "> > gre
coupled on their first modes. We assume that entries of T and U are independent and zero mean.
Given two positive values a and b, we have

ECLHT X1 T X9 y||2 + bHU X1 T Xg Z||2

P ’ K-1 Y 744 K'—1
<cV2r {a2dK+K Era; ( log, 1/7]) + 025K By, ( log, 1/7])

+ a2 Er 8y /i + bZK/_llEuﬁzx/UW] VB(K + K =3)In(5e/n), (14)

n
2 § 2
G = max . . max . 7; s i N ) )
J <l17--<71j1ﬂj+1,-~-ﬂk < - R A

25

n
2 2
Qg =1max { . max ) E uil,...,iv/_l.iv/ RIS o )
J L1yeeeybil 15050 L q5ee st J L M i

’Lj/

81 = max |7—il,...,iK|7

where

11,0l K
/82 =  max |ui17~~-7i1</ ‘7
[T P

and n is selected such that \/(K + K' — 3)nnIn(5e/n) > 1.

More importantly, we prove the next theorem which consider random tensors with elements from
{0, —1, 1}, which is essential to prove excess risk bounds in Section 4.

Theorem 5. Let K-mode tensor T € R"™ "> %" gnd K'-mode tensor U € R "> X" gre
coupled on their first modes. We assume that entries of T and U are randomly sampled from the set

{0, —1,1}. By taking n = (Inn)2max(K-K)=1) /n ype have
Eal|T x1 2z X yll2 + b||U X1 2 X2 2|2
< e |a2FHE K /m(nn) K12 4 235K K7 (Inn) K12
where a, b and c3 are constants.
To prove the above theorems, we use a similar approach as in (Nguyen et al., 2015), and use the

entropy-concentration tradeoff analysis technique (Vershynin, 2011). The resulting proof is long,
and to improve the readability we present our proof in several steps in the following subsections.
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C.1.1 Bounding by Gaussian Symmetrization

We use the well known Gaussian symmetrization results (Vershynin, 2011). Since 7 is a tensor with
independent and zero mean entries, we have

Er(Tl2 =Er(IT = T'|l2,

where 7" consists of independent random variables. Now from Jensen’s inequality and introducing
€.k € {—1,1}, we have

Er(|T = T'lla <ErE|| Y €iju(Tigh — Tha)ei @ € @ ex

1,5,k 2
< 2E7E. 5 €5k Tij,k€i Qe & e
i,5,k 2

Given that g; ; 1, is sampled from a Gaussian distribution, we have

§ €4,k

ik

ErE,

GijkTijkei Dej Dep|| =ErEE, Gij k| Tijpei @ €j @ ep

2

> ErE, Z Eglgijkl€i,56Tijnei @ ej ® ex

.5,k
1/2
2
> () ErE.
s

where we have used the fact that E|g; ; x| = y/2/, and thus

§ €i gk Tijk€i ® €5 @ e

.5,k

E7 (T2 < v2rETE, Z GijkTijrei ® € @ el . (15)
1,5,k 2

Similarly, for the we have

Eu”lx[”g < V27TE1,[IE9/ Z g£7j7kui7j7k€i Ke; ekl , (16)
0,5,k 2

where 927 ;.1 1s sampled from a Gaussian distribution.
In order to prove Theorem 1, we use following random tensors
H= Z Gi gk Tijkei Dej D e, 17
1,5,k
and
g= Z ggyj/,k,ui,j/,k/ei Rej Qe (18)

4,37,k

Again we want to mention that we represent 4 and G as K -mode and K’-mode tensors, respectively,
though they are 3-mode tensors.

C.1.2 Bounding by Concentration Inequality
We now develop a concentration inequality to analyze the sum spectral norms of two coupled tensors.

Given a Lipschitz function f : R”™ — R, the Lipschitz norm is defined (Nguyen et al., 2015) as

Ifll = sup LB =SWI

cyekn |7 —yl2

Additionally, we give the following well known results (Ledoux, 2001).

14



Lemma 1. Let f : R™ — R be a Lipschitz function and || f|| . be its Lipschitz norm. Given a vector
g € R™ whose entries are a independent standard Gaussian random variables, then for all t > 0

P(f(9) 2 Ef(9) +tvV2|fllr) <e " (19)

We use the following result from (Nguyen et al., 2015) for (17) and (18) throughout our proof.

Lemma 2. Given a pair of unit vectors x and y

Egl[H x1 @ xayll2 < fmax AZ; . (20)

Using the above results we obtain the following lemma.

Lemma 3. Given a unit vectors x, y, and z and two positive values a and b, we have

P(alli x10 5yl + 00 12 %2 22 > a\/maXZ’ﬁz,j,k " b\/maxzumck'
b bt
1/2 1/2 ,
—+ t23/2 max (a m]ilX <7f]7k$12y?> —+ bn}j}x <u12j/7k/1'$z‘72/> )> S eit (21)
Proof. Given that s = H X1 & X2 y, where H is defined as (17), we know that
§1 = Z (Hijkxiyj)ek

.3,k

= Z <Z Hijkxiyj>ek (22)
k ij

=3 (Z%jkﬁjk%%)ek,
k i.j

since g; 1 is a Gaussian variable, g;;1. 712y, also a random variable with zero mean and variance
2 2 2 . . . . _ . . .
of Z” ﬂjkxl y5. Similarly, by considering s, = G X1 © X2 2 with G as defined in (17), we obtain

S2 = Z <Zg£j/k’uij/k’xizj/)ek’7 (23)

k! .3’
: ; / ; : 2 2.2
with random variables g; .., U;j i @25, having zero mean and a variance of U, 2727,

Let us consider
pr = 27;2]1{9539;2 for all k € [n],
1,

and
@ = Zu}}j“k,m? 2 forall k' € [n].
4,5

Given u € R™ and v € R", whose elements are standard Gaussian variables, we rewrite s; and s»
as

s1=4a E UkPKCE
k

and
sp =10 E Uk G €7 -
k/

Further, let us consider a concatenation of s; and s as

s =[s1385] = [a(upr, .., unpn); D(V1G1, - -, Ungn)]-
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Now let us consider function f as

f([u,v]) :=a

)

2

Z UkPkCk
k

+1
2

E Uk k' €k
k./

then we have

F2([u,0]) = @Y uipp +b> Y vf i + 2ab
k k'

g UL PKEE
k

E Vg Qi €k’
k/

2

We use the inequality 2zy < 2% + y? to obtain
P2 (o)) < 2(a® Y st + 02 Y vk ) =20l
k K

and
F2([u,v]) < 2||[u;v]||3 max(a? m]?xpi, b2 Irg}xq%).
Thus

F([u,v]) < 2max (a max py, bmax i) < 2(amaxpy, + bmax ).

This leads to the Lipschitz norm of f as
1/2 1/2
11l = 2(a max (Tny> + bmax (uw> )

Finally, using the (24) and lemmas 1 and 2 we obtain the final bound.
Our goal is to bound the

E  sup alH x1xxoyla +0]G x1 2 %2 22
z,y,z€S" 1

2

(24)

(25)

with the assistance of Lemma 3. Notice that = is common both the spectral norms, which we know
from Section A. Further, to use the entropy-concentration tradeoff method, we consider that each
vector z, ¢, and z have sparse components and spread components. Given x = u + v, where v is the

sparse component and v is the spread component, and ) € (0, 1], we have

. 1
wy = x; i x| > NGiL
0 ,otherwise

: 1
v = x; if ‘$Z| < W
0 ,otherwise.

Using the above we can obtain following two sets as in (Nguyen et al., 2015)

1
orx; =0,
REl)

1
By {x ER™: fzf < 1, ol < }
1/7771

BQ,Q = {l‘ cR": Hl‘”g < 1, |.131‘ >

and
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Using the fact E(p + q) = Ep + Eq, we can expand (25) as
E sup a||Hx1xx2yll2+b]|gx12X22|a <E  sup al|H x12 X2yl2
x,y,z€S"~1 z,y,2€B2 0
+ b”g X1X Xog Z||2

+E  sup aH <17 xayl2
z,Y,2€ B2 oo

+ b”g X1 X Xog Z||2

+E sup sup aHH X1T Xg y||2
TE€B2,0 ¥,2€B2,00

+ b”g X1X Xog Z||2

+E sup sup alH x1z X292
YEB2 0 T,2€B2 o

+ b”g X1 X Xog Z||2

+E sup sup alH x1z X292
I,yEBzyo ZEBQ,oo

+ b”g X1 X Xog Z||2
(28)

In the subsequent sections we bound each of the right hand terms. We use following theorems from
(Nguyen et al., 2015) to assist our proofs.

Lemma 4. Let X be a random variable assuming non-negative values. For all t > 0 and non-
negative hy, ha, and h3 if P(X > hy + thy) < e’ Fhs | then, forallq>1,

EX? < 3\/§(h1 + hov/hs + hay/ q/2)q.

Lemma 5. Let N be an e-net for a B associated with a norm || - ||2. Then, the spectral norm of a
d-mode tensor A is bounded by,

d—1
1
sup ||A X1 &1 Xd—1 iEd—1||2 < <1 ) sup ||-/4 X1&1- Xd—1 xd—1||2-
T1xqg—1EB — € T g—1EN

C.1.3 Control of Sparse Vectors

We prove following lemma in this section.

Lemma 6. Let us consider a K-mode tensor T € R™ %™ with its Gaussian symmetrization H
defined in (17) and a K'-mode tensor U € R™™ " *™ with its Gaussian symmetrization G defined in
(18). Let us define the following

n n n
of =max{ max » T, max »_ Top,max» Ty ¢, (29)
1,7 ik < gk <
k=1 Jj=1 =1
Br = max |Tijil, (30)
ijk
n n n
2 __ E 2 E 2 § 2
g = mMax { 1{1?)/){ uij/k/, rgl%,)( u’ij'k” Il;fllak}/( Mij’k’ }7 (31)
k=1 =1 =1
B = max |Uijp|, (32)
ij' k!
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then

E( sup  al|H X1z Xyl +b]|G X1 x X0 2]s > 2Ky + oK'~14,
z,Y,2€B2 0

+ 93/24 <a2K151 + b2K’152>)
< 3(257 (an + 2261 (VK + K" = 3)pnIn(5e/n) + 1))

+ 257 (ay + 223 (V(K + K/ = 3 n(5e/n) + 1)) )

Proof. Let D = nn and B; o, p be a D-dimensional set defined as
Byop ={z € RP 1 |z]]» < 1}. (33)

The set By o represent the set of vectors with at most D non-zero entries such that By g = UB2 g p
(Nguyen et al., 2015). We also know from (Nguyen et al., 2015) that there are at most (B) <

(%)D sets of By o p. Further, we know that the 1/2-net of a subset Bso,p0, NB, 4 > has a cardi-
nality that is bounded by 5 (Nguyen et al., 2015).

Using Lemma 5 with e = 1/2, we obtain

sup  ||H x1 2 X292 < oK-1 sup IH x1 2 X2 9|2,
z,y€B2,0,D z,ye€NB, ¢ p

and similarly

sup |G X1 x X2 2|2 §2Kl_1 sup |G x1 & x2 z]|2.
x,2€B2,0,D mvzeNBz,o,D

We also can bound the following

1/2 1/2
2 22 2 2 2
max E 7;,3',1@% Y, < max |7:2]k| § TiY; < max |7:]k
— i,J,k — 1,5,k
] ]

:/817

and
1/2 1/2
E 2 2,2 2 E 2,2 2 _
max < u’i,j’,k/xi Z]/> S ln;l/a])c(l ui7j17k/|< Z; Zj’) § ZI‘?/&? |Ui7j/,k/| = BQ.

Applying the above bound to our concentration inequality in Lemma 3 and taking the union bound
on all possible combination over vectors x, y, and z we obtain

P( sup aHH X1 T X9 y||2+b||g XlxXQZHQ Za2K—1a1+b2K/_1a2
z,Y,2€B2,0,D

+ 23/24 (Cl?K_lﬁl + b2K’—162)>
< (5D)(K—1)(5D)(K’—2)e—t2 _ (BD)(K+K/—3)e—t2
where a1, as, 81, and 3 are defined as in (29), (31), (30), and (32), respectively.

In the above bound, we emphasize that x is common to both H and G and it leads to a bounding by

(5P)(K+K'=3) from the union bound. Taking union bound with respect to all possible By o p sets
of By o, we have

)

IE”( sup  al|H x1 & X2 yll2 + b||G X1 @ X3 2]l2 > a25 oy + 525 "Ly
z,y,2€B2,0

+ 23/2t (aQK_lﬁl + b2K’—1B2>>

D\ (K+K'-3 n(K+K'—3
en\ N oy e (5\ Y
< (5%) e " = e v,
D U
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Finally, we apply the Lemma 4 with ¢ = 1, hy = a25 oy + 025 oy, hy = 23/2(a25-15, +
b25'=18,), and hs = (K + K’ — 3)nnIn(5¢/n) to obtain the final bound

E( sup GHH X1X Xg y||2+b||g XlxXQZHQ 22[(—1&1_’_2[{/71&2
z,y,2€B2,0

+ 93/24 <a2K151 + b2K’152>)
<3(2" (o0 + 2% (VIE + K= 8)amn(5e/n) +1) )

+ 257 (ay + 228, (VK + K= 3 In(5e/n) +1) ))

]

C.1.4 Control of Spread Vectors

Now we bound the spread vectors with respect to the set B .

Lemma 7. Let us consider a K-mode tensor T € R™ " *™ with its Gaussian symmetrization H
defined as (17) and a K'-mode tensor U € R™* %" with its Gaussian symmetrization G defined as
(18). Given (29), (30),(31), and (32) we have

E  sup a|H x1zxoyl2 + DG X1z %2 2|2
z,y,2€ B2, 0

< 3<4K—1(]0g2 1)Kt (aal +2%2aa, (\/(K + K’ = 3)In(5e/n) + \/1/771))

+ 4K 1 (log,y 1/m) K 1 (ba2 +23/2bay <\/(K + K’ —3)In(5¢/n) + 1))) .

Vi

Proof. To prove this theorem, we need to bound with respect to the e-net of By o,. Following
(Nguyen et al., 2015), we have the set of vectors Ny for k = 0,1,...,2M — 1 where M = [2 +

log, 1/./7] as
N, €B for all 7 € [n] iil 0
= oo - 10T s Ug = — OIr v; = 5
k v 2, orallt € [n], v SENGT or v
and the 1/2-net of By o, (Lemma 9 of (Nguyen et al., 2015)) as

N, . = {v € By oo : Vi € [n],v; = with either £k =0,1,...,2M — 1 orv; = O}.

I
2k/2 /mn

To obtain our result, we use the concentration inequality in Lemma 3. We take ||z||2 < 1 and

ylloo = ﬁ then we have

2 .2 2\ __ 2 2,2
o (3 Tt ) = max (a2 72
J

] 7
1
< (L 07
nn J P
1 2
< max %o g zl: T
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Similarly, we have

max(z 22 )—max<z S ,,zg.,)
< ﬂxmn<Zz'Z 20 )

< max

maX Z/{2/l/
l 2 nn g’ -

Now using the Lemma 3, we obtain

P(GHH X1 X X9 y||2 + b”g X1 T X9 ZH2 > a2K71a1 + b2K/71042

23/2

ti
+ 2k/2 /on

(a2K*1041 + b2K/1a2)> < et

From Lemma 12 of (Nguyen et al., 2015), we know that | Ny | < 2" nnin(2e/n) apqg using this bounds
we apply union bound on all possible combination of Ny, Ny, and N which results in

P( sup alH 1@ xaylla +B]IG X1 2 x5 2|2 > a2% e + 025 ay
CEGNknyNk/,ZGNk//
23/2 , ) / .
i (a2 g + 025 T tay) | < et HEHR=8)20m Ine/n)
2k/2 /77771 >

We apply the Lemma 4 with ¢ = 1, hy = a25 1oy +025 oy, hy = 23/2(a2K Loy + 525 ~1ay),
and hz = (K + K’ — 3)2%/21n(5¢/n) to obtain

E sup I x12 x29ll2 + |G X1 2 X2 2||2
TENK,yEN,2EN 1

< 3(a2K1a1 + 025 oy 4 282025 1oy + b2K/*1a2)\/(K + K’ —3)1In(5¢/n)

/ 1
93/2 (49K —1 pok’—1
+ (a ot az) 2knn

Summing all the possibilities sets of Ny, Ny, and Ny of By o, we obtain

E  sup a||H X1 2 X2yll2+b||G X1 2 X3 2|2
,Y,2€ B2 o0

2M—12M—1
< 3( Z Z <a2K1a1 +a28 Yo /2(K + K’ - 3) 1n(5e/77)>

k=0 k’'=0
2M—12M—1
+ Z Z (bQK,_laQ+b2K/_1a2\/2(K+K’—3)111(56/77))
k=0 Kk'"=0
2M—12M—1 2M—12M—1 , i
+23/2( Z Z (12}(710[1+ z Z pok 1a2> /2%”),
k=0 k=0 k=0 k=0
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which can be simplified to

E  sup alH x1zxayll2 +0G x1 2 x2 2|2
z,y,2€ B2, o0

<3 <(2M)2 <a2K—1a1 + 23202510\ /2(K + K’ - 3) ln(5e/n))

+ (2M)? <b2K'1a2 + 23228 1oy /(K + K/ - 3) 1n(5e/77)>

_ _ 1
+23/2((2M)2a2K Yag 4+ (2M)%02K 1a2>,/2km>,

and taking summation over K-mode and K’-mode tensors we obtain

E sup  alHx1zx2ylla +0l|G x1 2 X2 2|2
z,Y,2€ B2, 00

<3 ((2M)K1 <a2’“a1 +2%2a25 oy /(K + K' - 3) 111(56/7]))

+ (2M)K' 1 (b2K/_1a2 + 232025 1o, /(K + K' — 3) 1n(5€/n)>

/ ’ 1
3/2 K-—1 K-1 K'—1 K'—1
+ 93/ ((ZM) a2 oy + (2M)K " 1p2 a2> \/ ka).

Since M = [2+1log, 1/,/1] < log, 1/n (Nguyen et al., 2015) and 2% > 1 for k > 0, we obtain the
final bound

E  sup alH x1zxayll2+0G x1 2 %2 2|2

x,Y,2€EB2 o
<3 <4K1(10g2 1/m)K-1 <aa1 + 2%2a0 <\/(K + K’ —3)In(5e/n) + \/%»
+ 45 "1 (log, 1/m) K 1 (ba2 + 2%%bay <\/(K + K" = 3)In(5¢/n) + V%))) .

C.1.5 Control over both Sparse and Spread Vectors

We now consider case where we have vectors from both B3 g and B3 .. We prove the following
lemma.

Lemma 8. Let us consider a K-mode tensor T € R™ %™ with its Gaussian symmetrization H
defined as (17) and a K'-mode tensor U € R™* " *" with its Gaussian symmetrization G defined as
(18). Given (29), (30),(31) ,and (32) we have

E sup CLHH ><1x><2y||2+b||g X1X Xog ZH2
T€B2,0,Y,2€B2 o0

< 3<4K_1(10g2 1) (s + 200 (VIS B = i) + =) )

i
+ 4K/_1(10g2 1/77)K/_1 (bag + 2%/2bayy <\/(K + K’ —3)In(5e/n) + 1))) .

Vim

Proof. To prove this lemma, we use same arguments as used in Lemma 14 of (Nguyen et al., 2015).
Here, we want to bound the coupled spectral norm using a mixture of By g and By . In the previous
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two lemmas, we defined Np, , and Np,  as 1/2-nets for By g and B ., respectively. Further, we
use the fact that cardinality of upper bound of set N Bs.o 18 larger than cardinality of upper bound
of set Np, , (Nguyen et al., 2015). This allows us to consider the worse case scenario, where one
vector from z, y, and z belongs to N, , and the rest to N, __.

Without losing generality, we take x € N, , and y,2 € Np, . Then

P(aH’H X1 X Xog y||2 + b”g X1 X Xog ZH2 Z CL2K71041 + b2K/71062
23/2
+t2max{k,...,k/}/2\/n7n

2

(a2K71a1 + b2K’1a2)> <e

where used ||z||2 < 1 and selected minimum among ||y||oc < 1/2%/2 and ||2z||oc < 1/2F/2.

Now, taking the union bound with respectto x € N, , and y, 2z € Np, _, and following a similar
approach as in Lemma 14 of (Nguyen et al., 2015), we obtain

IP’( sup al|H x1 2 Xa ylla + b||G x1 2 X2 2||2 > a2K 1oy 1+ 2K g,
.’EGNBzyoyyeNk,ZENk/

923/2
t2max{k,.4.7k’}/2\/nfn(

+

Applying Lemma 4 , with ¢ = 1, hy = a25 " 1aq + 025 ~Lay, hy = m

b2 ag), and hy = 2(K + K’ — 3)20(- In(5e /), leads to

(@258~ 1ay +

E sup a|H x1 2 X2 yll2 +b||G x1 7 X2 2|2 < 3[ a25 Loy + 525 "y
IENB2,07y€Nk,ZENk/

+23/2 <a2K1a1 + b2Kl1a2> V2(K 4+ K’ — 3)1n(5¢/n)

23/2 1 K-1 1 K'—1
’ W(?max{k,~-,k'}/za2 e (N YE b2 az) '

Bounding over the sets € B g,y € B2 o0, and z € By o, and M < log, 1/1 we obtain

E sup alH x1 2z x2yll2 + ]G x1 2 %2 2|2
TE€B2,0Y,2€B2,00
1
K—1 K—2 3/2 _
<3 (4 (o 1) 2 (0129 0 (VIR + K =) W05 1)+ s )
! ’ 1
K'—1 K'—2 3/2 T
+4 (logy 1/7) (ba1+2 bay <\/(K+K 3) 1n(5€/n)+2max{k)m)k,}/z\/ﬁ))>.

Since 2max{k.k'} > 1 e obtain

E sup alli x1 x X2 yll2 +b||G X1 & X2 2|2
r€B2,0,Y,2€B2,0

+ 45 " (log, 1/m) ' 2 (zm +232payy <\/(K + K'—3)In(5¢/n) + J;TJ )) .

O
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C.1.6 Final Bounds

We now prove the Theorem 4 using the above lemmas.
Proof of Theorem 4. We combine results from Lemmas 6,7, and 8 with (28) to obtain

ECLHH X1X Xo yHg + b”g X1X X9 ZH2

<3 (a?Kl (a1 +29/28, (/(K + K’ = 3)qn1n(5e/n) + 1))

+ 025 (g + 2235 (V/(K + K = 3)nn(5e/n) + 1))

+ a4 (log, 1/n)K 1 (al 1 93/20, (\/(K + K’ — 3)In(5¢/n) + 1>)

Vi
+ béLKl_l(log2 1/77)Kl_1 <a2 + 2320 (\/(K + K’ —3)1In(5e/n) + \/%))
2R TR 2 ) 4 logy 1) (a4 + 2970 (VIR H K= 9 TaGoe/ ) + \/}n))
+b(2K TR 2 2) 54K " (log, 1 /n) K2 <a2+23/2a2 <\/(K +K'—3) ln(56/77)+\/177n>> :

where the last two summations are results from taking different combinations for the coupled K-

mode and K’-mode tensors, which results in 25 +K '=2 _ 9 combinations of the result in Lemma
8.

Given that /(K + K’ — 3)nn1In(5e/n) > 1, we have
ECLHT X1 T X9 y||2 + bHZ/{ X1 T Xg Z||2

P ’ K-1 Y 24 K'—1
<cV2r {a2dK+K Era; ( log, 1/7]) + 025K By, ( log, 1/7])

+ a2 BB/ + bQKI_lEuﬁg,/nn} V8(K + K’ — 3)In(5¢/n).
]
Finally, we prove the Theorem 5.

Proof of Theorem 5. Since all elements of the tensors are from {—1,0, 1} , the definitions (30) and
(32) lead to
Erpy =Er %%ijk\ =1,

and
Euﬁg = Eu Inax \Uijk\ = 1
ijk

Further, we find that (29) and (31) are

n 1/2 n
— 2 2
E7aq = max {ET(H}E;X; ,Ejk) 7ET<YE_1’%XZI Tijk)
= J:

n 1/2 n 1/2
< IET<Hzlz;x];T£k) +]ET<HQ,%X;7;?’“>
= Jj=

< K+/n

1/

2 n 1/2
2
3E7-<Irjlf}€x;7;]k> }a
n 1/2
() )

and

n 1/2 n 2 n 1/2
Ey e = max {]EM(HZIZ;XZUZ,C> ,EM(IIZ}E}CXZU%k) ,Eu(r?%XZUfjk) },
k=1 o=t U=l
n 1/2 n 1/2 n 1/2
2 2 2

PR
< K'v/n.

1/
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Now, we can update (14) as

ECLHT X1 T X9 y”Q + bHL[ X1 T X9 Z”Q

< eV {a23K+K/K\/ﬁ(log2(1/n))K_l + 025 K7 (logy (1/m) <

+ a2+ 025 V2(K + K")In(5¢/n).

max(K,K")

By selecting 77 = (Inn)( ~1) /n, we have

Ea||T x1 @ X2 y|l2 + b|U X1 2 X2 2|2
= [QQBKWK Va(lnn)K=Y2 4 p23K K g1 (i ) K12

O

C.2 Excess Risk Bounds

Next three theorems give excess risk bounds for coupled nuclear norms introduced in Section 4.

Proof of Theorem I: We can expand (8) as

1
Rsp(loW,loV) = BUPE [nggw Z S irc (XKiy iy Winine)

+ Z 2J17 N yjh JKHth---,jK/)

.....

A
SWE |: oD Z Eil’“aiKW’il,u,iK

W, VEW . i1 riE

+ Z EJh i Vin __JK,] (Lipschitz continuity)
K
A
<
|S upP|
where the second line is by using the contraction inequality due to Lipschitz continuity of the
loss function [(+,-) and the last bound is obtained by applying the Holder’s inequality. We want

to point out that since ¥V and V belongs to the hypothesis class W and they are constrained by

the [[W, V[|¢., (x, 7)(x,,r)- This indicates that |||z and |[3]|2 are constrained by the dual norm

[ sup IWILIIZ]l2 + ||V*||E’||2}7 (Duality relationship)

HZ b2 ”ccp (A, F)( X2, F)*-

By the definition of the coupled norm (2), both VW and V have rank r. Further, by taking upper
bounds on ~; and p1 as y; < Byy and p1 < By, respectively, we obtain

[WIl« < rByy,
and
VI« < rBy.
Then we can bound the Rademacher complexity as
A

RSP(ZOWZOV) |SUP|

E, mlnzhwlnzwg}

Using Theorem 5 with @ = r~v; and b = ru1, we obtain the desired bound

Rsp(loW,loV) < By 2K K K\ Jr(Inn) K1/

ISUP|

+rBy25 B K /n(In n)K’—l/Q] .
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Proof of Theorem 2: We expand (8) for the coupled norm [[W, VI[¢., (1, 1, L)(rs.F) @

! (1) 2)
R loW,loV su Si i U X 7)/\; + W _
SP( ) |SUP| |: (1) W(g VEW Z 15 fK 1y-lK )
T Z 2117 Ik’ yjl, 7]K/7V] ..,jK,)
J1send K/
A (1) (2)
< ——E, sup Sivrin W AW
SUP] {Wm W vew, Z iz ( o
+ Z 2.717 ik Vit 7JK/:| (Lipschitz continuity)
J1send K/
A
< Ea‘|: sup ||W(1)||*||E o+ ”W(2)H*HZH2 FIVILIE ],
ISUPL Lvor,we vew

(Duality relationship)

where in the last step we apply the Holder’s inequality to each W), W(2) and V with relation to
Y and X', Since we use the hypothesis class W both 3 and X’ are also constrained by the dual norm

1135 5 e, (a1 Ao Ly (g )

We introduce upper bounds for 7( ), 7%2), and p; of the coupled norm (3) as Byy,, Byy,, and By,

respectively. Since we take Rank(WW(")) = Rank(V) = r; and by assumptions that 7%1) < By,
and p1 < By, we obtain |[WW)||, < rByy, and |V||, < r1By. Further, by assumption that
v < Byy,, we obtain |W®||, < 7, Byy,. Then, using the definition of the hypothesis class, we
have

cA

l l <
Rsp(loW,loV) < SUP]

E, [anlnznz T raBy, |52 +rng||z'2}

Using the Theorem 5, we obtain

cA
|[SUP|

Rsp(loW,loV) < {(mbl + 7o By, ) 22K K/ (Inn) K —1/2

+ 19 By25 K K\ /n(In n)K’W] .
O

Additionally, we give the excess risk bound for completion wusing the norm
W, Vlleep, (0 r0.L) (s, 04,1,) D the next theorem.

Theorem 6. Let us consider IV, Ve re L) (s A ) and
its hypothesis class as W = {W(l), w@ p) pE)
infw<1>+w<2>:winfv<1>+v<z>:1;IIW,V||gcp’(,\lVAQ_’L)(/\&M’L),rank(w(l)) = rank(VY) =

1, rank(W®)) = o, rank(V®) = 13}, the Rademacher complexity is bounded as

Rsp(loW,loV) < (r1 By, + 12 Bw, ) 225K K\ /n(Inn)K—1/2

[SUP|

+ (TlByl + TgBV2)2K+3K/K/\/ﬁ(1n n)K/_l/Q .
where *y( ) < Byy,, 'yi ) < Byw,, v ( ) < By, 1/52) < By, and c is a constant.
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Proof: We can expand (8) for | W, VHCCP (M e L)(As A L) 8

1
RS’P(Z o W,l o V) = |SL_J]?|EU|:

2 : (1)
sup 2117 aZK 117 ﬂK?Wzl, GIK + Wzl, ,1K)
w) w2 pa) V(Z)EW

(1) (2)
+ Z 2 ..... Gt yjl ,,,,, jK”V]h ,JK/+Vj17~~-»jK/)

15 d Kt
A
< = D, +W ,
ISUP| ™ [wm W<2> v(l) V@ew, Z itsine ixc)
1 2 . . .
+ Z Z JK, J(l) 7jK/+v-7(1a)-"7jK’):| (Lipschitz continuity)
J1sesd Kt
A
< Ev{ sup VDAl + VL2
ISUP| WO W V1) V@ ew

+ IVOILIZ 2 + |v<2>||*|z'||2], (Duality relationship)

where in the last step we apply the Holder’s inequality to each W, W) V(1) and V2 with
relation to 3 and Y. Since we use the hypothesis class W both ¥ and ¥’ are also constrained by the

dual norm |3, X2\, apL)(AsaL):

Now, we use upper bounds for 7(1), 7%2) ,u%l), and uf) of the coupled norm (3) as Byy,, Bw,,

By,, and By,, respectively. Form the definition of the norm, we know that Rank(W()) =
Rank(V)) = 7y, RankW®) = ry, and Rank(V®)) = r5. By assumptions that v\ < By,
and ull) < By,, we obtain ||1/V(1 Il < r1Bw,, ||W(2)||* < r9Byy,, ||V(1)||* < r1By,, and
V@, < rsBy,. These assumptions lead to

Rsp(loW,1oV) < Ea[rle2||2+rsz2|zn?valnz'|2+r33v2||2’||2]

A
ISUP|
Using the Theorem 5, we obtain

cA
[SUP|

Rsp(loW,loV) < {(nBW1 + 19 By, ) 22K E K\ /n(Inn)K—1/2

+ (r1By, + r3By,)25 3 K/ /n(In n)K’W] .

O

As a reference, we give the excess risk bounds for tensor completion that is regularized using the
tensor nuclear norm. In order to prove this, we use the following theory from (Nguyen et al., 2015).

Theorem 7. Let T € R"**" be a random K-mode tensor, whose enmes are independent, zero-

mean random variables. For any k < 6 1> assume that 1 < q < 2K /<m1n . Then,

K-1/ K 3
E|T)D) < /8K QKIH% ([logg (i)} (2&37—&?) + m(ETﬁq);)
J:

where

n
2 __ § — X .
aj . max ( 7; eyl 1,054 1 ,K> and 6 = max |7;17~~-774K|
2

1. ,H 1;lJ+17 ULy s UK
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Since we use the spectral norm of a tensor, ¢ = 1. Additionally, we want to consider the case where
Tiv,.ix € {1,0,—1} to bounds Rademacher variables in our proofs.

With ¢ = 1, we have

oe NEHE
BIT < 8% 2K 2 ([logQ ()] (ZET%) ¥ ﬁ)
K K =

n
2 __ 2 — - )
a; = max ) ( E ﬂl,...,ijl,iﬁl,...,ik) and = ,ma)icK | Tis,vinc |-
i

Uy b= 15,8541, 50K ; B1ynee
J

where

Since 7y, ,..ix € {1,0,—1} we have § = 1 and E7a; < y/n leading to

E[T]2 < 8%y /2K1n<5:> <{log2(i>} KﬁlK\/ﬁ+ m)

(Inn)>K-1
n

Let us consider kK = as in the Corollary 4 in (Nguyen et al., 2015), then we obtain

E||B|2 < ¢/8¥ K (Inn)X—1/2/n. (34)
In the theorem below, we give the excess risk bound for the individual completion 7 using the tensor
nuclear norm (1).

Theorem 8. Let us consider a K-mode tensor W € R™ X" with observed samples indexed by
the set S. Let the hypothesis class for completion of T using the tensor nuclear norm be W =
W W« < B, rank(W) = r}. Then following Rademacher complexity holds with probability
1-4,

A
Rg(loW) < E(:'s;KrBWK(ln n)K-1/2/n.
where y1 < By of (1) and ¢ is a constant.

Proof: The Rademacher complexity for a individual tensor can be written as follows,

1
Rg(loW) = ]En[ sup Z Zil,..,iKl(Wil,..,iKa7;1,..,11;()]7

S

S| WEW (i ik)ES

where ¥;, ;. = 04 € {—1,1} with probability 0.5 if (i1,..,ix) € S belonging to an index
pel,...,|S|or%;, i, =0 otherwise, which can be further expanded as

A _
RS(Z o W) = EEU _vsvlgv ‘ Z Ei17-~7iKZ(Wi1,--,iK77;1,-~7ik):|
2130 K

< —E,| sup Z Zil;«-7iKWi1,~~;iK:| (Lipschitz continuity)

[e}
ISI Lwew, o

< —E,| sup |W||*|E||2] (Duality relationship).
L Wew
By the definition of the tensor nuclear norm, we have
T ™
PY|l = inf { DW= vuns @ugy ® - @ukc, llukg |3 = 1,7 > Y41 > 0}7

j=1 j=1

and with an assumption that v; < By, we have |W||, < rByy. Further, using the result in (34),
we obtain the desired bound

Rg(loW) < |SA|C'8K7"BWK(1nn)K1/2\/ﬁ.
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D More Simulation Experiments

In this section, we provide more simulation experiments for coupled tensors based on different ranks
as we have given in the Section 5.1. We consider the same conditions and coupled tensor structures
= R20><20><20 and M € R2OX30.

Our first experiment in this section was designed by making the tensor 7 with CP rank of 5 and
the matrix M with rank of 10. We shared 5 components on the first modes to couple 7 and M.
Figure 4 shows that coupled norms have given an equivalent performance to the tensor nuclear
norm for tensor completion. For matrix completion, we can see that the best performance is given
by [, lleep,(a,a,1),(1,F) (ccp-3), better than the other two coupled nuclear norms. This indicates
that ||, -[lccp,(x,2,L),(A,F) is able to learn more efficiently since it separates the shared and unshared
components among the coupled tensor and the matrix.

0.1y 0.035 a

0.03
0.08 1

o] &
0.06 = —e-0OTN

0.02 f |===SLTN
=@-TNN
+4-(0,0,0)
0.015 | | % ccp-1
ccp-2
cep-3

0.04 1

0.02 . . . . . . 0.01 . . . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of training samples Fraction of training samples

(a) Matrix Completion (M) (b) Tensor Completion (7")

Figure 4: Performances of completion of the tensor with dimensions of 20 x 20 x 20 and CP rank
of 5 and matrix with dimensions of 20 x 30 and rank of 10 both sharing 5 components.

Next, we designed a tensor 7 with multilinear rank of (15,5,5) and a matrix M with rank of 5.
Again, we shared 5 components on the first modes to couple 7 and M. Figure 5 shows that for
tensor completion, coupled nuclear norms have given a comparable performance to tensor nuclear
norm and the coupled norm (O, O, S). However, for matrix completion coupled nuclear norms have
dominated when the training samples are small and have given a weaker performance as the number
of training samples increases.

Ze-MTN 02r

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of training samples Fraction of training samples

(a) Matrix Completion (M) (b) Tensor Completion (7)

Figure 5: Performances of completion of the tensor with dimensions of 20 x 20 x 20 and multilinear
rank of (15, 5,5) and matrix with dimensions of 20 x 30 and rank of 5 both sharing 5 components.
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