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1 Dataset Descriptions

MNIST/BinaryMNIST We use the MNIST hand-written digits dataset [6] with 50,000 examples
for training, 10,000 validation, 10,000 testing. We also train on a binarized version to align with
previous work [5]. As in [8], we use the Adam optimizer [4] with a learning rate of 1e-3, a minibatch
size of 100, 64 latent dimensions, and train for 500 epochs. We anneal β from 0 to 1 linearly for the
first 200 epochs. For the encoders and decoders, we use MLPs with 2 hidden layers of 512 nodes.
We model p(x1|z) with a Bernoulli likelihood and p(x2|z) with a multinomial likelihood.

FashionMNIST This is an MNIST-like fashion dataset containing 28 x 28 grayscale images of
clothing from 10 classes—skirts, shoes, t-shirts, etc [9]. We use identical hyperparameters as in
MNIST. However, we employ a miniature DCGAN [7] for the image encoder and decoder.

MultiMNIST This is variant of MNIST where between 0 and 4 digits are composed together
on a 50x50 canvas. Unlike [3], the digits are fixed in location. We generate the text modality by
concatenating the digit classes from top-left to bottom-right. We use 100 latent dimensions, with the
remaining hyperparameters as in MNIST. For the image encoder and decoder, we retool the DCGAN
architecture from [7]. For the text encoder, we use a bidirectional GRU with 200 hidden units. For the
text decoder, we first define a vocabulary with ten digits, a start token, and stop token. Provided a start
token, we feed it through a 2-layer GRU, linear layers, and a softmax. We sample a new character
and repeat until generating a stop token. We note that previous work has not explored RNN-VAE
inference networks in multi-modal learning, which we show to work well with the MVAE.

CelebA The CelebFaces and Attributes (CelebA) dataset [10] contains over 200k images of celebri-
ties. Each image is tagged with 40 attributes i.e. wears glasses, or has bangs. We use the aligned
and cropped version with a selected 18 visually distinctive attributes, as done in [? ]. Images are
rescaled to 64x64. For the first experiment, we treat images as one modality, x1, and attributes as a
second modality, x2 where a single inference network predicts all 18 attributes. We also explore a
variation of MVAE, called MVAE19, where we treat each attribute as its own modality for a total of
19. To approximate the full objective, we set k = 1 for a total 21 ELBO terms. We use Adam with
a learning rate of 10−4, a minibatch size of 100, and anneal KL for the first 20 of 100 epochs. We
again use DCGAN for image networks. For the attribute encoder and decoder, we use an MLP with 2
hidden layers of size 512. For MVAE19, we have 18 such encoders and decoders.

2 Product of a Finite Number of Gaussians

In this section, we provide the derivation for the parameters of a product of Gaussian experts (PoE).
Derivation is summarized from [1].
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Lemma 2.1. Give a finite number N of multi-dimensional Gaussian distributions pi(x) with
mean µi, covariance Vi for i = 1, ..., N , the product

∏N
i=1 pi(x) is itself Gaussian with mean

(
∑N
i=1 Tiµi)(

∑N
i=1 Ti)

−1 and covariance (
∑N
i=1 Ti)

−1 where Ti = V −1
i .

Proof. We write the probability density of a Gaussian distribution in canonical form asK exp{ηTx−
1
2x

TΛx} where K is a normalizing constant, Λ = V −1, η = V −1µ. We then write the product of N
Gaussians distributions

∏N
i=1 pi ∝ exp{(

∑N
i=1 ηi)

Tx− 1
2x

T (
∑N
i=1 Λi)x}. We note that this product

itself has the form of a Gaussian distribution with η =
∑N
i=1 ηi and Λ =

∑N
i=1 Λi. Converting back

from canonical form, we see that the product Gaussian has mean µ = (
∑N
i=1 Tiµi)(

∑N
i=1 Ti)

−1 and
covariance V = (

∑N
i=1 Ti)

−1.

3 Quotient of Two Gaussians

Similarly, we may derive the form of a quotient of two Gaussian distributions (QoE).
Lemma 3.1. Give two multi-dimensional Gaussian distributions p(x) and q(x) with mean µp
and µq, and covariance Vp and Vq respectively, the quotient p(x)

q(x) is itself Gaussian with mean

(Tpµp − Tqµq)(Tp − Tq)−1 and covariance (Tp − Tq)−1 where Ti(x) = V −1
i (x).

Proof. We again write the probability density of a Gaussian distribution as K exp{ηTx− 1
2x

TΛx}.
We then write the quotient of two Gaussians p and q as

Kp exp{ηTp x− 1
2x

T Λpx}
Kq exp{ηTq x− 1

2x
T Λqx}

∝ exp{(ηp − ηq)Tx−
1
2x

T (Λp − Λq)x}. This defines a new Gaussian distribution with Λ = V −1
p − V −1

q and η =

V −1
p µp − V −1

q µq. If we let Tp = V −1
p and Tq = V −1

q , then we see that V = Λ−1 = (Tp − Tq)−1

and µ = ηV −1 = (Tpµp − Tqµq)(Tp − Tq)−1.

The QoE suggests that the constraint Tp > Tq ⇒ V −1
p > V −1

q must hold for the resulting Gaussian
to be well-defined. In our experiments, p is usually a product of Gaussians, and q is a product of prior
Gaussians (see Eqn 3 in main paper). Given N modalities, we can decompose Vp =

∑N
i=1 V

−1
i and

Vq =
∑N−1
i=1 1 = N − 1 where the prior is a unit Gaussian with variance 1. Thus, the constraint can

be rewritten as
∑N
i=1 V

−1
i > N − 1, which is satisfied if Vi > N

N−1 , i = 1, ..., N . One benefit of
using the regularized importance distribution q(z|x)p(z) is to remove the need for this constraint. To
fit MVAE without a universal expert, we add an additional nonlinearity to each inference network
such that the variance is fed into a rescaled sigmoid: V = N

N−1 · sigm(V ).

4 Additional Results using the Joint Inference Network

In the main paper, we reported marginal probabilities using q(z|x1) and showed that MVAE is
state-of-the-art. Here we similarly compute marginal probabilities but using q(z|x1, x2). Because
importance sampling with either induced distribution yields an unbiased estimate, using a large
number of samples should result in very similar log-likelihoods. Indeed, we find that the results do
not differ much from the main paper: MVAE is still at the state-at-the-art.

5 Model Architectures

Here we specify the design of inference networks and decoders used for each dataset.

6 More on Weak Supervision

In the main paper, we showed that we do not need that many complete examples to learn a good joint
distribution with two modalities. Here, we explore the robustness of our model with missing data
under more modalities. Using MVAE19 (19 modalities) on CelebA, we can conduct a different weak
supervision experiment: given a complete multi-modal example (x1, ..., x19), randomly keep xi with
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Model BinaryMNIST MNIST FashionMNIST MultiMNIST CelebA
Estimating log p(x1) using q(z|x1, x2)

JMVAE -86.234 -90.962 -232.401 -153.026 -6234.542
MVAE -86.051 -90.616 -232.539 -152.826 -6237.104
MVAE19 – – – – -6236.113

Estimating log p(x1, x2) using q(z|x1, x2)
JMVAE -86.304 -91.031 -232.700 -153.320 -6238.280
MVAE -86.278 -90.851 -233.007 -153.478 -6241.621
MVAE19 – – – – -6239.957

Estimating log p(x1|x2) using q(z|x1, x2)
JMVAE -83.820 -88.436 -230.651 -145.761 -6235.330
MVAE -83.940 -88.558 -230.699 -147.009 -6235.368
MVAE19 – – – – -6233.330

Table 1: Similar estimates as in Table 2 (in main paper) but using q(z|x1, x2) as an importance
distribution (instead of q(z|x1)). Because VAE and CVAE do not have a multi-modal inference
network, they are excluded. Again, we show that the MVAE is able to match state-of-the-art.

Variance of Marginal Log Importance Weights: var(log( p(x1,z)
q(z|x1,x2)

))

Model BinaryMNIST MNIST FashionMNIST MultiMNIST CelebA
JMVAE 22.387 24.962 28.443 35.822 80.808
MVAE 21.791 25.741 18.092 16.437 73.871
MVAE19 – – – – 71.546

Variance of Joint Log Importance Weights: var(log( p(x1,x2,z)
q(z|x1,x2)

))

JMVAE 23.309 26.767 29.874 38.298 81.312
MVAE 21.917 26.057 18.263 16.672 74.968
MVAE19 – – – – 71.953

Variance of Conditional Log Importance Weights: var(log( p(x1,z|x2)
q(z|x1,x2)

))

JMVAE 40.646 40.086 56.452 92.683 335.046
MVAE 23.035 27.652 19.934 28.649 77.516
MVAE19 – – – – 71.603

Table 2: Average variance of log importance weights for marginal, joint, and conditional distributions
using q(z|x1, x2). Lower variances suggest better inference networks.
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Figure 1: MVAE architectures on MNIST: (a) q(z|x1), (b) p(x1|z), (c) q(z|x2), (d) q(x2|z) where x1

specifies an image and x2 specifies a digit label.

probability p for each i = 1, ..., 19. Doing so for all examples in the training set, we simulate the
effect of missing modalities beyond the bi-modal setting. Here, the number of examples shown to
the model is dependent on p e.g. p = 0.5 suggests that on average, 1 out of every 2 xi are dropped.
We vary p from 0.001 to 1, train from scratch, and plot (1) the prediction accuracy per attribute and
(2) the various data log-likelihoods. From Figure 5, we conclude that the method is fairly robust to
missing data. Even with p = 0.1, we still see accuracy close to the prediction accuracy with full data.
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Figure 2: MVAE architectures on FashionMNIST: (a) q(z|x1), (b) p(x1|z), (c) q(z|x2), (d) q(x2|z)
where x1 specifies an image and x2 specifies a clothing label.
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Figure 3: MVAE architectures on MultiMNIST: (a) q(z|x1), (b) p(x1|z), (c) q(z|x2), (d) q(x2|z)
where x1 specifies an image and x2 specifies a string of 4 digits.

7 Table of Weak Supervision Results

In the paper, we showed a series of plots detailing the performance the MVAE among many baselines
on a weak supervision task. Here we provide tables detailing other numbers.

Model 0.1% 0.2% 0.5% 1% 2% 5% 10% 50% 100%
AE 0.4143 0.5429 0.6448 0.788 0.8519 0.9124 0.9269 0.9423 0.9369
NN 0.6618 0.6964 0.7971 0.8499 0.8838 0.9235 0.9455 0.9806 0.9857
LOGREG 0.6565 0.7014 0.7907 0.8391 0.8510 0.8713 0.8665 0.9217 0.9255
RBM 0.7152 0.7496 0.8288 0.8614 0.8946 0.917 0.9257 0.9365 0.9379
VAE 0.2547 0.284 0.4026 0.6369 0.8016 0.8717 0.8989 0.9183 0.9311
JMVAE 0.2342 0.2809 0.3386 0.6116 0.7869 0.8638 0.9051 0.9498 0.9572
MVAE 0.2842 0.6254 0.8593 0.8838 0.9394 0.9584 0.9711 0.9678 0.9681

Table 3: Performance of several models on MNIST with a fraction of paired examples. Here we
compute the accuracy (out of 1) of predicting the correct digit in each image.
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Figure 4: MVAE architectures on CelebA: (a) q(z|x1), (b) p(x1|z), (c) q(z|x2), (d) q(x2|z) where x1

specifies an image and x2 specifies a 18 attributes.

(a) p(y|x) (b) log p(x, y) (c) log p(x) (d) log p(x|y)

Figure 5: We randomly drop input features xi with probability p. Figure (a) shows the effect of
increasing p from 0.001 to 1 on the accuracy of sampling the correct attribute given an image. Figure
(b) and (c) show changes in log marginal and log conditional approximations as p increases. In all
cases, we see close-to-best performance using only 10% of the complete data.

8 Details on Weak Supervision Baselines

The VAE used the same image encoder as the MVAE. JMVAE used identical architectures as the
MVAE with a hyperparameter α = 0.01. The RBM has a single layer with 128 hidden nodes and
is trained using contrastive divergence. NN uses the image encoder and label/string decoder as in
MVAE, thereby being a fair comparison to supervised learning. For MNIST, we trained each model
for 500 epochs. For FashionMNIST and MultiMNIST, we trained each model for 100 epochs. All
other hyperparameters were kept constant between models.

Model 0.1% 0.2% 0.5% 1% 2% 5% 10% 50% 100%
NN 0.6755 0.701 0.7654 0.7944 0.8102 0.8439 0.862 0.8998 0.9318
LOGREG 0.6612 0.7005 0.7624 0.7627 0.7728 0.7802 0.8015 0.8377 0.8412
RBM 0.6708 0.7214 0.7628 0.7690 0.7805 0.7943 0.8021 0.8088 0.8115
VAE 0.5316 0.6502 0.7221 0.7324 0.7576 0.7697 0.7765 0.7914 0.8311
JMVAE 0.5284 0.5737 0.6641 0.6996 0.7437 0.7937 0.8212 0.8514 0.8828
MVAE 0.4548 0.5189 0.7619 0.8619 0.9201 0.9243 0.9239 0.9478 0.947

Table 4: Performance of several models on FashionMNIST with a fraction of paired examples. Here
we compute the accuracy of predicting the correct class of attire in each image.
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Model 0.1% 0.2% 0.5% 1% 2% 5% 10% 50% 100%
JMVAE 0.0603 0.0603 0.0888 0.1531 0.1699 0.1772 0.4765 0.4962 0.4955
MVAE 0.09363 0.1189 0.1098 0.2287 0.3805 0.4289 0.4999 0.5121 0.5288

Table 5: Performance of several models on MultiMNIST with a fraction of paired examples. Here
compute the average accuracy of predicting each digit correct (by decomposing the string into
individual digits, at most 4).

9 More of the effects of sampling more ELBO terms

In the main paper, we stated that with higher k (sampling more ELBO terms), we see a steady decrease
in variance. This drop in variance can be attributed to two factors: (1) additional un-correlated
randomness from sampling more when reparametrizing for each ELBO [2], or (2) additional ELBO
terms to better approximate the intractable objective. Fig. 6 (c) shows that the variance still drops
consistently when using a fixed ε ∼ N(0, 1) for computing all ELBO terms, indicating independent
contributions of additional ELBO terms and additional randomness.
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Figure 6: Effect of approximating the MVAE objective with more ELBO terms on (a) the joint
log-likelihood and (b) the variance of the log importance weights over 3 independent runs. Similarly,
(c) compute the variance but fixes a single ε ∼ N(0, 1) when reparametrizing for each ELBO. (b)
and (c) imply that switching from k = 0 to k = 1 greatly reduces the variance in the importance
distribution defined by the inference network(s).

10 More on the Computer Vision Transformations

We copy Fig. 4 in the main paper but show more samples and increase the size of each image for
visibility. The MVAE is able to learn all 6 transformations jointly under the PoE inference network.

11 More on Machine Translation

We provide more samples on (1) sampling joint (English, Vietnamese) pairs of sentences from the
prior N(0, 1), (2) translating English to Vietnamese by sampling from p(xen|z) where z ∼ q(z|xvi),
and (3) translating Vietnamese to English by sampling from p(xvi|z) where z ∼ q(z|xen). Refer to
the main for analysis and explanation.
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Figure 7: Edge Detection and Facial Landscapes: The top row shows 8 ground truth images randomly
chosen from the CelebA dataset. The second to fourth rows respectively plot the reconstructed image,
edge, and facial landscape masks using the trained MVAE decoders and q(z|x1, ..., x6).

Figure 8: Colorization: The top row shows ground truth grayscale images. The bottom row show
reconstructed color images.

Figure 9: Fill in the Blank: The top row shows ground truth CelebA images with half of each image
obscured. The bottom row replaces the obscured part with a reconstruction.
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Figure 10: Removing Watermarks: The top row shows ground truth CelebA images, each with an
added watermark. The bottom row shows the reconstructed image with the watermark removed.

Type Sentence
xen ∼ p(xen|z = z0) it’s a problem .
xvi ∼ p(xvi|z = z0) nó là một công việc .
GOOGLETRANSLATE(xvi) it is a job .
xen ∼ p(xen|z = z0) we have an idea .
xvi ∼ p(xvi|z = z0) chúng tôi có thể làm được .
GOOGLETRANSLATE(xvi) we can do it .
xen ∼ p(xen|z = z0) And as you can see , this is a very powerful effect of word of mouth .
xvi ∼ p(xvi|z = z0) và một trong những điều này đã xảy ra với những người khác , và chúng

tôi đã có một số người trong số các bạn đã từng nghe về những điều này .
GOOGLETRANSLATE(xvi) and one of these has happened to other people, and we’ve had

some of you guys already heard about this .
xen ∼ p(xen|z = z0) this is a photograph of my life .
xvi ∼ p(xvi|z = z0) Đây là một bức ảnh .
GOOGLETRANSLATE(xvi) this is a photo .
xen ∼ p(xen|z = z0) thank you .
xvi ∼ p(xvi|z = z0) xin cảm ơn .
GOOGLETRANSLATE(xvi) thank you .
xen ∼ p(xen|z = z0) i’m not kidding .
xvi ∼ p(xvi|z = z0) tôi không nói đùa .
GOOGLETRANSLATE(xvi) i am not joking .

Table 6: A few examples of “paired" reconstructions from a single sample z0 ∼ q(z|xen, xvi).
Interestingly, many of the translations are not exact but instead capture a close interpretation of the
true meaning. The MVAE tended to perform better on shorter sentences.
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Type Sentence
xen ∼ pdata this was one of the highest points in my life.
xvi ∼ p(xvi|z(xen)) Đó là một gian tôi vời của cuộc đời tôi.
GOOGLETRANSLATE(xvi) It was a great time of my life.
xen ∼ pdata i am on this stage .
xvi ∼ p(xvi|z(xen)) tôi đi trên sân khấu .
GOOGLETRANSLATE(xvi) me on stage .
xen ∼ pdata do you know what love is ?
xvi ∼ p(xvi|z(xen)) Đó yêu của những ?
GOOGLETRANSLATE(xvi) that’s love ?
xen ∼ pdata today i am 22 .
xvi ∼ p(xvi|z(xen)) hãy nay tôi sẽ tuổi .
GOOGLETRANSLATE(xvi) I will be old now .
xen ∼ pdata so i had an idea .
xvi ∼ p(xvi|z(xen)) tôi thế tôi có có thể vài tưởng tuyệt .
GOOGLETRANSLATE(xvi) I can have some good ideas .
xen ∼ pdata the project’s also made a big difference in the lives of the <unk> .
xvi ∼ p(xvi|z(xen)) tôi án này được ra một Điều lớn lao cuộc sống của chúng người

sống chữa hưởng .
GOOGLETRANSLATE(xvi) this project is a great thing for the lives of people who live and thrive .

Table 7: A few examples of Vietnamese MVAE translations of English sentences sampled from the
empirical dataset, pdata. We use Google translate to re-translate back to English.

Type Sentence
xvi ∼ pdata Đó là thời điểm tuyệt vọng nhất trong cuộc đời tôi .
xen ∼ p(xen|z(xvi)) this is the most bad of the life .
GOOGLETRANSLATE(xvi) it was the most desperate time in my life .
xvi ∼ pdata cảm ơn .
xen ∼ p(xen|z(xvi)) thank .
GOOGLETRANSLATE(xvi) thank you .
xvi ∼ pdata trước tiên , tại sao chúng lại có ấn tượng xấu như vậy ?
xen ∼ p(xen|z(xvi)) first of all, you do not a good job ?
GOOGLETRANSLATE(xvi) First, why are they so bad?
xvi ∼ pdata Ông ngoại của tôi là một người thật đáng <unk> phục vào thời ấy .
xen ∼ p(xen|z(xvi)) grandfather is the best experience of me family .
GOOGLETRANSLATE(xvi) My grandfather was a worthy person at the time .
xvi ∼ pdata Đứa trẻ này 8 tuổi .
xen ∼ p(xen|z(xvi)) this is man is 8 years old .
GOOGLETRANSLATE(xvi) this child is 8 years old .

Table 8: A few examples of English MVAE translations of Vietnamese sentences sampled from the
empirical dataset, pdata. We use Google translate to translate to English as a ground truth.
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