Appendix 1: Preliminaries

Probabilistic Tail Bounds

Theorem 1 (Hoeffding’s Inequality (Theorem 2.8 of [1])). Let X, ..., X,, be independent random

variables such that X; takes its values in [a;, b;] almost surely for all i < n. Let

S = Z(Xi—E[Xz‘D,
i=1

then for every t > 0,
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)
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Theorem 2 (Cantelli’s Inequality (Equation 7 of [2])). The inequality states that

< o ifA>0,
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where X is a real-valued random variable, Pr is the probability measure, [ is the expected value of

X, o2 is the variance of X.

Basic Derivations for Multivariate Gaussian Mixtures

. : N
Lemma 1. For N vectors X1, ...,Xxn, X; € R™ Vi, N constants a1, ...,an, a; > 0Vi, >." o

1 and target vector y € R™,

N
> aix]y < (maxlxilz) - Iyl
i=1

Proof. For each vector x;, we know by the Cauchy-Schwarz Inequality that:

x|y < [Ixill2 - lyll2

And:
[k ll2 < max|xil|o Vk

Combining the above, we have:
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Lemma 2. For N vectors x1,...,Xn, X; € R™ Vi, and target vector y € R™,

N
ijy >N (m?XHXiHQ) Nyl

i=1

Proof. For each vector x;, we know by the Cauchy-Schwarz Inequality that:

X,y < |-xill2 - Iyl
= |Ixillz - [ly[l2

Multiplying the above equation by —1, we have:

x|y > —|xll2 - |yl
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And:
1%kl < max|xi[|o vk (7

Multiplying the above equation by —1, we have:

~lxell2 = —max]xi & ®)
Combining the above, we have:
N N
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Lemma 3. For an n-dimensional multivariate normal distribution X ~ N (u, X), we have:

E[| X[3] = tr(2) + 3

Proof.

E|X 3] = DOELXZ) = Y- (VarlXi] + (BIX))?) = tr(S) + D B = tr(S) + el
i=1 i=1 (10)
O

Lemma 4. For a random variable X that is distributed by an n-dimensional mixture of m Gaussians,
thatis X ~ Y70 N (i, ;) for o > 0Viand Y " oy = 1:

E[]| X|13) Zaltr )+ llal3)

Proof. By law of conditional expectation:
E[]| X|13) ZE (X131 = > exBlIX[13]] (1)
i=1

Since the conditional distribution given the mixture component ¢ is n-dimensional Gaussian
N (u;, X;), from Lemma 3, we have:

Z )+ [lwill3) (12)
O

Classification Preliminaries

Consider the multi-class classification problem over m classes. The input domain is given by
X C RZ, with an accompanying probability metric p,(-) defined over X'. The training data is given
by N i.i.d. samples D = {x1,...,xy} drawn from X". Each point x € X has an associated label
y(x) =[0,...,1,...0] € R™. We learn a CNN such that for each point in X, the CNN induces a
conditional probability distribution over the m classes whose mode matches the label y(x).

A CNN architecture consists of a series of convolutional and subsampling layers that culminate in an
activation ®(-), which is fed to an m-way classifier with weights w = {w1, ..., w,,, } such that:

exp (w; ®(x))

™ (13)
Zj:l exXp (W;r@(x))

p(yilx; w, ®(:)) =




The entropy of conditional probability distribution in Equation 13 is given by:

Hip(|x; 0)] £ — Zp yilx; ) log(p(yi|x; 9)) (14)

=1
The expected entropy over the distribution is given by:

Buvpe MU0 = [ Hipt-bx: )]ps(x)ix (1s)
X~px
The empirical average of the conditional entropy over the training set D is:

Exp[H[p(-|x; )] ZH[p xi;6) (16)

Diversity v(®, py) of the features is given by:

v(®, py) éz Zaz (tr(4) + tr(pip]) Zaz tr(Zi) + [lwall3) (A7)

Appendix 2: Theoretical Results

Lemma 5. For the above classification setup, where ||W|| o = max; (||w;]|2) -
Hp(:|x; w)] > log(C) — 2[|w[oo [ ()| (18)

Proof. For an input x, the conditional probability distribution over m classes for a statistical model
with feature map ®(x) and weights w = (w7, ..., W) can be given by:

exp (WZT d (x))

plyilx; w) = (19)
S exp (w] @(x))
We can thus write the conditional entropy H[p(-|x; w)] for the above sample as:
c
Hip(-lx; w)l = =Y p(yilx; w) log (p(yilx; w)) (20)
i=1
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= log Zexp (W;@(X)) - Liz (3P (W] 2(x) - w O(x)) (22)

S5 exp (w)] ®(x))
Zexp 2 (exp (W] B(x)) - w] @ (x))

= log(m) + log
31 exp (w) @(x)
(23)
Since log is a concave function:
m c T T
1 i—1 (exp (w; ®(x)) - w; P(x
> log(C) + c > (w/ o) - Lt ( = ( ( _)r) () (24)
ot > j—1 €XP (wj ®(x))
By Lemma 1, we have:
1 &
Zlog(0)+52(W]T‘1)(X)) — [wlleo|2()]l2 (25)
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By Lemma 2, we have:

> 10g(C) = 2[[wlloo [[@(x)]2 (26)

Now we are ready to prove Theorem 1 from the main paper.

Theorem 3 (Theorem 1 from Text: Lower Bound on £5-norm of Classifier). The expected conditional

entropy follows:
log(C) — Exp, [Hp(-|x; 0)]]

[wllz =
v(®,px)
Proof. From Lemma 5, we have:
Hlp(-[x; w)] = log(C) — 2[[W||oo |2 (x)]|2 27
Since [|wll2 = /32 [Will3 > [|w/|oc, we have:
Hlp(-1x; w)] = log(C) — 2[|w||2[|®(x) ]2 (28)
Taking expectation over py, we have:
Exp, [Hp(:[3 W)]] = 1og(C) = 2[[w|[2Excup, [[|2(x) 2] (29)
By Cauchy-Schwarz Inequality, Ex~,, [||®(x)]|2] < v/Ex~yp,[||®(x)]|3]. Using this:
> 10g(C) = 2[[wl2/ Exxnp, |2 () 13] (30)
By Lemma 4, we have:
= log(C) — 2([wl|> Zaz tr(Xi) + llmill3) G

Rearranging and using the definition of Diversity we have:

- log(C) — Exnyp, [H[p(-|x; 0)]]
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Lemma 6. With probability at least 1 — 6 /2,
. 2B [|®(x)[13], 4
[ [HIp(fx 0))] — B, [HIp(x 0] < ||w|oo\/ e 2 og(5)
Proof. Since D has i.i.d. samples of X, we have:
Exep, [Bo [H [p(x; w)]]] = < Z B, [H [P W)]] = B, [H (-3 w)]] (33)
From Lemma 5, we know that for sample x:
log(m) = 2[[w|[oo||®(x)[l2 < H [p(:[x; w)] < log(m) (34)



Thus, by applying Hoeffding’s Inequality we get:

. —2N?t?
Ep[H[p(-[x; 0)]] — Ex~p, |Ep [H[p(-[x;w)]l|| = 1) < 2exp
Pr(J | Il=1) AwllZ 35 (k) 2
(35)
Setting RHS as ¢/2, we have with probability at least 1 — 6/2:
) 2 || (x
Bo[HIp(x; )] ~ B HIp(x:0)]| < ||w|oo\/ el 1o 4
(36)
O
Lemma 7. With probability at least 1 — §/2, we have:
A Var, [||®(x)]|3](2/6 — 1
B[00 13) < (@, ) + |/ VeI FCOIELR/T =) a7
Proof. Since D has i.i.d. samples of X,:
Var, [||®(x)]|
Var,, [Eyp[[|®(x)|2]] = ZVarpx (x:)|3] = M (38)

Now, by the Cantelli Inequality, we have for ¢ > 0:

t2 -
(39)
Vary, [Expl||®(x )|%H>

Setting RHS ast 1 — §/2, we have and solving for ¢, we have with probability at least 1 — §/2:

Pr (Bxv 1200 [3] < Exep |G +1) > 1 - (1 +

X . ; P -
B 10012 < Exepll0GoE) ) eI ZOABICA 1) g

Using the result from Lemma 4 and the definition of Diversity, we have with probability at least
1—46/2:

Erun[|®(x)|3] < v(®,p) + \/ Vary| @(Xiﬂg](Q/ =D 4

O

Theorem 4 (Theorem 2 from Main Text: Uniform Convergence of Entropy Estimate). With proba-
bility at least 1 — 6,

[BoHIp(-1x; 0)]] — By [HIp(-x: 0] < ||w||oo(¢ %w@px)bg(g) ro(N07))

Proof. From Lemma 6, we have with probability at least 1 — §/2:

[EolHip (- 0)] ~ Exe, Hip(x:0)]| < ||w|oo\/ B[00 1oy %) (a2)

From Lemma 7, we also have with probability at least 1 — §/2:

Bl 0G0 13] < w(@, ) + | Ve RCOIEI/ 1) @)




Combining the above two statements using the Union Bound, we have with probability at least 1 — 4:

ar x)||3 -
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ar. X 2 — 1/4
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(45)

[ HIp(x: 0)]] — Exnp HIp(-c: )] < [1w]oo \/N @px)log<5)+®(N ")) @6)
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Lemma 8. With probability at least 1 — /2,
2Ex~D (x)]13]
Ep[H[p(-[x; 0)]] < Exwp, [HIp(:x; 0)]] + [|w]l2 \/ log((;)
Proof. Since D has i.i.d. samples of X, we have:
Exvp, |Ep [Hp(:x; w) } i ZExwx p(-[xi; W)]] = Exeup, [H [p(:[x; w)]] (47)
From Lemma 5, we know that for sample x:
log(m) = 2[[w|[2[|®(x)[|l2 < H [p(-[x; w)] < log(m) (48)
Thus, by applying one-sided Hoeffding’s Inequality we get:
. —2N?¢?
Pr (Ep[Hp(x; 0)]] = Exnp, [Ep HIp([x; w)]]| > 1) < exp (49)
( } ) 4wl L e (x)|2
Setting RHS as ¢/2, we have with probability at least 1 — 6/2:
- 2B [[|®(x) 3]
Ep[H[p(-1x; 0)]] < Exp, [Hlp(-[x; 0)]] + IIWIIQ\/N log(5) (50)
O

Corollary 1 (Corollary 1 from the Main Text: Theorem 1 in terms of Variance of Norm). With
probability at least 1 — 6,

log(C) — Ex~p[H[p(:|x; 0)]]
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Proof. From Lemma 8, we have with probability at least 1 — §/2:

BolHp (s O)]) < By I 0)] + ||w||2\/ R nlI0OIE o 2) o)

From Lemma 7, we also have with probability at least 1 — §/2:

Bl #G0IE) < w(.p) + e PO/ =) 652




Combining the above two statements using the Union Bound, we have with probability at least 1 — 4:

Ep [Hlp(-1x;0)]) < By, [Hlp(-x:0)]) + ”WW 2 (4@, p) + o e RIBIC - 1), 2)

(53)

From Theorem ??, we know:

10g(C) — Exp, [Hp(:[x; 0)]]

w|lo > 54
A N C¥N oY
Combining this with the previous statement, we have with probability at least 1 — 4:

log(C) — Exup[H[p(-|x; 0

wl 8(C) [Hip(-Jx;6)] 55
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Appendix 3: Training Details on FGVC

ResNet-50: Training is done for 40k iterations with batch-size 8 with an initial learning rate of 0.005.
Optimal v for each dataset is given in Table 1.

Dataset ¥
CUB2011 0.9
NABirds 0.7
Stanford Dogs | 0.7
Cars 0.8
Aircraft 1

Table 1: Regularization parameter -y for ResNet-50 experiments.

Bilinear and Compact Bilinear CNN: We follow the training routine given by the authors'. Optimal
~ for each dataset is given in Table 2.

Dataset ¥
CUB2011 1
NABirds 1
Stanford Dogs | 1
Cars 1
Aircraft 1

Table 2: Regularization parameter ~y for Bilinear CNN experiments.

DenseNet-161: Training is done for 40k iterations with batch-size 32 with an initial learning rate of
0.005. Optimal v for each dataset is given in Table3.

GoogLeNet: Training is done for 300k iterations with batch-size 32, with a step size of 30000,
decreasing it by a ratio of 0.96 every epoch. Optimal hyperparameters are given in Table 4.

VGGNet-16: Training is done for 40k iterations with batch-size 32, with a linear decay of the
learning rate from an initial value of 0.1. Optimal + is given in Table 5.

"https://github. com/gy20073/compact_bilinear_pooling/tree/master/caffe-20160312/
examples/compact_bilinear


https://github.com/gy20073/compact_bilinear_pooling/tree/master/caffe-20160312/examples/compact_bilinear
https://github.com/gy20073/compact_bilinear_pooling/tree/master/caffe-20160312/examples/compact_bilinear

Dataset ¥
CUB2011 0.8
NABirds 1
Stanford Dogs | 0.8
Cars 1
Aircraft 0.8

Table 3: Regularization parameter v for DenseNet-161 experiments.

Dataset ¥
CUB-200-2011 | 10
NABirds 1
Stanford Dogs | 1
Cars 1
Aircraft 1

Table 4: Regularization parameter v for GoogLeNet experiments.

Dataset ¥
CUB2011 1
1
1
1

NABirds
Stanford Dogs
Cars

Aircraft 1
Table 5: Regularization parameter v for VGGNet-16 experiments.
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Limited Data CIFAR10 with ResNet-20
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Figure 1: We get consistent improvement in validation accuracy as the amount of training data is
increased. Curves plotted for various values of v on CIFAR10 with model ResNet20.



