Supplementary Materials: Stochastic Primal-Dual
Method for Empirical Risk Minimization with O(1)
Per-Iteration Complexity

Conghui Tan* Tong Zhang
The Chinese University of Hong Kong Tencent Al Lab
chtan@se.cuhk.edu.hk tongzhang@tongzhang-ml.org
Shigian Ma Ji Liu
University of California, Davis Tencent AI Lab, University of Rochester
sgqma@math.ucdavis.edu ji.liu.uwisc@gmail.com

1 Proofs

Lemma 4. If ¢ : R — R is L-Lipschitz continuous, then {y € R|¢*(y) < oo} C [-L, L].

Proof. In this proof, we will first show that if y > L, then ¢*(y) = oc. By the Lipschitz continuity,
we have

¢(z) < ¢(0) + Llz|.

Plug it into the definition of convex conjugate (@), we can obtain
¢"(y) = sup{y - = —é(x)} = sup{y - & — Llz|} — 6(0).
xR z€R

Since y > L, we can always let (y -  — L|xz|) goes to infinity by set z — +oco0, which means
¢*(y) = oo. And the proof for the case y < —L is similar. O

1.1 Proofs Concerning Algorithm I]

In this part, we will use
ft = {i03j07 PRI 7it—1,jt—1}

to denote all the random variables generated before iteration ¢. And for simplicity, we will denote
ANOED A
i=1

The following lemma is the key to prove both Theorem [I]and Theorem 2}

Lemma 5. Consider t-th iteration of Algorithm Assume g(x) is p-strongly convex (i > 0, and
w = 0 means general convexity), and all ¢; are (1/~y)-smooth (v > 0). When conditioned on F, it
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holds that
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>F(at,y) - F(a,y") — nD*R> — "0 H7
n

d- [E[g(z"N|F] - g(")] +E [¢" ("I F] — ¢ (1) (13)
foranyx € X andy €Y.

Proof. Here we define two “imaginary” iterates z'* and y'* in the following way:

/

‘t :proxntq ( t‘ - T/ta/itjyft) Vj € [d]7
y. _prOX(‘rt/d)(b* (yt — Tta”tx§ ) Vi € [TL]

t+1

Note that 2/ "' = #/f when j = ji, and 2*! = 2, otherwise. And /™' = y/' when i = i;, while

yiT! =yl when i # 4.

For each j € [d], due to (a + b)? — a? — b* = 2a - b, we have

(0 = 3)? = (af = 2)* = (& — )2 = 20} ~ &) - @] — )

for any x; € X;. By the definition of x’ ! and the optimality condition of the proximal subproblem,
there must exist a subgradient s € 5gj( ') + 0l x, («}) such that

ot .
LTy =T;— Utaztgyit D
where 1 X; is the indicator function of set X, i.e.,

ﬂx(x):{ 0, ifr e X,

+00, ifx ¢ X.
Plug in this fact into the previous equality, we have
(:E§ —x;)? — (x;t —z;)? — (xé — x;-t)2 =2ny(ai, i, + ) (:c;t —z;).

Since g(z) is p-strongly convex, and also because of the separable assumption (2), we know that
each g;(x;) is also u-strongly convex. Then we apply strong convexity to subgradient s:

(z} —25)® — (¢ —25)* — («f — 2ff)?
=2(ai9;, + 5) - (¢ — ;)

U
>2mai, 55, - (@ — x5) + 2m, {gy( ) —g4(x;) + §($}t —z;)° + 1x, (=) — 1x, (%‘)} :

Since z'* and z are always feasible by definition, thus 1y, (z) = 1x,(z;) = 0. As aresult,

(0 —)? — (alf = 2,7 — (ay — )2
>mayl, - (@ — ) + 20 g (@f) — g (xy) + () —
Z2Nt iy 5Y;, - Ty €5 Nt 195\ g](x1)+ 2(1:] x])
*277taz,jyu (z ; —z;) + 277taif,jy¢t : (xzt - x;) + 2m¢[g; (x/t) g5(x;)] + ntﬂ( - x])z

2
>2mai, s, - (@ — x5) — 207 (aiui,)” — 5 (@5 — 2% + 2mlg; (=) — g5 ()] + men(af — z5)?,

where the last line is due to Cauchy-Schwarz inequality. By cancelling term (1/2)(z} — /)% on
both sides, and note that

1 . 1
stot = e = > min {2} 0



we can further rewrite the above inequality as

e 1
(]. — min {27 4}) (.’E; — x])2 _ (x;t _ $])2

2
>2mai, s, - (@ — x5) — 207 (@i, ut,) " + 2mlg; () — gj(x5)].

We can bound the second term on the right-hand-side by (a;,;jy;,)* < L*a;, ; because of Lemma
and we divide both sides by 27, then we obtain

2m
(14)
;"H takes value 2/ with
probability 1/d, and z% otherwise. Hence, by conditioning on F; £ F, U {i;}, we always have
1 d—1
=9 (=) + ng($§-),
d—1
d

Put these relationships into (I4), when conditioned on F, we obtain:

LI I R— (2} — 2)® = E [(a} — 2;)?|F/]
(- {%5}) |

Even though x;-t depends on i, it is independent of j;. We observe that x

E [g;(25")|7]

1
E [[laf* — 2| F] =g||év}t —z|* +

2
§ 25 — ;1%

2,
>ai, 5yt - (2f — x5) + d - E [g; (x| F] = (d = 1)g;(a}) — g;(x;) — neLPai ;.
We sum this inequality from j = 1 to j = d, and finally obtain:
d 1
A
d d
> ai gy, (@ = 2) +d-E g F] - (d—1)g(z") — g(z) —mL* ) _a,
j=1 Jj=1

d
> aigyh, - (2 —x) +d-E g )|F] - (d - 1)g(z") — g(x) — mL*R?,
j=1

where the last inequality is due to the definition R = max; ||a;||. Now, we further take expectation
with respect to ;:

d e 1
g | (1 {50 3 1 ol -2 7 i)

>y TAG! —2) + d-E [l )| F] ~ (d - Dgla) — g(a) ~ IR (5)

On the other hand, due to the symmetric nature of Algorithm and noticing (1/-y)-smoothness of ¢;
implies -strong convexity of ¢}, we can derive similar inequality for y**1:

n . [y 1 . ) 1 )
= (1= Ty L _ K B =
27, K mm{ 2d’4}> ly" = yll* = B [lly"™** =yl t]]

1 n n—1 1 7.D?R"?
> ot A t Z R [o* t+1 - LY A L
25y —y) Azt + 2 B o"(y")IF] - —— " () = 56°(v) T
or equivalently,
d T t o2 t+1 2
(1w {1 ) ot = ol —E - Pl
1 . n—1, 1, 7 D?*R"?
>y~ y) A+ E [¢"(y)IF] - =" (y) - ~¢"(y) -

1 . 1
o | (1 {2 S 08 =200 = 0 = 092 2 sl (ad 0y a5 )2
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Let us add this inequality with (T3):

2n

(SO

[l = 2)17] ] +

d cmy 1 :
o (1w {4} It =2 = B [l - w1217

1
:7ytTA($t
n

LE [ (|A] - 2

= EyTAxt +g(a") - iaﬁ*(y)} - Ey”x‘lx +9(z) - i¢*(yt)} - nL*R? —

1
*(y') — ~¢"(y) - nL*R? —

7+ y —y)Ax 4 dE g )IF] - (d - Do) — g(a)

,,,]tD2R/2
n

+d- [IE [g(zt+1)|]_—t] 7g(xt)] +E [¢*(yt+1)|]:t] 7¢*(yt)

:F('rt7y) - F(I, yt) - TltL2R2 -

0 D2 R/2

+d- [IE [g(zt+1)|f_-t] 7g(mt)] +E [¢*(yt+1)|}—t] 7¢*(yt)’

which is our desired result.

Lemma 6. Under same assumption as Lemma[3] it holds that

~
|

) [(1 — min {%,% ) |zt —z||? — ||zt — x||2]

N

+
Nt

SE[( - min {2, 1) Iyt —yl? — 't -yl

2d 4

N

for Algorithml]]

Tt

T-1

T-—1
Fl(z, — L?R? Z N — DPR™ > .

t=0

ntDZRIZ

(16)

Proof. By summing up inequality (13) from ¢ = 0 to ¢t = T — 1, and applying the law of total

expectation, we have

= E[(1—min {2 1) 2 — 2] — 2+ — 2]

Mt

—min {53, 1}) ly* — > — lly""* —y)?]

d.
2
t=0
d —E[1
+35-
t=0
T-1
>Y E[F(a',y) -
t=0
T-1
+d S E [g(att)
t=0
T-1

Tt
T-1 T-1
D2Rl2
F(z, ﬁﬁZm 7
t=0
T-1
_|_ ]E t+1 ¢* (yt)]
t=0
T-1 T-1
D2R12
F(z, HﬁZm 7
t=0

)] +E [¢*(y" )—¢*(y°)]-
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Recall that 2° and 3 satisfy ° = argmin, .y g(x) and y° = argmin, ¢y ¢*(y), which means
g9(z™) — g(z°) = 0and ¢*(y") — ¢*(y°) > 0. Hence,

d Ti E [(1 — min {%, 1) 2t — 2% — [|lz**! — 2]
2 Up

=0
d TR - min {30 Iy - ol — v -yl
2

ﬂ.

+
t=0 Tt
T—-1 T—-1 D2R/2 T—1
zZE ty) — Fl(x, deQRQZ n — Zrt. (17)
t=0 t=0

Besides, we use the definition of Z7 and gT, along with the convexity-concavity of F'(x,y), we can
obtain

T-E [F(*%Tay) - F(magT):I < ZE [F(xtay) - F(Q?,yt)] .
Now we can complete the proof by combining this fact with (T7). O
Now, we are ready to prove Theorem T}

Proof of Theorem[I} Lemmal6|can be applied here with ;1 = 0 and v = 0. Let us first bound the
term on the left-hand-side of :

T-1
E [[la* — 2|® — 2! — |]?]

2 "
Lt —xn2+z (L L) e e e -

1 — 1 1
<— .4D%*+ Z ( - ) 4D?
Mo N Me—1

- 4D?
nr-1

by the boundness assumption of X, along with the fact sequence {7} is non-increasing. By applying
Lemma@again, we know that||y’ — y||> < 2nL?, and hence we can similarly show that

E [[|l=" — 2]

— Iy —yl?] _ 4nL?

T-1 t 2
3 E[[ly* -yl . .
Tt TT-1

t=0

Combine all these facts into (T6)), one can obtain

. X 2dD?  2ndL? = ppr’X
T-E[F@@"y) — F(z,9")] < + T+ LR*Y m+ 7.
ir-1 7T-1 t=0 [ —

Divide both sides by 7', and then take supremum with respecttox € X andy € Y:

E[G(", "))

= sup E[F@",y) - F(z,9")]
zeX,yeY

2dD2 [nr—1 +2ndL? rr_y + LPR2 S e + (D2R2 /) S
T )

and the theorem can be proven by plug the values of {7} and {7;} into this inequality. O

We are ready to prove Theorem 2}



Proof of Theorem 2] Again, we need to apply Lemma [6|here. The first term on the left-hand-side of
(T6) can be bounded in the following way:

S E[(1—min {2 1) ot — z)? — |2t - 2]
t=0 Nt

_ . oK _ nepe
:1 min {3 ’4} x|2+z<1 mm{ i _ 1>E[”xt_$|2]_n1 E[HxT
1

Mo

T—1
1 1 1 3 1

<— 2 —2|]® + max{——7— }E ot — x|
" | [ E m me 2 [l %]

1

<—-|a® —x|\2+ZO [|l2* — (]
o

Si'DQa
o

where the third equality follows from our choices of {7}, and the last inequality is due to boudness
assumption again. Similarly, we can derive the bound

Tz_:l E[(1-min{Z, 1}) ly" —vl* =y —y|?] < 4nL?
T T

t=0

Combine these two bounds into (I6)) and then take supremum with respect to x and y, we can finally
obtain:

2dD? /o + 2ndL? /70 + L*R2 S e + (D2R2/n) Yo 7
= )
We can finish the proof by plug the values of {»;} and {;}. 0

E[G",5")] <

- z||?]



1.2 Proofs Concerning Algorithm 2]

Again, we use

‘Ft = {io, i()ujOaj(l)a s ait—lv i;ﬁ—lv.jt—lajg—l}
to denote all the random variables generated before iteration ¢. We use the following notation to
denote the variance-reduced gradients used in our al goritth'

t t k
V:I:,j - a’i;j(yi’ ) + Gm 70
t k
Vyﬂ. = aijg(frj/ 517 /) +Gy27

Vg,j = aitj(yit - yit) +GE T
Vi = ay, (&b, — 35 )+ Gl .
Besides, we will also define two “imaginary” iterates z'* and y'*:
af =prox, . (zf —nVL;) Vjeld],
yit =ProX(r /44 (yZ Tvy Z) Vi € [n].
Obviously, Z4 = 2/} when j = j; and §; = y;* when i = i;. A key observation here is that each =’}

only depends on 7, when conditioned on F;, and it is independent of 4, j; and j;. Similarly, y/* is
also independent of i, j; and 7.

First, let us develop a bound for the gradient variance:
Lemma 7. Algorithm[2]has the following bounds for its gradient variance:
SR?
t 2 t_ —t)2

— |y — —E — 18

——ly' =y’ + —-Elly' - g'I*17] (8
8R? - 12R"? SR'?
e = B et P+

E[(vt _v/t ) ]_‘]<%H _~k 2+
T,jt | t] = nd y—-vy ||

T, jt

[(vt _v/t ) |]:t} S

Yyt Yyt

E [l - 2"I*17] (9)
foranyx € X andy €Y.

Proof. Just by definition of V, ; and V’;

e
(Ve = V230 = [ (= 7) — i (5L, — 7))
<2a3; (viy — 93;)° + 243, (5, — 91,)°

<28, (20, — wi)? + 20 — 7))

i [2(55 —vi,)” +2(yi, — 275,,)2]
S2a12;jt :2(%‘; - 952)2 +2(yi — ?32)2:
+2a7 5, 2008 —vi)® + 4(vs, — 4},)? + 4y, — 5,)%]
=243, '2(%; —yi)” + 2y, — ﬂf)2

+2a7, 5, [205 — yi)® + 4lyi, —vi)? +H4lly' =717 (20)
where the last line is due to the fact that ¢ and ¢ only differ in coordinate ¢;. In the next, we will
take expectation. Since i} and j; are independent then

and repeatedly using (a + b)? < 2a? + 2b%, we have

E|: t]t(ylt ‘ft] - |: t |: i Jt:| yzt t$)2|ft:|
a;,||?
[” =y~ m}
R2
T E e -7
d (yir — 4 ) | F
R
—lly =y
And we can bound other terms in (20) similarly, then we obtain (T8)). The proof for variance bound
(T9) is analogous. O



The following lemma is the key to prove the convergence of SPD1-VR:

Lemma 8. Assume g(x) is u-strongly convex, and all ¢; is (1/v)-smooth, then by conditioning on
Fy, it holds that

1 nu  12Rnr . 9 i1 9 1 8nyrR”? _
—E 1-1F _ +1 _ B e At t_ 5t))2
B[ (1 2+ 2 ot ol — =l - (5 - ) ot - o P

1 ™ . 12R*nT ¢ 2 t+1 2 1 8yrR? t_ )2
+ o8| (1 2+ Iy - gl -+ - ol (5 - 255 ) bt - 171

4TR?
\2 - ank - CUH27

1 dnR*
> B[F@"y) = Fay")|F] = = —[l5" -yl
foranyz € X andy €Y.

Proof. First, by 2a - b = (a + b)? — a® — b2, we have the following two inequalities:

Q(xt _ jt)T(j't _ $t+1) — ||33t _ $t+1||2 _ ||l‘t+1 _ th2 _ ||.13t _ jt||2
and
22" — ™) (@ —2) = |2’ — 2f* — o — 2]® — [|l2* — 2"
for any € X. By adding these two inequality together, we have
lo" — 2|? = [l="** — 2 — la"*F = 2|7 - [|l=* — 2|
_2( t)T(l_t t+1) +2( t t+1)T<xt+1 _ x)
- _ 1
=2(xf, —5,) - (Z, — a5 ") + 22, — i) - (25— wj), @1

where the last line is because z* and z! only differs in coordinate j;, and similarly for z* and z'*!
According to the updating rules

i‘i = ProX;g,. ( -V, Jt)

t+1 1t
T T = prox, nV Jt),

Jt N5t ( Jt

and the optimality condition of the proximal mapping subproblem, there must exist s € Jg;, (f;t) +

Olx,, (z5,) and s" € Agj, (z'1) + 01 x , (« t“) such that
=t t
x]t - nV z,je S,
t+1 t
Tj, = mjt - nvajt - 778 ’
where 17(z) is the indicator function of convex set Z, which takes value 0 when z € Z, while

1z(z) = 400 when z ¢ Z. Combine these facts into (2I)), one can obtain:

t+1 $||2 _ H t+1 —t||2 t thQ

" = a|® — [l — |

=2ns- (2}, — i)+ 2ns" - (@i —aj,) + 29V, - (&), — 2T + 2V (@ — ).

Because of the separable assumption (2)), u-strongly convex of g(x) implies u-strongly convex of
every component function g;(z;). Now we apply the convexity of indicator function 1x, (z;,) and

the strong convexity of g;, (x;,), and further observe that all of ', z'*! and x are always feasible,

which mean 1x, (z%,) = 1x,, (/") = 1x,, (;,) = 0, and have
o = alP = a1 a? — et — &' = ot — &'
>2n (93, (@,) — g5, (@5 + S (a4, — 2] + 20 [g3, @) = i) + S (5 — )]
+ 2V - (@, =) 2V (T =)
=21 {gjt (5,) = gj(x5) + g(fi — )+ %(wﬁ-fl - v’ffjt)ﬂ
+2nVE e (f;t — xéj‘l) + 2V e (xﬁj‘l —xj,)
> {gjt (Z%,) — g5, (x5,) + %(i’zt - xjt)z} +2mVL - (Z, — x;jl) +20Vi - (x;jl —zj,),



where inequality a® + b2 > (1/2)(a + b)? is used in the second inequality. When nu < 1, it holds
that

1
St =217+ @, — )’ 2 St 707+ (@, — )’ 2 U (ah, )

DN =

As a result, we have

foal? = S, )

>2n [9;,(75,) — 9. (x5.)] + 20V5, 5, - (25, —
:277 [gjt (i‘ét) - g]t( t)] + an/tﬂt : (iét - xjt) + 27] (vt T,Jt - Vlt,]t) ’ (7.§t - 'r;j_l)

[95.(z5,) ) (75

t

2 _ ||$t+1 th—i—l _ ‘ftHQ t ‘ftHQ

1
— 3l - — 5l

e+ 2mVE g (2 — ag,)

Jt

— Gy, (x]f + QUV;:], (Z T xjt) (vtm gt Vg‘/]t) - (‘f;t - x;j1)2

>277 [gjt(it ) — G5, (xjt)] + ang]t : (jjt - mjt) (Vt T,5: v;tjt) - H‘fiL -

where Cauchy-Schwarz inequality is used in the second 1nequa11ty After cancelling term ||z ™! — 7
on both sides, we finally obtain

e 2
LE||2 4 ( Lj, _xjt) - ”xt+1 _:L'”2 HiL’ -z

t+1||2
t||2
[ 7|2

>277 [gjt( ;t) — 95, (xjt)] + 277Vggt : (7jt xjt) (vivtjt - vt ’Jt)

*277 [gjf( ; ) 93 (:L'jt)] + 277aif,jtyit ! (xjt - xjt) - 277 (aitjtyzf ngf) ( ;i xjt) n (v;tjf - Vtx jf)z
n

1t

=20 [g;, («7,) — gj. (%)) + 2nai,5,95; - (x5, — 25.) — 20 (@i 5,95 — Vag,) - (@] —25,) —
where in the last line we replaced 7%, by z7/, and 7}, by y;’.

z,Jt

Similarly, we can derive an analogous bound for dual variable y:

t 2 TV t+1 SR ST
ly* — =||* - 4d(yh—y“) — Iy = ull® = 5l -7l
2r -, ”
:g [(bzt (y;f) - d)it (ylt)] + 27—alt]t jt (ylt - yzt) 27 (altjt ]t V{qt zt) ' (ylt - y:i) (V{gt [P vi; it
After diving them by 21 and 27 respectively, we add the above two 1nequa11tles together:
1
- [l = ol = 22 af, = )" = ol = Lot~ 2P|
1 t 2 TVt 2 t+1 2 t_ —ty2
4o (It = ol = 0k = ) = I = = 1~ ')

=95, (1) = 95, (x5.) = ai,j,yir - w5, + @i g2 - yi, + é (67, (wi') — &5, (vi,)]
- (aitjtyu V/tm) (z .;tt - ;) = (ai,;,2f Zjy v;jzt) (i, — ?Jif)
— (Vs = Vi) = 5 (Vi = Vi) (22)
Now, we need to take conditional expectation of this inequality, by conditioning on ;. First, since
both 2/ and y;" are independent of both i; and j; for any i € [n] and j € [d]. Thus,

E [g;, () = gj, ;)| Ft] = ZE 9i(«}) = g;(z;)|Fe] = %E l9(") — g(2)| 7],

E (67, () — 05, ()P = - S E [60) - 6wl ] = LB [6°(") - 6" W)l

[V

n d
1 1
B s 5378 = 5 33 B fyayi] = g [T ).

1 & 1
E [a;,5,25, vl Fi] = — > Y Elayajy] = —E[y" A2"].

(v/t vt Z,Jt ) ’

)’



1t
z,j, and Vi, . we have

E [(aitjtyw v/tw) : ( ;tf - xjt)|}—t]
[(aitﬂjtgu G’; ]f) ( ;i 'Tjt)|‘/—_.t:|
=E [Eit [ait’jtgu G:Iz’ jt] ’ ( ,/Jtt - :U.jt)lj:t:l
[0- (2 —;,)|F] =0,

Jt

Second, by using the definition of V'’

and similarly
E [(alt.]t L, v;t“) . (yit - y;f)|]:t} =0
Finally, observe that

1
E|(af, —2;,)’| 7] = Slla" — o],

Jt
1
E [(yft - yit)2’f—t:| = EHyt - y||27

because both z* and z is deterministic when conditioned F;. By putting all these facts back into (22)),
we can get:

1
S | (1= 2 et = af? - ! = ol - 3lat - P

1 1

2E[( )Hy — ol = 1= P = 3l - 9117
1 1 1
E -E [ - ny/tTAil? + EyTAx/t + ” [d’*(y/t) - d)*(y)] “Ft:|

77 T

2 {(Vlft]f - v; ]f) |}—t:| - 7E [(V;Jtlf - v; 7«1) |‘Ft}
1
d ‘E [F(.’E,t,y) - F(wvy,t)|]:t} -3 [(VQJf - VE? jt) ‘fti| - %]E |:(V;tzt - vgt; u) |ft:| .

Now, we apply Lemma [7]to bound the variance terms, and rearrange terms, then get

1 12R"?nr 1 8nrR™
_E 1_7 t_ 12 et g2 2 2y t_ St)2
T [( g ) ot = al)” = |l = a? = (5 = = ) lla* —2*|*| %,

1 ™y 12R*pTY 9 . 1 8777'R ~
R o RTT S T R t )2
+ 5 K d T g ) =l =y y 5 ly* = 3'11%| Fe

1 4nR? ATR?
2L B [Pa ) - Py R - g - T e

‘ 2

)

which is the desired result. O
Now, we are ready to prove Theorem 3}

Proof of Theorem[3} First, we apply Lemma and set (z,y) = («*,y*), we can get

%E [(1 B % N 1217;2777') ot — 2*|2 — [ttt — 2*|? — (; _ 877TnR’2) ot — 5| ]_—t]
w o] (1- 2+ I ey - o (- ) i - 1P|
S RGN oy i L S
> g T e eS

where F(z,y*) — F(z*,y) > Oforany x € X andy € Y is a property of the optimal solution
(z*,y*) of saddle point problems.
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In the next, we will bound the coefficients in (23) respectively. Because of our choice of step sizes,
we have

o . [ dr ni . [ nK o onp . [ dek nK
T = g M {M 1} “Taspe M {cm 1} = guigege M0 {m an ) Y
Since min{a, !} < 1 for any a > 0, this equality implies

1
2k

1 8yrR% _ 1 nyp 1 1 1 8nyTR?
_ > -~ _ > -
3 gy =0 and 5 -

2 d — 2 2l4Rr?

>1 >0
72 -

where the definition of  and ' along with the assumptions < > 1 and " > 1 are used. Besides, also
from (24) we can know:

4nR? Vit . [ de nK 1 . [ ds nK 1
nd  22dRZ.7 0 {nn” dn} T oty {nn” d/<;} “2R2max{nk',dk} - T
_ 1
S22 g

where we denote 7 = max{nx’, dx} for simplicity, and similarly we can show that

4T R"? 1
nd — 22m.n’

Furthermore, observe that

np 12R®nTpm - 48R"?1
4d nd  4d

nuy
_pm (48 e
T 4d 128 dr’
STE 5

=4d 8

TS M LA
“oizgrz M\

5 amd
Toizg, M e
5
S 2124

and

Ty 12R?nT S 5
4nd nd T 212m’

Combining all these facts into (23), and rearranging terms, we can get the recursive relationship:

41 w2 1|2
E [le call gy 1 il ’ft]
n T
R N O P OO oy O A
- 212m n T 21m 7 T
5 =" —2*|* lly* —o*|? 1
=(1—- Ay,
( 212m) [ n + T * oLy, =k
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Now, we recursively apply this inequality, and use the law of total expectation, we can finally obtain:

E[Ag4]
r [II%T il R il y*lq
n T
5 [t 7t 7 1
<l1- E -A
- < 212m) [ n + T oty o
S..

T T—1 t
5 20 —=*[]* | |ly® —y* | 1 5
<[(1- . 1——— | A
- < 212m) { n + T + 211, ; 212, k

B 5 \" 1 1-[1-5/22m)7T
- <1 - 212m) R TI [1—5/(212m)] Bk

5 \" 2
<(1—-—— -A = Ayg.
_< 212m) k+5 k

Therefore, to finish the proof, we only need to make sure (1 — 5/(4096m))” < 1/5, which can be
guaranteed if choosing some large enough T' > ©(m) = O(max{dk,nx'}). O

12



colon-cancer gisette rcvl.binary

10°

—— SPD1
SPD1-VR

—— PSGD

—— SVRG

1071
1071
1072
1072 10-3
1074
-3
10 10-%
— sPD1
SPD1-VR
— PSGD
— SVRG

—— SPD1
SPD1-VR

—— PSGD

—— SVRG

10-¢ 10-°

1077

107

108

0 20 40 60

#Pass through data

80 20 40 60

#Pass through data

80 100 10 20 30

#Pass throuah data

40 50

Figure 3: Numerical results on the problem of squared-hinge loss SVM. The y-axis is primal
sub-optimality.

2 Extra Numerical Experiments

In this part, we will show some extra experiment results. The experiment setting is basically same to
Section[5] The only difference is that we change the model to support vector machine (SVM) with
squared-hinge loss, i.e.,

#i(u) = max{0,1 — bu}?

where b; € {£1} is the class label. Note that the corresponding conjugate function is

) ={

whose proximal mapping has simple closed-form solution, and does not need to be solved iteratively.

2
00,

if by <0,
if by > 0,

The results are shown in Figure 3] The performance of all methods are similar to that in Section [5}

Besides, we further report the running time of all methods in Table[2] We can observe that SPD1 and
SPD1-VR takes longer time than SGD and SVRG for each pass of data. We think there are mainly
two reasons which result in such phenomenon: 1) SPD1 and SPD1-VR involves much more loops,
which may incur computation overhead (our codes are written in Julia), while the updates of SGD
and SVRG can be implemented in vector forms, and the vector operations are conducted by some
highly-optimized computation libraries like OpenBLAS; 2) sampling only one scalar from the data
matrix each time is cache-unfriendly for computers. However, we believe these two issues can be
solved. For example, the former issue can be tackled by using faster programming languages like
C/C++. While for the latter one, one possible way to solve it is adopting mini-batch versions of SPD1
and SPD1-VR, which sample a batch of continuous coordinates instead of just one in each iteration.

Table 2: Running time required by different methods for one pass of data (in seconds)

Methods | colon-cancer | gisette | rcvl.binary
SPD1 0.012 2.70 128.4

SPD1-VR 0.013 3.62 105.5
SGD 0.006 1.07 34.8
SVRG 0.006 1.37 45.1
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