
7 Appendix

7.1 Proof for Theorem 1

Let g(M) be a smooth function such that∇g(M) is Lipschitz-continuous with parameter ρ, that is,

g(M ′)− g(M)− 〈∇g(M),M ′ −M〉 ≤ ρ

2
‖M ′ −M‖2F .

Then ∇jf(c) = zTj ∇g(M)zj is Lipschitz-continuous with parameter γ, a number of order O(1)

when g(.) is an empirical risk normalized by N . Let A be the active set before adding a component ĵ.
Consider the descent amount produced by minimizing F (c) w.r.t. the cĵ given that 0 ∈ ∂jF (c) for
all j ∈ A due to the subproblem in the previous iteration. Let j = ĵ, for any ηj we have

F (c+ ηjej)− F (c) ≤ ∇jf(c)ηj + λ|ηj |+
γ

2
η2
j

≤ µ∇j∗f(c)ηj + λ|ηj |+
γ

2
η2
j

≤ µ∇j∗f(c)ηj + λ|ηj |+
γ

2
η2
j

Minimize w.r.t ηj gives

min
ηj

F (c+ ηjej)− F (c)

≤ min
ηj

µ∇j∗f(c)ηj + λ|ηj |+
γ

2
η2
j

≤ min
ηj

µ∇j∗f(c)ηj + λ|ηj |+
γ

2
η2
j

= min
ηk:k/∈A

∑
k/∈A

(
µ∇kf(c)ηk + λ|ηk|

)
+
γ

2

(∑
k/∈A

|ηk|

)2

≤ min
ηk:k/∈A

µ
∑
k/∈A

(
∇kf(c)ηk + λ|ηk|

)
+
γ

2

(∑
k/∈A

|ηk|

)2

+ (1− µ)λ
∑
k/∈A

|ηk|

where the last equality is justified by Lemma 2 provided later. For k ∈ A, we have

0 = min
ηk:k∈A

µ
∑
k∈A

(∇kf(c)ηk + λ|ck + ηk| − λ|ck|)

Combining cases for k /∈ A and k ∈ A, we can obtain a global estimate of descent amount compared
to some optimal solution x∗ as follows

min
ηĵ

F (c+ ηĵeĵ)− F (c)

≤ min
η

µ

(
〈∇f(c), η〉+ λ‖c+ η‖1 − λ‖c‖1

)

+
γ

2

(∑
k/∈A

|ηk|

)2

+ (1− µ)λ
∑
k/∈A

|ηk|

≤ min
η

µ

(
F (c+ η)− F (c)

)
+
γ

2

(∑
k/∈A

|ηk|

)2

+ (1− µ)λ
∑
k/∈A

|ηk|

≤ min
α∈[0,1]

µ

(
F (c+ α(c∗ − c))− F (c)

)
+
αγ

2
‖c∗‖21 + α(1− µ)λ‖c∗‖1

≤ min
α∈[0,1]

−αµ
(
F (c)− F (c∗)

)
+
α2γ

2
‖c∗‖21 + α(1− µ)λ‖c∗‖1.
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It means we can always choose an α small enough to guarantee descent if

F (c)− F (c∗) >
(1− µ)

µ
λ‖c∗‖1. (20)

Then for

F (c)− F (c∗) ≥ 2(1− µ)

µ
λ‖c∗‖1, (21)

we have

min
ηĵ

F (c+ ηĵeĵ)− F (c)

≤ min
α∈[0,1]

−αµ
2

(
F (c)− F (c∗)

)
+
α2γ

2
‖c∗‖21.

Minimizing w.r.t. to α gives the convergence guarantee

F (ct)− F (c∗) ≤ 2γ‖c∗‖21
µ2

1

t
.

for any iterate with F (ct)− F (c∗) ≥ 2(1−µ)
µ λ‖c∗‖1.

Lemma 2.

min
ηj

µ∇j∗f(c)ηj + λ|ηj |+
γ

2
η2
j (22)

= min
ηk:k/∈A

∑
k/∈A

(
µ∇kf(c)ηk + λ|ηk|

)
+
γ

2

(∑
k/∈A

|ηk|

)2

(23)

Proof. The minimization (28) is equivalent to

min
ηk:k/∈A

∑
k/∈A

(
µ∇kf(c)ηk

)

s.t.

(∑
k/∈A

|ηk|

)2

≤ C1 ,
∑
k/∈A

|ηk| ≤ C2.

and therefore is equivalent to

min
ηk:k/∈A

µ
∑
k/∈A

∇kf(c)ηk

s.t.
∑
k/∈A

|ηk| ≤ min{
√
C1, C2}

which is a linear objective subject to a convex set and thus always has solution that lies on the corner
point with only one non-zero coordinate ηj∗ , which then gives the same minimum as (27).

7.2 Proof for Lemma 1

Since supp(c∗) = A∗, and c∗ is optimal when restricted on the support, we have 〈η, c∗〉 = 0 for
some η ∈ ∂F (c∗). And since F (c) is strongly convex on the support A∗ with parameter β, we have

F (0)− F (c∗) = F (0)− F (c∗)− 〈η, 0− c∗〉

≥ β

2
‖c∗ − 0‖22,

which gives us

‖c∗‖22 ≤
2(F (0)− F (c∗))

β
.

Combining above with the fact for any c, ‖c‖21 ≤ ‖c‖0‖c‖22, we obtain the result.
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7.3 Proof for Theorem 2

Lemma 3. Let r(W ) and rN (W ) be the risk (2) and the empirical risk respectively, we have

sup
W∈RK×D:‖W‖F≤R

|r(W )− rN (W )|

≤

√
2DK log(4RKN)

N
+

1

N
log(

1

ρ
)

with probability 1− ρ.

Proof. Since minz∈{0,1}N
1
2 (y − zTWx)2 ≤ |y|2 ≤ 1 for a given W , by Hoeffding inequality,

P (|rN (W )− r(W )| ≥ ε)
≤ exp(−2Nε2).

Let N (δ) be a δ-covering of the setW := {W ∈ RK×D | ‖W‖F ≤ R} with |N (δ)| ≤
(

4R
δ

)DK
.

Then for any W ∈ W , we have W̃ ∈ N (δ) with ‖W − W̃‖ ≤ δ. Applying a union bound, we have

P

(
sup

W̃∈N (δ)

|rN (W̃ )− r(W̃ )| ≥ ε
)

≤
(

4R

δ

)DK
exp(−2Nε2).

(24)

Then for ∆W := W − W̃ satisfying ‖∆W‖ ≤ δ, we can bound the difference of square loss of W
and W̃ by

min
z∈{0,1}K

1

2
(y − zTWx)2 − min

z∈{0,1}K
1

2
(y − zTW̃x)2

≤ 1

2
(y − z̃TWx)2 − 1

2
(y − z̃TW̃x)2

≤ ‖∆W‖F ‖z̃‖+ 2R‖z̃‖2‖∆W‖F ≤ 3RKε

(25)

where z̃ = argminz∈{0,1}K
1
2 (y − zTWx)2 and we used the fact that ‖x‖ ≤ 1 and |y| ≤ 1. By

symmetry, we have∣∣∣∣ min
z∈{0,1}K

1

2
(y − zTW̃x)2 − min

z∈{0,1}K
1

2
(y − zTWx)2

∣∣∣∣ ≤ 3RKε

. Combining (24) with (25), we have

sup
W∈W

|rN (W )− rN (W )|

≤ 6RKδ +

√
DK

2N
log(

4R

δ
) +

1

2N
log(

1

ρ
).

(26)

with probability 1− ρ. Setting δ = 1/(6RK
√
N) and apply Jennen’s inequality gives the result.

Then the following gives the proof for Theorem 2.

Proof. Let z̄i = argminzi∈{0,1}K (yi − zTi W̄xi)2 for i ∈ [N ]. Denote Z̄ as the N ×K matrix
stacked from (z̄Ti )Ni=1. Let {z̄k}Kk=1 be the columns of Z̄ and Ā be the indexes of atoms in the atomic
set (5) that have the same 0-1 patterns to those columns. Denote c̄ as the coefficient vector with
c̄k = 1 for k ∈ Ā and c̄k = 0 for k /∈ Ā. By the definition of F (c), we have

F (c̄) ≤ rN (W̄ ) +
τ

2
‖W̄‖2F + λ‖c̄‖1. (27)
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where rN (W̄ ) := 1
2N

∑N
i=1 minz∈{0,1}K (yi − zTW̄xi)2 is the empirical risk of W̄ . Let c∗ :=

argminc:supp(c)=Ā F (c). We have F (c∗) ≤ F (c̄). Then from (18),

F (ĉ)− F (c̄) ≤ F (ĉ)− F (c∗) ≤ 4γK

βµ2

(
1

T

)
+

2(1− µ)λ

µ

√
2K

β
. (28)

In addition, the risk of Ŵ satisfies

rN (Ŵ ) +
τ

2
‖Ŵ‖2F + λ‖ĉ‖1 ≤ F (ĉ) (29)

by the definition of the empirical risk rN (.) (since it is minimized w.r.t. the hidden assignments).
Combining (27), (28) and (29), we obtain a bound on the difference of empirical risk

rN (Ŵ )− rN (W̄ )

≤ τ

2
‖W̄‖2 + λK︸ ︷︷ ︸

bias of regularization

+
4γK

βµ2

(
1

T

)
+

2(1− µ)λ

µ

√
2K

β︸ ︷︷ ︸
optimization error

(30)

The remaining task is to bound the estimation error |r(W )− rN (W )|. Since Algorithm 1 is a descent
algorithm w.r.t. F (c) and in the beginning F (0) ≤ 1/2, we have ‖c‖1 ≤ 1/λ and ‖W‖2 ≤ 1/τ

at any iterate. Then we can bound the estimation error by Lemma 3 for Ŵ belonging to the set
W(T ) := {Ŵ ∈ RT×D | ‖Ŵ‖F ≤

√
1/λτ}, giving

|r(Ŵ )− rN (Ŵ )| ≤

√
2DT log(4TN/

√
λτ)

N
+

1

N
log(

1

ρ
). (31)

Combining (30) and (31), and choosing λ = 1/(NK), τ = 1/(NR2), we obtain r(Ŵ )− r(W̄ ) ≤ ε
with T ≥ 4γ

µ2β (Kε ), and N ≥ DT
ε2 (2 log(4RKT

ε ) + log( 1
ρ )) for any 0 < ε < 1.
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