
6 Appendix

6.1 Proof of Theorem 1

In this section, we give the proof of Theorem 1. The first thing we want to point out is that, although
we prove the Hessians of these NNs are positive semi-definite almost everywhere, these NNs are
not convex w.r.t. inputs, i.e., x. The discontinuity of ReLU is the cause. (For instance, consider a
combination of two step functions in 1-D, e.g. f(x) = 1x�1 + 1x�2 is not a convex function but has
0 second derivative almost everywhere.) However, this has an important implication, that the problem
is saddle-free.

Before we go to the proof of Theorem 1, let us prove the following lemma for cross-entropy loss
with soft-max layer.
Lemma 3. Let us denote by s 2 Rd the input of the soft-max function, by y 2 {1, 2, . . . , d} the
correct label of the inputs x, by g(s) the soft-max function, and by L(s, y) the cross-entropy loss.
Then we have

@

2
L(s, y)

@s2
⌫ 0.

Proof. Let sd =

Pd
j=1 e

sj , pi =
esi
sd

, and then it follows that

L(s, y) = �
dX

i=1

yi logpi.

Further, it is not hard to see that

@L(s, y)

@sj
= �

dX

i=1

yi
@ logpi

@sj

= �yj(1� pj)�
X

i 6=j

yi
pkpj

pk

= pj � yj .

Then, the second order derivative of L w.r.t. sisj is
@

2
L(s, y)

@s2j
= pj(1� pj), and

@

2
L(s, y)

@sj@si
= �pjpi.

Since
@

2
L(s, y)

@s2j
+

X

i 6=j

@

2
L(s, y)

@sj@si
= 0, and

@

2
L(s, y)

@s2j
� 0,

we have
@

2
L(s, y)

@s2
⌫ 0.

Now, let us give the proof of Theorem 1:

Assume the input of the soft-max layer is s and the cross-entropy is L(s, y). Based on Chain Rule, it
follows that

@J (✓,x, y)

@x
=

@L

@s

@s

@x
.

From Assumption. 1 we know that all the layers before the soft-max are either linear or ReLU, which

indicates
@

2s

@x2
= 0 (a tensor) almost everywhere. Therefore, applying chain rule again for the above

equation,
@

2J (✓,x, y)

@x2
= (

@s

@x
)

T @

2
L

@s2
@s

@x
+

@L

@s

@

2s

@x2

= (

@s

@x
)

T @

2
L

@s2
@s

@x
.

12



It is easy to see
@

2J (✓,x, y)

@x2
⌫ 0 almost everywhere since

@

2
L

@s2
⌫ 0 from Lemma 3.

From above we could see that the Hessian of NNs w.r.t. x is at most a rank c (the number of class)
matrix, since the rank of the Hessian matrix

@

2J (✓,x, y)

@x2
= (

@s

@x
)

T @

2
L

@s2
@s

@x

is dominated by the term @2L
@s2 , which is at most rank c.

6.2 Attacks Mentioned in Paper

In this section, we show the details about the attacks used in our paper. Please see Table 7 for details.

Table 7: The definition of all attacks used in the paper. Here gx , @J (x, ✓)

@x
and Hx , @

2J (x, ✓)

@x2
.

�x
FGSM ✏ · sign(gx)

FGSM-10 ✏ · sign(gx) (iterate 10 times)
L2GRAD ✏ · gx/kgxk

FHSM ✏ · sign(H�1
x gx)

L2HESS ✏ ·H�1
x gx/kH�1

x gxk

6.3 Models Mentioned in Paper

In this section, we give the details about the NNs used in our paper. For clarification, We omit the
ReLu activation here. However, in practice, we implement ReLu regularity. Also, for all convolution
layers, we add padding to make sure there is no dimension reduction. We denote Conv(a,a,b) as
a convolution layer having b channels with a by a filters, MP(a,a) as a a by a max-pooling layer,
FN(a) as a fully-connect layer with a output and SM(a) is the soft-max layer with a output. For our
Conv(5,5,b) (Conv(3,3,b))layers, the stride is 2 (1). See Table 8 for details of all models used in this
paper.

Table 8: The definition of all models used in the paper.
Name Structure

C1 (for CIFAR-10) Conv(5,5,64) – MP(3,3) – BN–Conv(5,5,64)
–MP(3,3)–BN–FN(384)–FN(192)–SM(10)

C2 (for CIFAR-10) Conv(3,3,63)–BN–Conv(3,3,64)–BN–Conv(3,3,128)
–BN–Conv(3,3,128)–BN–FC(256)–FC(256)–SM(10)

C3 (for CIFAR-10) Conv(3,3,64)–Conv(3,3,64)–Conv(3,3,128)
–Conv(3,3,128)–FC(256)–FC(256)–SM(10)

M1 (for MNIST) Conv(5,5,20)–Conv(5,5,50)–FC(500)–SM(10)
CR (for CIFAR-100) ResNet18 For CIFAR-100

6.4 Discussion on Second Order Method

Although second order adversarial attack looks well for MNIST (see Table 3), but for most our
experiments on CIFAR-10 (see Table 4), the second order methods are weaker than variations of the
gradient based methods. Also, notice that the robust models trained by second order method are also
more prone to attack on CIFAR-10, particularly MFHSM and ML2HESS . We give two potential
explanation here.

First note that the Hessian w.r.t. input is a low rank matrix. In fact, as mentioned above, the rank of
the input Hessian for CIFAR-10 is at most ten; see Proposition 2, the matrix itself is 3K ⇥ 3K. Even
though we use inexact Newton method [10] along with Conjugate Gradient solver, but this low rank
nature creates numerical problems. Designing preconditioners for second-order attack is part of our

13



future work. The second point is that, as we saw in the previous section the input Hessian does not
directly correlate with how robust the network is. In fact, the most effective attack method would be
to perturb the input towards the decision boundary, instead of just maximizing the loss.

6.5 More Numerical Result for §2 and 3

In this section, we provide more numerical results for §2 and 3. All conclusions from the numerical
results are consistency with those in §2 and 3.

Table 9: Result on MNIST dataset for M1 model (LeNet-5). We shows the Hessian spectrum
of different batch training models, and the corresponding performances on adversarial dataset
generated by training/testing dataset. The testing results are shown in parenthesis. We report the
adversarial accuracy of three different magnitudes of attack. The interesting observation is that the
�

✓
1 is increasing while the adversarial accuracy is decreasing for fixed ✏. Meanwhile, we do not know

if there is a relationship between �

✓
1 and Clean accuracy or not. Also, we cannot see the relation

between �

x

1 , kr
x

J (✓,x, y)k and the adversarial accuracy.

Batch Acc �✓
1 �x

1 k@
x

J (✓,x, y)k Acc ✏ = 0.2 Acc ✏ = 0.1

64 100 (99.21) 0.49 (2.96 ) 0.07 (0.41) 0.007 (0.10) 0.53 (0.53) 0.85 (0.85)
128 100 (99.18) 1.44 (8.10 ) 0.10 (0.51) 0.009 (0.12) 0.50 (0.51) 0.83 (0.83)
256 100 (99.04) 2.71 (13.54) 0.09 (0.50) 0.008 (0.12) 0.45 (0.46) 0.81 (0.82)
512 100 (99.04) 5.84 (26.35) 0.12 (0.52) 0.010 (0.13) 0.42 (0.42) 0.79 (0.80)
1024 100 (99.05) 21.24 (36.96) 0.25 (0.42) 0.032 (0.11) 0.32 (0.33) 0.73 (0.74)
2048 100 (98.99) 44.30 (49.36) 0.36 (0.39) 0.075 (0.11) 0.19 (0.19) 0.72 (0.73)

Figure 8: The landscape of the loss functional is shown along the dominant eigenvector of the
Hessian on MNIST for M1. Note that the y � axis is in logarithm scale. Here ✏ is a scalar that
perturbs the model parameters along the dominant eigenvector denoted by v1. The green line is the
loss for a randomly batch with batch-size 320 on MNIST. The blue and red line are the training and
test loss, respectively. From the figure we could see that the curvature of test loss is much larger than
training.

14



Figure 9: We show the landscape of the test and training objective functional along the first
eigenvector of the sub-sampled Hessian with B = 320, i.e. 320 samples from training dataset, on
MNIST for M1. We plot both the batch loss as well as the total training and test loss. One can see
that visually the results show that the robust models converge to a region with smaller curvature.

Figure 10: We show the landscape of the test and training objective functional along the first
eigenvector of the sub-sampled Hessian with B = 320, i.e. 320 samples from training, on CIFAR-10
for C3. We plot both the batch loss as well as the total training and test loss. One can see that visually
the results show that the curvature of robust models is smaller.

15



Figure 11: 1-D Parametric Plot on MNIST for M1 of MORI and adversarial models. Here we are
showing how the landscape of the total loss functional changes when we interpolate from the original
model (� = 0) to the robust model (� = 1). For all cases the robust model ends up at a point that has
relatively smaller curvature compared to the original network.

Figure 12: 1-D Parametric Plot on CIFAR-10 of MORI and adversarial models, i.e. total loss
functional changes interpolating from the original model (� = 0) to the robust model (� = 1). For
all cases the robust model ends up at a point that has relatively smaller curvature compared to the
original network.

16



Figure 13: Spectrum of the sub-sampled Hessian of the loss functional w.r.t. the model parameters
computed by power iteration on MNIST of M1. The results are computed for different batch sizes
of B = 1, B = 320, and B = 60000. We report two cases for the single batch experiment, which
is drawn randomly from the clean training data. The results show that the sub-sampled Hessian
spectrum decreases for robust models. An interesting observation is that for the MNIST dataset, the
original model has actually converged to a saddle point, even though it has a good generalization
error. Also notice that the results for B = 320 and B = 60, 000 are relatively close, which hints that
the curvature for the full Hessian should also be smaller for the robust methods. This is demonstrated
in Fig. 9.

Table 10: Baseline accuracy is shown for large batch size for C1 model along with results aciheved
with scaling learning rate method proposed by [16] (denoted by "FB Acc"). The last column shows
results when training is performed with robust optimization. As we can see, the performance of the
latter is actually better for large batch size. We emphasize that the goal is to perform analysis to
better understand the problems with large batch size training. More extensive tests are needed before
one could claim that robust optimization performs better than other methods.

Batch Baseline Acc FB Acc Robust Acc

8000 0.7559 0.752 0.7612
10000 0.7561 0.1 0.7597
25000 0.7023 0.1 0.7409
50000 0.5523 0.1 0.7116

17



Figure 14: The landscape of the loss functional is shown when the C2 model parameters are changed
along the first two dominant eigenvectors of the Hessian. Here ✏1, ✏2 are scalars that perturbs the
model parameters along the first and second dominant eigenvectors.

Figure 15: The landscape of the loss functional is shown when the M1 model parameters are changed
along the first two dominant eigenvectors of the Hessian. Here ✏1, ✏2 are scalars that perturbs the
model parameters along the first and second dominant eigenvectors.

18



Figure 16: The landscape of the loss functional is shown along the dominant eigenvector of the
Hessian for C2 architecture on CIFAR-10 dataset. Here ✏ is a scalar that perturbs the model
parameters along the dominant eigenvector denoted by v1.

19



Figure 17: Changes in the dominant eigenvalue of the Hessian w.r.t weights and the total gradient is
shown for different epochs during training. Note the increase in �

✓
1 (blue curve) for large batch vs

small batch. In particular, note that the values for total gradient along with the Hessian spectrum
show that large batch does not get “stuck” in saddle points, but areas in the optimization landscape
that have high curvature. The dotted points show the corresponding results when we use robust
optimization. We can see that this pushes the training to flatter areas. This clearly demonstrates the
potential to use robust optimization as a means to avoid sharp minimas.

20


