
Supplementary Material

In this section, we provide additional details of derivations and experimental results presented in the
paper.

A Signal propagation in noise regularised neural networks

To review, given an input x0 ∈ RD0 , we consider the following noisy random network model

h̃l =W l(xl−1 � εl−1) + bl, spa for l = 1, ..., L (12)
where we inject noise into the model using the operator � to denote either addition or multiplication.
The vector εl is an input noise vector, sampled from a pre-specified noise distribution. For additive
noise, the distribution is assumed to be zero mean. Whereas for multiplicative noise distributions, the
mean is assumed to be equal to one. The weights W l ∈ RDl×Dl−1 and biases bl ∈ RDl are sampled
i.i.d. from zero mean Gaussian distributions with variances σ2

w/Dl−1 and σ2
b , respectively, where

Dl denotes the dimensionality of the lth hidden layer in the network. The hidden layer activations
xl = φ(h̃l) are computed element-wise using an activation function φ(·), for layers l = 1, ..., L.

A.1 Single input signal propagation

We consider the network’s behavior at initialisation. In this setting, the expected mean (over the
weights, biases and noise distribution) of a unit in the pre-activations h̃lj for a single signal passing
through the network will be zero with variance

q̃l = Ew,b,ε[(h̃
l
j)

2]

= Ew,ε[{wl,j · (xl−1j � εl−1j )}2] + Eb[(b
l
j)

2]

= σ2
w

1

Dl−1

Dl−1∑
j=1

[
φ(h̃l−1j )2 � Eε[(εl−1j )2]

]
+ σ2

b ,

where we use wl,j to denote the j-th row of W l. The second last line relies on the bias distribution
being zero mean, while the final step makes use of the independence between the inputs and the
noise in the multiplicative case, and the noise being zero mean in the additive case. Furthermore, to
ensure the expected value of the pre-activations remain unbiased, we only consider additive noise
distributions with zero mean and multiplicative noise distributions with a mean equal to one. As in
Poole et al. (2016), we make the self averaging assumption and consider the large layer width case
where the previous layer’s pre-activations are assumed to be Gaussian with zero mean and variance
q̃l−1. This gives the following noisy variance map

q̃l = σ2
w

{
Ez
[
φ
(√

q̃l−1z
)2]
� µl−12

}
+ σ2

b , (13)

where z ∼ N (0, 1) and µl2 = Eε[(εl)2] is the second moment of the noise distribution being sampled
from at layer l. The initial input variance is given by q0 = 1

D0
x0 · x0.

A.2 Two input signal propagation

To study the behaviour of a pair of signals, x0,a and x0,b, passing through the network, we can
compute the covariance in expectation over the noise and the parameters as

q̃lab = Ew,b,ε[h̃
l,a
j h̃l,bj ]

= Ew,b,ε

[(
wl,j · (xl−1,aj � εl−1,aj ) + blj

)(
wl,j · (xl−1,bj � εl−1,bj ) + blj

)]
= Ew,b,ε

[(
wl,j · (xl−1,aj � εl−1,aj )

)(
wl,j · (xl−1,bj � εl−1,bj )

)]
white+ Ew,b,ε

[(
wl,j · (xl−1,aj � εl−1,aj )

)
blj

]
white+ Ew,b,ε

[(
wl,j · (xl−1,bj � εl−1,bj )

)
blj

]
white+ Ew,b,ε

[
(blj)

2
]
.
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Since the noise is i.i.d and we have that Eb[b
l
j ] = 0, we find that

q̃lab = Ew

[(
wl,j · xl−1,aj

)(
wl,j · xl−1,bj

)]
+ Eb

[
(blj)

2
]

(14)

= σ2
w

1

Dl−1

Dl−1∑
j=1

[
φ
(
h̃l−1,aj

)
φ
(
h̃l−1,bj

)]
+ σ2

b , (15)

which in the large width limit becomes

q̃lab = σ2
wEz1 [Ez2 [φ(ũ1)φ(ũ2)]] + σ2

b (16)

where ũ1 =
√
q̃l−1aa z1 and ũ2 =

√
q̃l−1bb

[
c̃l−1z1 +

√
1− (c̃l−1)2z2

]
, with the correlation between

inputs at layer l given by

c̃l = q̃lab/
√
q̃laaq̃

l
bb. (17)

Here, zi ∼ N (0, 1) for i = 1, 2 and qlaa is the variance of h̃l,aj .

B Signal propagation in noise regularised ReLU networks

In this section, we give additional details of theoretical results presented in the paper that were
specifically derived for noisy ReLU networks.

B.1 Variance of input signals

Let f(z) = e−z
2/2

√
2π

, then the variance map in (13) using ReLU, i.e. φ(a) = max(0, a), becomes

q̃l = σ2
w

[∫ ∞
−∞

f(z)φ
(√

q̃l−1z
)2
dz

]
� µ2 + σ2

b

= σ2
w

[∫ 0

−∞
f(z)φ

(√
q̃l−1z

)2
dz +

∫ ∞
0

f(z)φ
(√

q̃l−1z
)2
dz

]
� µ2 + σ2

b

= σ2
w

[
q̃l−1

∫ ∞
0

f(z)z2dz

]
� µ2 + σ2

b

= σ2
w

[
q̃l−1

2
� µ2

]
+ σ2

b . (18)

B.2 Correlation between input signals

Assuming that the variance map in (18) is at its fixed point q̃∗, which exits only if σ2
w = 2

µ2
, the

correlation map in (16) for a noisy ReLU network is given by

c̃l =
2

µ2q̃∗

∫ ∞
−∞

∫ ∞
−∞

f(z1)f(z2)φ(ũ1)φ(ũ2)dz2dz1 + σ2
b (19)

where φ(a) = max(a, 0), f(zi) = e−z
2
i /2√
2π

, ũ1 =
√
q̃∗z1 and ũ2 =

√
q̃∗
[
c̃l−1z1 +

√
1− (c̃l−1)2z2

]
.

Note that

ũ1

{
≥ 0, if z1 > 0

< 0,Otherwise

ũ2

{
≥ 0, if z2 > −c̃l−1z1√

1−(c̃l−1)2

< 0,Otherwise
,

12



therefore (19) becomes

c̃l =
2

µ2q̃∗

∫ ∞
0

∫ ∞
−c̃l−1z1√
1−(c̃l−1)2

f(z1)f(z2)ũ1ũ2dz2dz1 + σ2
b

=
2

µ2q̃∗
σ2
w

∫ ∞
0

∫ ∞
−c̃l−1z1√
1−(c̃l−1)2

f(z1)f(z2)
√
q̃∗z1

√
q̃∗
[
c̃l−1z1 +

√
1− (c̃l−1)2z2

]
dz2dz1 + σ2

b

=
2c̃l−1

µ2

∫ ∞
0

∫ ∞
−c̃l−1z1√
1−(c̃l−1)2

f(z1)f(z2)z
2
1dz2dz1

addsomewhitespacehere+
2
√
1− (c̃l−1)2

µ2

∫ ∞
0

∫ ∞
−c̃l−1z1√
1−(c̃l−1)2

f(z1)f(z2)z1z2dz2dz1. (20)

The first term in (20) can then be written as

2c̃l−1

µ2


∫ ∞
0

∫ 0

−c̃l−1z1√
1−(c̃l−1)2

f(z1)f(z2)z
2
1dz2dz1 +

∫ ∞
0

∫ ∞
0

f(z1)f(z2)z
2
1dz2dz1

 . (21)

In (21), the first term inside the braces is given by∫ ∞
0

∫ 0

−c̃l−1z1√
1−(c̃l−1)2

f(z1)f(z2)z
2
1dz2dz1 =

1

2

∫ ∞
0

f(z1)z
2
1erf

(
c̃l−1z1√
1− (c̃l−1)

)
dz1

=
1

2π

[
c̃l−1

√
1− (c̃l−1)2 + tan−1

(
c̃l−1√

1− (c̃l−1)2

)]

=
1

2π

[
c̃l−1

√
1− (c̃l−1)2 + sin−1

(
c̃l−1

)]
(22)

with erf(a) = 1
π

∫ a
−a e

−t2dt. The second term inside the braces in (21) equals∫ ∞
0

∫ ∞
0

f(z1)f(z2)z
2
1dz2dz1 =

1

2

∫ ∞
0

f(z1)z
2
1dz1

=
1

4
. (23)

Therfore, (21) becomes

(c̃l−1)2

µ2π

√
1− (c̃l−1)2 +

c̃l−1

µ2π
sin−1

(
c̃l−1

)
+
c̃l−1

2µ2
(24)

Similarly, the second term in (20) can be split up as follows

2
√

1− (c̃l−1)2

µ2


∫ ∞
0

∫ 0

−c̃l−1z1√
1−(c̃l−1)2

f(z1)f(z2)z1z2dz2dz1 +

∫ ∞
0

∫ ∞
0

f(z1)f(z2)z1z2dz2dz1

 .

(25)

The first term inside the braces of (25) is∫ ∞
0

∫ 0

−c̃l−1z1√
1−(c̃l−1)2

f(z1)f(z2)z1z2dz2dz1 =
1√
2π

∫ ∞
0

f(z1)z1

[
e
− c̃l−1z21

2(1−(c̃l−1)2) − 1

]
dz1

=
1√
2π

{
1− (c̃l−1)2√

2π
− 1√

2π

}
= − (c̃l−1)2

2π
(26)
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and the second term is∫ ∞
0

∫ ∞
0

f(z1)f(z2)z1z2dz2dz1 =
1√
2π

∫ ∞
0

f(z1)z1dz1

=
1

2π
. (27)

Putting these two terms together, (25) becomes

− (c̃l−1)2

µ2π

√
1− (c̃l−1)2 +

1

µ2π

√
1− (c̃l−1)2. (28)

Finally, summing all the terms in (24) and (28) gives (19) as

c̃l =
1

µ2

{
c̃l−1sin−1

(
c̃l−1

)
+
√
1− (c̃l−1)2

π
+
c̃l−1

2

}
. (29)

We note that for the noiseless case, (29) is identical to the result recently obtained by Hayou et al.
(2018), where the authors used a slightly different approach.

B.3 Depth scales for trainability

We recap the result in Schoenholz et al. (2017) and adapt the derivation for the specific case of a
noisy ReLU network. Let cl = c∗ + εl, such that as long as liml→∞c

l = c∗ exist we have that ε→ 0
as l→∞. Then Schoenholz et al. (2017) derived the following asymptotic recurrence relation

εl+1 = εlχ(c∗) +O((εl)2), (30)

where

χ(c∗) = σ2
wEz1 [Ez2 [φ′(ũ∗1)φ′(ũ∗2)]] , (31)

with ũ∗1 = ũ1 =
√
q̃∗z1 and ũ∗2 =

√
q̃∗
[
c̃∗z1 +

√
1− (c̃∗)2z2

]
. Now, specifically for a noisy ReLU

network where σ2
w = 2

µ2
, we have that

χ(c∗) =
2

µ2

∫ ∞
−∞

∫ ∞
−∞

f(z1)f(z2)φ
′(ũ∗1)φ

′(ũ∗2)dz2dz1

=
2

µ2

∫ ∞
0

∫ ∞
− c∗z1√

1−(c∗)2

f(z1)f(z2)dz2dz1

=
2

µ2

∫ ∞
0

f(z1)
1

2

[
erf

(
c∗z1√

2
√

1− (c∗)2

)
+ 1

]
dz1

=
2

µ2

[
1

2π
tan−1

(
c∗√

1− (c∗)2

)
+

1

4

]

=
1

µ2π

[
sin−1 (c∗) +

π

2

]
(32)

Note that χ(c∗) is a constant, thus for large l the solution to the recurrence relation in (30) is expected
to be exponential, i.e. εl ∼ e−l/ξc . Here ξc, is considered the depth scale, which controls how deep
discriminatory information about the inputs can propagate through the network. We can then solve
for ξc to find

ξc = −1/ln(χ(c∗)) = −ln
[

sin−1 (c∗)
µ2π

+
1

2µ2

]−1
. (33)
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B.4 Variance of error signals

Under the mean field assumption, Schoenholz et al. (2017) approximates the error signal at layer l by
a zero mean Gaussian with variance

q̃lδ = q̃l+1
δ

Dl+1

Dl
σ2
wEz

[
φ′
(√

q̃lz
)2]

, (34)

where q̃lδ = E[(δ̃li)2], with δ̃li = φ′(h̃li)
∑Dl+1

j=1 δ̃l+1
j W l+1

ji . In our context, for a critically initialised
noisy ReLU network we have that

q̃lδ = q̃l+1
δ

Dl+1

Dl

2

µ2

∫ ∞
0

f(z)dz (35)

= q̃l+1
δ

Dl+1

Dl

1

µ2
. (36)

B.5 Correlation between error signals

The covariance between error signals is approximated using

q̃lab,δ = q̃l+1
ab,δ

Dl+1

Dl+2
σ2
wEz1 [Ez2 [φ′(ũ1)φ′(ũ2)]] , (37)

where ũ1 and ũ2 are defined as was done in the forward pass. Here, we simply use the result in (32)
for noisy ReLU networks to find

q̃lab,δ = q̃l+1
ab,δ

Dl+1

Dl+2
χ(c∗) (38)

= q̃l+1
ab,δ

Dl+1

[
sin−1 (c∗) + π

2

]
Dl+2µ2π

. (39)

C Experimental details

In this section we provide additional details regarding our experiments in the paper. Code to reproduce
all the experiments is available at https://github.com/ElanVB/noisy_signal_prop.

C.1 Input data

For all experiments the network input data properties that remain consistent (unless stated otherwise)
are as follows: each observation consists of 1000 features and each feature value is drawn i.i.d. from
a standard normal distribution.

C.2 Variance propagation dynamics

The experiments conducted to gather results for Figures 2 and 3 aim to empirically show the
relationship between the variances at arbitrary layers in a neural network.

Iterative map: For the results depicted in Figures 2 (a) and 3 (a), the experimental set up is as follows.
The data used as input to these experiments comprises of 30 sets of 30 observations. The input is
scaled such that the variance of observations within each set is the same and the variance across
each set is different and forms a range of qset ∈ [0, 15]. As such, our results are averaged over 30
observations and 50 samplings of initial weights to a single hidden-layer network.

Convergence dynamics: For the results depicted in Figures 2 (b) and 3 (b), the experimental set up is
as follows. The data used as input to these experiments comprises of a set of 50 observations scaled
such that each observation’s variance is four (q = 4). As such, our results are averaged over 50
observations and 50 samplings of initial weights to a 15 hidden-layer network.

C.3 Correlation propagation dynamics

The experiments conducted to gather results for Figure 4 and 5 aim to empirically show the relation-
ship between the correlations of observations at arbitrary layers in a neural network.
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Iterative map: For the results depicted in Figure 4 (a), the experimental set up is as follows. The data
used as input to these experiments comprises of 50 sets of 50 observations. The first observation in
each set is sampled from a standard normal distribution and subsequent observations are generated
such that the correlation between the first element and the ith element form a range of corr0,i ∈ [0, 1].
As such, our results are averaged over 50 observations and 50 samplings of initial weights to a single
hidden-layer network.

Convergence dynamics: For the results depicted in Figure 4 (b), the experimental set up is as
follows. The data used as input to these experiments comprises of three sets of 50 equally correlated
observations. Each set has a different correlation value such that corrset ∈ {0, 0.5, 0.9}. As such, our
results are averaged over 50 observations and 50 samplings of initial weights to a 15 hidden-layer
network.

Confirmation of exponential rate of convergence for correlations: This section discusses how the
results depicted in Figure 5 are acquired. These experiments support the assumption that the rate
of convergence for correlations is exponential when using noise regularisation with rectifier neural
networks. The experimental set up for this section is very similar to that of the above convergence
dynamics experiment, the only difference being the statistics we calculate from the correlation values.
The aspect of this experiment that may seem the most unclear is the reason why we claim that the
negative inverse slope of a linear fit to the log differences in correlation should match the theoretical
values for ξc. The derivation to justify this is as follows. If a good fit of the form al + b can be found
in the logarithmic domain for the rate of convergence, it would strongly indicate that the convergence
rate is exponential. Following this, we set the problem up like so:

|cl − c∗| ≈ e−l/ξc

∴ ln
(
|cl − c∗|

)
≈ −l
ξc
.

Let us now assume that ln
(
|cl − c∗|

)
can be linearly approximated:

∴ ln
(
|cl − c∗|

)
≈ al + b,

∴ al + b ≈ −l
ξc
,

∴ ξc ≈
−l

al + b
.

Since we are concerned with deep neural networks, we can take the limit as l becomes arbitrarily
large and see that as l grows the effect of b decreases (liml→∞ |al| � |b|). Thus, we continue like so:

lim
l→∞

ξc ≈ lim
l→∞

−l
al

≈ −1

a
.

Thus, we have come to the finding that if the correlation rate of convergence is exponential and we
work with deep neural networks, the negative inverse slope of a linear fit to the log differences in
correlation should match the theoretical values for ξc. Figure 5 shows that the theory closely matches
this approximation.

C.4 Depth scales

This section handles the experiments conducted related to determining the maximum depth variance
information can stably propagate through a network and the depth at which these networks can be
trained, both depicted in Figure 6.

The MNIST and CIFAR-10 datasets were used and were pre-processed using standard techniques.
Throughout these experiments mini-batches of 128 observations were used.

Variance depth scales: The experiments depicted in Figures 6 (a) and (d) are interested in testing the
numerical stability of networks initialised using different σ2

w values while using 32-bit floating point
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numbers. To test the depth of stable variance propagation, a network with 1000 hidden layers is used.
The network used in this experiment makes use of dropout with p = 0.6, where p is the probability
of keeping a neuron’s value, thus the critical value for σ2

w is 1.2. As such, a linearly spaced range of
σ2
w ∈ [0.1, 2.5] is used to select 25 different values.

We use the following approach to predict the depth beyond which variances become numerically
unstable. At criticality for multiplicative noise (σw, σb) = (

√
2/µ2, 0), however, for weights

initialised off this critical point (18) becomes

q̃l = q̃l−1
(
σ2
wµ2

2

)
=

[
q̃l−2

(
σ2
wµ2

2

)](
σ2
wµ2

2

)
= q̃0

(
σ2
wµ2

2

)l
. (40)

If σ2
w >

2
µ2

, we let q̃l = K, where K is the largest positive number representable by the computer. In
our case, using 32-bit floating point precision, this number is equal to 3.4028235× 1038. Otherwise,
if σ2

w <
2
µ2

we select K = 1.1754944× 10−38, the smallest possible positive number. Furthermore,
let L∗ represent the layer l in (40) at which the value K is reached, then we can scale our input data
such that q̃0 = 1 and solve for L∗ to find

L∗ = ln(K)/ln
(
σ2
wµ2

2

)
. (41)

Therefore, we expect numerical instability issues to occur beyond a depth of L∗.

Trainable depth scales: The experiments depicted in Figures 6 (b), (c), (e) and (f) are concerned
with determining at what depth a critically initialised network with a specified dropout rate can train
effectively. To this end, 10 linearly spaced values for dropout on the range p ∈ [0.1, 1.0] and 10
linearly spaced network depths on the integer range l ∈ [2, 40] are tested.

The task presented to the network in this experiment is to learn the identity function within 200
epochs. As such, the network is set up as an auto-encoder and uses stochastic gradient decent with a
learning rate of 10−3. The input data is divided into a training and validation set, each containing
50000 and 10000 observations respectively.

C.5 Additional results

In this section we provide some additional experiments on the training dynamics of deep noisy ReLU
networks from different initialisations.

In Figure 7 we compare the standard “He” initialisation (blue) with the critical initialisation (green)
for a ReLU network with dropout regularisation (p = 0.8). By not initialising at criticality due to
dropout noise, the variance map for the “He” strategy no longer lies on the identity line in (a) and as
a result, the forward propagating signal can be seen to explode in (b). However, by compensating for
the amount of injected noise, the above derived critical initialisation for dropout preserves the signal
throughout the entire forward pass, with roughly constant variance dynamics.

Next, we provide some additional experiments on the trainability of deep ReLU networks with
dropout on real-world data sets.

From our analysis in the paper, we expect that as the depth of the network increases, any initialisation
strategy that does not factor in the effects of noise, will cause the forward propagating signal to
become increasingly unstable. For very deep networks, this might cause the signal to either explode
or vanish, even within the first forward pass, making the network untrainable.

To test this, we trained a denoising autoencoder network with dropout noise (p = 0.6) on MNIST and
CIFAR-10 using squared reconstruction loss. We consider several network depths (L = 30, 100, 200),
learning rates (α = 0.1, 0.01, 0.001, 0.0001) and optimisation procedures (SGD and Adam), with
1000 neurons in each layer. The results for training on CIFAR-10 are shown in Figure 8 for both the
“He” intialisation (blue) and the critical dropout initialisation (green). (For MNIST, see Figure 9; the

17



Figure 7: Critical initialisation for ReLU networks with dropout. Lines correspond to theoretical
predictions and points to numerical simulations, for random ReLU networks with dropout (p = 0.8),
initialised according to the method proposed by He et al. (2015) (blue) and at criticality (green).
(a): Iterative variance map where the identity line is displayed as a dashed black line. (b): Variance
dynamics during forward signal propagation.

100 101 102

103

109

1015

1021

100 101 102

103

109

1015

1021

100 101 102

100

102

104

106

Lo
ss

10 1

30

100 101 102

103

1010

1017

1024

100 101 102

Updates

100

102

104

106

100 101 102
10 3

105

1013

1021

1029

10 3

100 101 102

Updates

3 × 10 1

4 × 10 1

6 × 10 1

100 101 102

Updates

100

3 × 10 1

4 × 10 1

6 × 10 1

Lo
ss200

100 101 102

101

105

109

1013

1017
10 2

100 101 102

104

1011

1018

1025

Lo
ss

Adam - He SGD - He Adam - critical SGD - critical

100

N
et

w
or

k 
de

pt
h

Learning rate

100 101 102

Updates

10 1

100 101 102

100

102

104

106

10 4

Figure 8: Comparing the “He” initialisation strategy to critical dropout initialisation for ReLU
networks using dropout (p = 0.6) on CIFAR-10. While networks initialised at criticality (green) are
able to train at large depths (L = 200) as seen in the bottom row, networks initialised with the “He”
strategy (blue) become untrainable irrespective of the chosen learning rate or optimisation procedure.
An “X” marks the point at which a network completely stopped training. Training losses and number
of network updates are shown in log-scale.

core trends and resulting conclusions regarding network trainability is the same for both data sets,
which we discuss below.)

As the depth increases, moving from the top to the bottom row in Figure 8, networks initialised at
the critical point for dropout seem to remain trainable even up to a depth of 200 layers (we see the
loss start to decrease over five epochs). In contrast, networks using the “He” initialisation become
increasingly more difficult to train, with no training taking place at very large depths. These findings
make sense in terms of the variance dynamics analysed in the paper, however, these experimental
successes seem to run counter to our theoretical analysis of trainable depth scales (this contradiction
can also be seen in Figure 6). Understanding this discrepancy is of particular interest to us.

To verify that the lack of training in Figure 8 is due to poor signal propagation, we plot the empirical
variance of the pre-activations in Figure 10, for the first forward pass of a 200 layer autoencoder
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Figure 9: Comparing the “He” initialisation strategy to critical dropout initialisation for ReLU
networks using dropout (p = 0.6) on MNIST. While networks initialised at criticality (green) are
able to train at large depths (L = 200) as seen in the bottom row, networks initialised with the “He”
strategy (blue) become untrainable irrespective of the chosen learning rate or optimisation procedure.
An “X” marks the point at which a network completely stopped training. Training losses and number
of network updates are shown in log-scale.

Figure 10: Variance dynamics for signal propagation in the first forward pass for a 200 layer
autoencoder network fed a batch of 500 training examples from CIFAR-10. (a) Exploding activation
variance (blue) reaching overflow levels (marked with a red “X”) for the “He” intialisation, with no
signal reaching the output layer (shown in log-scale). (b) Zoomed in display of the roughly constant
variance dynamics in (a) for the critical dropout initialisation.

network. For the “He” initialisation, the variance in (a) grows rapidly to the point of causing numerical
instability and overflow (indicated by the red dashed line), well before any signal is able to reach the
output layer. However as shown in (b), by initialising at criticality, signal is able to propagate reliably
even at large depths.
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Figure 11: Depth scale experiments on MNIST and CIFAR-10. (a) Depth scales fit to the training loss
on MNIST for networks initialised at criticality for dropout rates p = 0.1 (severe dropout) to p = 1
(no dropout). (b) Depth scales fit to the validation loss on MNIST. (c) - (d): Similar to (a) - (c), but
for CIFAR-10.
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