
Supplementary Material

Our analysis uses the following standard inequalities. For any x1, x2, . . . , xM ∈ RN and ε > 0, it
holds that

〈x1, x2〉 ≤ ε‖x1‖22 +
1

ε
‖x2‖22 (31)

〈x1, x2〉 ≤ ‖x1‖2 · ‖x2‖2 (32)∥∥ M∑
i=1

xi
∥∥2
2
≤M

( M∑
i=1

‖xi‖22
)

(33)

‖dk‖2 =‖xk − x̂k‖2 ≤
k−1∑

i=k−j(k)

‖∆i‖2 (34)

The last inequality is derived from (4), where dk is defined, using a telescoping sum and the triangle
inequality.

Proof of Lemma 1

Note that ∆k
i = δ(i, ik) ·∆k

ik
, where δ(i, j) denotes the Kronecker delta: δ(i, j) =

{
0, i = j
1, else .

Recalling the algorithm (2), we have:

−〈∆k,∇f(x̂k)〉 = −〈∆k
ik
,∇ikf(x̂k)〉 = L

γ ‖∆
k‖22. (35)

Since∇f is L-Lipschitz,

f(xk+1) ≤ f(xk) + 〈∇f(xk),∆k〉+
L

2
‖∆k‖22. (36)

Hence

f(xk+1)− f(xk)
(35)(36)
≤ 〈∇f(xk)−∇f(x̂k),∆k〉+ (L2 −

L
γ )‖∆k‖22

a)

≤ L‖dk‖2 · ‖∆k‖2 + (L2 −
L
γ )‖∆k‖22

(34),j(k)≤τ
≤ L

k−1∑
d=k−τ

‖∆d‖2 · ‖∆k‖2 + (L2 −
L
γ )‖∆k‖22

b)

≤ L
2ε

k−1∑
i=k−τ

‖∆i‖22 +
[

(τε+1)L
2 − L

γ

]
‖∆k‖22, (37)

where a) follows from (32) and the Lipschitzness of ∇f , and b) is obtained by applying a · b ≤
1
2ε |a|

2 + 1
2ε |b|

2 (where ε > 0 is arbitrary) to each term in the sum.

If γ < 2
2τ+1 , we can choose ε > 0 such that ε + 1

ε = 1 + 1
τ ( 1

γ −
1
2 ). Then, it can be verified by

direct calculation and substitutions that we have:

ξk − ξk+1
(10)
= f(xk)− f(xk+1) + L

2ε

k−1∑
i=k−τ

(i− (k − τ) + 1)‖∆i‖22

− L
2ε

k−1∑
i=k+1−τ

(i− (k − τ))‖∆i‖22 − L
2ετ‖∆

k‖22

c)
= f(xk)− f(xk+1) + L

2ε

k−1∑
i=k−τ

‖∆i‖22 − L
2ετ‖∆

k‖22
(37)
≥ 1

2 ( 1
γ −

1
2 − τ)L · ‖∆k‖22, (38)

where c) follows from (i− (k − τ) + 1)‖∆i‖22 − (i− (k − τ))‖∆i‖22 = ‖∆i‖22. Therefore we have
‖∆k‖22 ∈ `1 by using a telescoping sum8. This immediately implies (12), and (13) follows from
[Lemma 3, [5]].

8We write ak ∈ `1 if
∑∞
k=1 |a

k| <∞.
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Proof of Theorem 1

Let t = t(k) = bk/N ′c. Recall K(i, t) is defined at Sec. 1.1. Notice we have:

‖∇if(xk)‖2
a)

≤ ‖∇if(x̂K(i,t))‖2 + ‖∇if(xk)−∇if(x̂k)‖2 + ‖∇if(x̂k)−∇if(x̂K(i,t))‖2
b)

≤ ‖∇if(x̂K(i,t))‖2 + L‖dk‖2 + L

k−1∑
j=K(i,t)

‖x̂j+1 − x̂j‖2, (39)

where a) is by the triangle inequality and b) by Lipschitzness of ∇f and then applying the triangle
inequality to the expansion of ‖x̂k − x̂K(i,t)‖. We now bound each of the right-hand terms.

From Lemma 1 and by (34), we have

lim
k
‖dk‖2 ≤ lim

k

k−1∑
i=k−τ

‖∆i‖2 = 0, (40)

since ∆k → 0. By the triangle inequality, we can derive

‖x̂k+1 − x̂k‖2 ≤ ‖dk‖2 + ‖dk+1‖2 + ‖∆k‖2. (41)

Taking the limit,

lim
k
‖x̂k+1 − x̂k‖2 = 0. (42)

Now notice:

‖∇if(x̂K(i,t))‖2 = ‖∇iK(i,t)
f(x̂K(i,t))‖2 =

L

γ
‖∆K(i,t)‖2. (43)

Since, as k →∞, K(i, t)→∞ and ‖∆k‖2 → 0, this last term converges to 0 and the limit result is
proven. The running best rate is obtained through the following argument: since ‖∆k‖2 is square
summable (by Lemma 1), so are ‖dk‖2 by (34), ‖x̂k+1 − x̂k‖2 by (41), and ‖∇if(x̂K(i,t))‖2 (since
t = Θ(k)) by (43). Hence, ‖∇if(xk)‖2 is square summable. This implies ‖∇f(xk)‖2 is square
summable, hence limk ‖∇f(xk)‖2 = 0, and we obtain the running best rate again from [Lemma 3,
[5]].

Proof of Theorem 2

Taking the expectation on both sides of (15) and multiplying N yields

NE‖∇ikf(xk−τ )‖2 =

N∑
i=1

E‖∇if(xk−τ )‖2. (44)

By ‖ · ‖2 ≤ ‖ · ‖1, we obtain:

E‖∇f(xk−τ )‖2 ≤
N∑
i=1

E‖∇if(xk−τ )‖2
(44)
= NE‖∇ikf(xk−τ )‖2. (45)

In the next part, we prove E‖∇ikf(xk−τ )‖2 → 0. From (11), we can see that (‖∆k‖2)k≥0 is
bounded. The dominated convergence theorem implies:

lim
k

E‖∆k‖2 = 0. (46)

By (34), we have:

lim
k

E(‖dk‖2) = 0. (47)

Hence,

lim
k

E‖∇ikf(x̂k)‖2
(2)
=
L

γ
lim
k

E‖∆k‖2 = 0. (48)
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The triangle inequality and L-Lipschitz continuity yield

E‖∇ikf(xk−τ )‖2 ≤ E‖∇ikf(x̂k)‖2 + E‖∇ikf(xk)−∇ikf(x̂k)‖2
+ E‖∇ikf(xk)−∇ikf(xk−τ )‖2

≤ E‖∇ikf(x̂k)‖2 + L · E‖dk‖2 + L

k−1∑
i=k−τ

E‖∆i‖2. (49)

Applying (46), (47), and (48) to (49) yields

lim
k

E‖∇ikf(xk−τ )‖2 = 0. (50)

Using (45), (50) yields

lim
k

E‖∇f(xk−τ )‖2 = 0, (51)

which is equivalent to

lim
k

E‖∇f(xk)‖2 = 0. (52)

Following a proof similar to that of Theorem 1 (except with added expectations), E‖∇f(xk)‖22 is
summable and thus has the running best rate O(1/k).

Proof of Lemma 2

The proof consists of two steps: in the first one, we prove

πk − πk+1 ≥
L

4τ
(
1

γ
− 1

2
− τ) · (ES(k + 1, τ + 1)), (53)

while in the second one, we prove

π2
k ≤ β · (ES(k + 1, τ + 1)) · (δτES(k, τ) + E‖xk − xk‖22). (54)

Combining (53) and (54) gives us the claim in the lemma.

Proving (53): Since γ < 2
2τ+1 , we can choose ε > 0 such that

ε+
1

ε
= 1 +

1

τ
(
1

γ
− 1

2
) (55)

Direct subtraction of Fk and Fk+1 yields:

Fk − Fk+1

a)

≥ f(xk)− f(xk+1) + δ

k−1∑
i=k−τ

(i− (k − τ) + 1)‖∆i‖22

− δ
k−1∑

i=k+1−τ

(i− (k − τ))‖∆i‖22 − δτ‖∆k‖22

b)
= f(xk)− f(xk+1) + δS(k, τ)− δτ‖∆k‖2
c)

≥ (δ − L
2ε )S(k, τ) +

[
L
γ −

(τε+1)L
2 − δτ

]
‖∆k‖22

d)
= L

4τ ( 1
γ −

1
2 − τ) · S(k, τ) + L

4 ( 1
γ −

1
2 − τ) · ‖∆k‖22

e)

≥ L
4τ ( 1

γ −
1
2 − τ) · S(k, τ) + L

4τ ( 1
γ −

1
2 − τ) · ‖∆k‖22

f)
= L

4τ ( 1
γ −

1
2 − τ) · S(k + 1, τ + 1), (56)

where a) follows from the definition Fk, b) from the definition of S(k, τ), c) from (37), d) is a direct
computation using (55), e) is due to τ ≥ 1, and f) is also a result of the definition of S(k, τ).
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Proving (54): The convexity of f yields

f(xk)− f(xk) ≤ 〈∇f(xk), xk − xk〉. (57)

Let

ak :=


xk − xk√
δτ∆k−1

...√
δτ∆k−τ

 , bk :=


∇f(xk)√
δτ∆k−1

...√
δτ∆k−τ

 . (58)

Using this and the definition of Fk (18), we have:

Fk −min f ≤ 〈ak, bk〉 ≤ ‖ak‖2‖bk‖2. (59)

We bound E‖∇ikf(xk−τ )‖22 as follows:

E‖∇ikf(xk−τ )‖22
a)

≤ E
(
‖∇ikf(xk)‖2 + ‖∇ikf(xk−τ )−∇ikf(xk)‖2

)2
b)

≤ 2E‖∇ikf(xk)‖22 + 2L2τ

k−1∑
i=k−τ

E‖∆i‖22

c)

≤ 4E‖∇ikf(x̂k)‖22 + 4L2E‖dk‖22 + 2L2τ

k−1∑
i=k−τ

E‖∆i‖22

= 4L2

γ2 E‖∆k‖22 + 6L2τ

k−1∑
i=k−τ

E‖∆i‖22, (60)

where a) follows from the triangle inequality, b) from the Lipschitznes of∇f and (33), and c) from
‖∇ikf(xk)‖22 ≤ 2‖∇ikf(x̂k)‖22 + 2‖dk‖22 and (34). We also have the bound

‖∇f(xk)‖22 ≤ 2‖∇f(xk−τ )‖22 + 2L2τ

k−1∑
i=k−τ

‖∆i‖22, (61)

Hence, applying (44) to (60) yields

E‖∇f(xk−τ )‖22 ≤ 4NL2

γ2 E‖∆k‖22 + 6NL2τ

k−1∑
i=k−τ

E‖∆i‖22,

and further with (61),

E‖∇f(xk)‖22 ≤ 8NL2

γ2 E‖∆k‖22 + (12N + 2)L2τ

k−1∑
i=k−τ

E‖∆i‖22. (62)

Finally we obtain (54) from

π2
k =[E(Fk −min f)]2

(59)
≤ E(‖ak‖2‖bk‖2)2 ≤ E(‖ak‖22) · E(‖bk‖22)

a)

≤ (δτES(k, τ) + E‖∇f(xk)‖22)× (δτES(k, τ) + E‖xk − xk‖22)

b)

≤ βES(k + 1, τ + 1) · (δτES(k, τ) + E‖xk − xk‖22), (63)

where a) follows from the definitions of ak, bk and b) from (62) and the definition of S(k, τ).

Proof of Theorem 3

With (56), we can see that f(xk) ≤ Fk ≤ F0. Since f is coercive, the sequence (xk)k≥0 is bounded.
Hence, we have supk{‖xk − xk‖2} < +∞. Hence, there exists R > 0 such that

α(

k−1∑
i=k−τ

τδE‖∆i‖22 + E‖xk − xk‖22) ≤ 1
R . (64)
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for all k. Using Lemma 2, we have
πk − πk+1 ≥ Rπ2

k. (65)
Using (56), we can see that πk ≥ πk+1 for all k. Thus, we have

πk − πk+1 ≥ Rπk+1πk (66)

=⇒ 1
πk+1

− 1
πk
≥ R. (67)

Therefore, using a telescoping sum, we can deduce that:
πk+1 ≤ 1

kR+
1
π0

. (68)

Noting E(f(xk)−min f) ≤ πk, we have proven the result.

Proof of Theorem 4

We have
E(f(xk)−min f) ≥ νE‖xk − xk‖22, (69)

Hence recalling the definition from (18), we have

Eπk ≥ νE‖xk − xk‖22 +

k−1∑
i=k−τ

δE‖∆i‖22 ≥ min{ν, 1}(E‖xk − xk‖22 + S(k, τ)).

Using this, the monotonicity of πk, and Lemma 2 yields
πkπk+1 ≤ (πk)2 ≤ α

min{ν,1} (πk − πk+1) · πk. (70)

Rearranging this yields the result.

Proof of Lemma 3

The Lipschitz continuity of∇f yields

f(xk+1)− f(xk) ≤ 〈∇f(xk),∆k〉+ L
2 ‖∆

k‖22
a)
= 〈∇f(xk)−∇f(x̂k),∆k〉+ (L2 −

L
γ )‖∆k‖22

≤ L‖dk‖2 · ‖∆k‖2 + (L2 −
L
γ )‖∆k‖22, (71)

where a) is from −Lγ ‖∆
k‖22 = 〈∇f(x̂k),∆k〉. We bound the expectation of ‖dk‖22 over the delay

and using (33), we have:

E~j(k)

(
‖dk‖22 | χk

)
≤ E~j(k)

( j(k)∑
l=1

j(k)‖∆k−l‖22 | χk
)

≤
+∞∑
j=1

jpj

j∑
l=1

‖∆k−l‖22
b)
=

+∞∑
l=1

(

+∞∑
j=l

jpj)‖∆k−l‖22
c)

≤
k−1∑
i=0

ck−i‖∆i‖22, (72)

where in b), we switched the order of summation in the double sum, and c) uses
∑+∞
j=l jpj ≤ cl.

Taking total expectation E(·) on both sides of (72), we obtain

E‖dk‖22 ≤
k−1∑
i=0

ck−iE‖∆i‖22
d)

≤
k−1∑
i=0

ck−1−iE‖∆i‖22 = R(k − 1), (73)

where d) is by the fact (ci)i≥0 is descending. Hence:

E[f(xk+1)− f(xk)] ≤ LE‖dk‖2 · ‖∆k‖2 + (L2 −
L
γ )E‖∆k‖22

≤ L
2εE‖d

k‖22 +
[

(ε+1)L
2 − L

γ

]
E‖∆k‖22

≤ L
2ε

+∞∑
l=1

(

+∞∑
j=l

jpj)E‖∆k−l‖22 +
[

(ε+1)L
2 − L

γ

]
E‖∆k‖22. (74)
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Since γ < 2
2
√
c0+1 , we can choose ε > 0 such that

1
2 (ε+ c0

ε ) = 1
γ −

1
2 . (75)

With such ε and (74), direct calculation using the definition of Gk yields (22). When γ < 2
2
√
c0+1 ,

L
2 ( 1

γ −
1
2 −
√
c0) > 0. From (22), we can see (R(k))k≥0 is summable (telescoping sum). Thus, we

have limk R(k) = 0. Then note (73) and

c0E‖∆k‖22 ≤
k∑
i=0

ck−iE(‖∆i‖22) = R(k). (76)

Hence then have

lim
k

E(‖dk‖22) = 0, lim
k

E(‖∆k‖22) = 0. (77)

Proof of Theorem 5

Let t = t(k) = bk/N ′c. Recalling K(i, t) is defined at Sec. 1.1, we have:

‖∇if(xk)‖2
a)

≤ ‖∇if(x̂K(i,t))‖2 + ‖∇if(xK(i,t))−∇if(x̂K(i,t))‖2 + ‖∇if(xk)−∇if(xK(i,t))‖2
b)

≤ ‖∇if(x̂K(i,t))‖2 + L‖dK(i,t)‖2 + L

k−1∑
j=K(i,t)

‖∆j‖2, (78)

where a) is by the triangle inequality and b) by the Lipschitzness of∇f and then applying the triangle
inequality to the expansion of ‖xk − xK(i,t)‖. We now bound each of the right-hand terms.

Since, as k →∞, K(i, t)→∞. With the Cauchy-Schwarz inequality and (23), we have

lim
k

E‖dK(i,t)‖2 ≤ lim
k

(E‖dK(i,t)‖22)
1
2 = 0. (79)

By limj E‖∆j‖2 ≤ limj(E‖∆j‖22)
1
2 = 0,

lim
k
L

k−1∑
j=K(i,t)

E‖∆j‖2 = 0. (80)

Now notice:

‖∇if(x̂K(i,t))‖2 = ‖∇iK(i,t)
f(x̂K(i,t))‖2 =

L

γ
‖dK(i,t)‖2. (81)

Since E‖dK(i,t)‖2 → 0 as K(i, t)→∞, we have

lim
k

E‖∇if(x̂K(i,t))‖2 = 0. (82)

Taking expectations on both sides of (78), and using (79), (80) and (82), we then prove the result.

Proof of Theorem 6

Recall j(k) defined near (3). Similar to the bound of ‖dk‖22 in (34), we have

E~j(k)

(
‖xk − xk−j(k)‖22 | χk

)
≤
k−1∑
i=0

sk−1−i‖∆i‖22. (83)

Taking total expectations of both sides yields

E‖xk − xk−j(k)‖22 ≤
k−1∑
i=0

sk−1−iE‖∆i‖22. (84)
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We have

E‖∇ikf(xk−j(k))‖22
a)

≤ E(‖∇ikf(xk)‖2 + ‖∇ikf(xk−j(k))−∇ikf(xk)‖2)2

b)

≤ 2E‖∇ikf(xk)‖22 + 2L2E‖xk − xk−j(k)‖22
c)

≤ 4E‖∇ikf(x̂k)‖22 + 4L2E‖dk‖22 + 2L2E‖xk − xk−j(k)‖22
d)

≤ 4L2

γ2 E‖∆k‖22 + 6L2
k−1∑
i=0

sk−1−iE‖∆i‖22, (85)

where a) follows from the triangle inequality, b) from the Lipschitzness of ∇f and (33), and c) from
‖∇ikf(xk)‖22 ≤ 2‖∇ikf(x̂)‖22 + 2L2‖dk‖22 and (34), and d) from (84). Taking total expectation of
both sides of assumption (25) yields

E‖∇ikf(xk−j(k))‖22 =
E‖∇f(xk−j(k))‖22

N
. (86)

By the triangle inequality,

‖∇f(xk)‖22 ≤ 2‖∇f(xk−j(k))‖22 + 2L2
k−1∑
i=0

sk−1−iE‖∆i‖22. (87)

Hence, combining (86) and (87) produces

E‖∇f(xk−j(k))‖22 ≤ 4NL2

γ2 E‖∆k‖22 + 6NL2
k−1∑
i=0

sk−1−iE‖∆i‖22;

which is substituted into (87) to yield

E‖∇f(xk)‖22 ≤ 8NL2

γ2 E‖∆k‖22 + (12N + 2)L2
k−1∑
i=0

sk−1−iE‖∆i‖22. (88)

By
∑k−1
i=0 sk−1−i ≤

∑k−1
i=0 ck−1−iE‖∆i‖22 = R(k − 1) and (22),

lim
k

E‖∇f(xk)‖22 = 0. (89)

The proof is completed by applying the Cauchy-Schwarz inequality

E‖∇f(xk)‖2 ≤ (E‖∇f(xk)‖22)
1
2 . (90)

Proof of Lemma 4

This proof is very similar to Lemma 2 except that R(k) plays the role of S(k, τ). Let

ak =


xk − xk√
c0δ̄∆

k−1

...√
ck δ̄∆

0

 , bk =


∇f(xk)√
c0δ̄∆

k−1

...√
ck δ̄∆

0

 . (91)

Thus, we have
Gk −min f ≤ 〈ak, bk〉 ≤ ‖ak‖2‖bk‖2. (92)

By taking expectations, we get

E(Gk −min f) ≤ E(‖ak‖2‖bk‖2) ≤ [E‖ak‖22 · E‖bk‖22]1/2. (93)

By (88) and the definitions of ak, bk, R(k), we get

[E(Gk −min f)]2 ≤ E(‖ak‖22) · E(‖bk‖22)

≤ (δ̄R(k) + E‖∇f(xk)‖22)× (δ̄R(k) + E‖xk − xk‖22)

≤ β̄R(k)× (R(k) + E‖xk − xk‖22). (94)
Finally, from the definition of α and Lemma 3, the theorem follows.
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Proof of Theorem 7

We have

E(f(xk)−min f) ≥ νE‖xk − xk‖22, (95)

which also means that

E(δR(k) + ‖xk − xk‖22) ≤ max{1, 1

ν
}φk. (96)

Lemma 4 yields

(φk)2 ≤ ᾱmax{1, 1

ν
}(φk − φk+1) · (φk) (97)

Note that φk is decreasing, we obtain

φk+1 ≤ ᾱmax{1, 1

ν
}(φk − φk+1). (98)

Then, we have the result by rearrangement.

Proof of Lemma 5

f(xk+1)
a)

≤ f(xk) + L‖dk‖2 · ‖∆k‖2 + (L2 −
L
γk

)‖∆k‖22
b)

≤ f(xk) + L

j(k)∑
l=1

‖∆k−l‖2 · ‖∆k‖2 + (L2 −
L
γk

)‖∆k‖22

c)

≤ f(xk) + L

j(k)∑
l=1

( εl2 ‖∆
k−l‖22 + 1

2εl
‖∆k‖22) + (L2 −

L
γk

)‖∆k‖22

= f(xk) + L
2

j(k)∑
l=1

εl‖∆k−l‖22 + L
2

j(k)∑
l=1

1
εl
‖∆k‖2 + (L2 −

L
γk

)‖∆k‖22

d)

≤ f(xk) + L
2

+∞∑
l=1

εl‖∆k−l‖22 + L
2 (1 +

j(k)∑
l=1

1
εl
− 2

γk
)‖∆k‖22. (99)

where a) follows from Lipschitzness of ∇f and definitions of dk,∆k, b) from the triangle inequality,
c) from (32), and d) from j(k) <∞. Then, a direct calculation yields the first result in (29). Hence
the second follows by summability: ‖∆k‖22 ∈ `1.

lim
k∈QT

‖dk‖2 ≤
k−1∑
l=k−T

lim
l
‖∆l‖2 = 0 (100)

L(
1

γk
−Dj(k))‖∆k‖22 =

c(1− c)
LDj(k)

‖∇ikf(x̂k)‖22. (101)

Therefore,

1

DT

∑
k∈QT

‖∇ikf(x̂k)‖22 <
∑
k

‖∇ikf(x̂k)‖22
Dj(k)

< +∞. (102)

Proof of Theorem 8

For any T and k ∈ QT , let t = t(k) = bk/N ′c, and by the triangle inequality:

‖∇if(xk)‖ ≤ ‖∇if(xK(i,t))−∇if(xk)‖2
+ ‖∇if(x̂K(i,t))−∇if(xK(i,t))‖2 + ‖∇if(x̂K(i,t))‖2. (103)
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From Lemma 5, we have

lim
k
‖∇if(xK(i,t))−∇if(xk)‖2 ≤ lim

k
L

k−1∑
i=k−N ′+1

‖∆i‖2 = 0. (104)

Noting K(i, t) ∈ QT by the ECSD assumption, we can derive

lim
k
‖∇if(x̂K(i,t))−∇if(xK(i,t))‖2 ≤ lim

k
L‖dK(i,t)‖2 = 0. (105)

Now notice by Lemma 5:

lim
k
‖∇if(x̂K(i,t))‖2 = lim

K(i,t)
‖∇iK(i,t)

f(x̂K(i,t))‖2 = 0.

Since K(i, t)→∞, this right term converges to 0 and the result is proven.
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