
Appendix

A Subspace Parametrization and Notes to Practitioners

As mentioned in Section 3.3, the choice of subspace parametrization is non-unique and not limited to

µ̃ = Ψαa, Σ̃ = (I + ΨβBΨT
β)−1.

While we adopted the completely decoupled, directly parametrized representation in the experiments
for its simplicity and sufficiency to validate our idea, this choice may not possess the best numerical
properties. Here we point out other potential, practical parameterizations. A complete study of these
choices is outside of the scope of this paper.

A.1 Numerical Convergence Issues

To understand the effect of the parametrization on the convergence rate, intuition can be gained by
inspecting the objective function maxq(f),θ Eq[log pθ(y|f)]−KL[q||p], where

KL[q||p] =
1

2
aTKαa +

1

2
log |I + KβB|+ −1

2
tr
(
Kβ(B−1 + Kβ)−1

)
Eq[log pθ(y|f)] =

N∑
n=1

Eq(f(xn))[log pθ(yn|f(xn))]

When the likelihood function is Gaussian, this leads to a problem which is quadratic in a. Therefore,
the numerical convergence rate can be slow, for example, when Kα is ill-conditioned (which can
happen especially when Mα is large and Ψα is not flexible and correlated). Empirically, we observed
a slow-down of convergence rate when the standard SE-ARD kernel was used as the variational basis,
compared with the generalized SE-ARD kernel used in the experiments.

The use of a preconditioner can help the convergence of first-order methods in practice. This can be
achieved by further parameterizing (a,B). For example, a Jacobi preconditioner can be optionally
used in implementation by parameterizing a and L (i.e. B = LLT) through a0 and L0 as

a = diag(Kα)−1a0, L = diag(Kβ)−1L0

where diag denotes the diagonal part. While the Jacobi preconditioner is only ρ−2I for SE-ARD
kernels for some scaling constant ρ ∈ R, we observed it still helps the convergence rate as the
hyperparameter ρ is also being updated online.

Comparing the Jacobi preconditioner and (4), we can see that the canonical parametrization in (4)
can be viewed as a full preconditioner, which can enjoy a better numerical convergence rate but at
the cost of higher computational complexity. For the mean function, this type of full preconditioner,
with K−1

α , is too expensive to compute when Mα is large; nonetheless, using an approximation, such
as the Nyström approximation or (incomplete) Cholesky decomposition, can potentially improve
convergence without increasing the computational complexity. For the covariance function, because
Mβ is small, a full preconditioner can be used, such as setting L = K−1

β L0 or parameterizing B
with the canonical choice (4) (see Appendix A.3 for a further discussion).

A.2 Non-convexity and Initialization

Since the optimization problem is non-convex, the performance of the model also hinges on how
the variational basis functions are initialized. We note that, when using the completely decoupled
parametrization as in the experiments, we advocate to initialize the new basis for the mean and
the covariance to be the same samples (e.g. from the current mini-batch) and then updating them
separately online. This would encourage µ̃ and Σ̃ to capture the information in a close subspace.

Another idea to improve stability is to partially share the basis functions. For example, the first Mβ

basis functions of the total Mα basis functions for the mean can be constrained to be the same as the
basis functions for the covariance. Due to the redundancy in the mean parametrization, sharing part
of the parameters can make the problem more well-conditioned and easier to optimize.

12

A.3 Hybrid Subspace Parametrization

An example14 that combines the ideas from the above two sections is a hybrid subspace parametriza-
tion of the variational Gaussian measure:

µ̃ = ΨX̃K−1

X̃
m̃ + Ψαrar Σ̃ = I + ΨX̃K−1

X̃

(
S̃−KX̃

)
K−1

X̃
ΨT
X̃

(11)

where m̃ ∈ RM and S̃ � 0 ∈ RM×M are equivalent to the posterior statistics on X̃ used in the
conventional shared representation, αr denotes the additional inducing points that model the residual
error, and ar is the corresponding coefficient. This representation is equivalent to setting β = X̃ and
B−1 = −(KX̃ + KX̃(S̃ −KX̃)−1KX̃). The hybrid subspace parametrization gives a predictive
model in the form

m̂H
|y(x) = kx,X̃K−1

X̃
m̃ + kx,αrar (12)

k̂H|y(x, x′) = kx,x′ + kx,X̃K−1

X̃

(
S̃−KX̃

)
K−1

X̃
kX̃,x′ (13)

Compared with (4), the only difference is the residual term kx,αrar, which helps modeling more
complex functions.

Therefore, this new, hybrid formulation shows a more direct connection to the conventional
parametrization used in the GP literature (e.g. [11]). This can also been seen in its associated
objective function. Substitute the hybrid parametrization into the terms in the KL divergence between
Gaussian measures and we have the following relations:

1

2
aTKαa =

1

2
m̃TK−1

X̃
m̃ + m̃TK−1

X̃
KX̃,αr

ar +
1

2
aTr Kαrar

−1

2
tr
(
Kβ(B−1 + Kβ)−1

)
=

1

2
tr
(
S̃K−1

X̃

)
− |X̃|

2

1

2
log |I + KβB| = − log |K−1

X̃
S̃|.

Therefore, the KL divergence term for the hybrid parametrization can be written as

KL[q||p] =
1

2
m̃TK−1

X̃
m̃ + m̃TK−1

X̃
KX̃,αr

ar +
1

2
aTr Kαrar

− log |K−1

X̃
S̃|+ 1

2
tr
(
S̃K−1

X̃

)
− |X̃|

2
(14)

This KL divergence terms is exactly as the one used by Hensman et al. [11], when ãr = 0. That is,
the hybrid parametrization is a strict generalization of the canonical parametrization. Note in here S̃
is initialized as S̃ = K̃X̃ = LLT and then its Cholesky factor L is optimized afterwards.

From (12), (13), and (14), we can see the linear complexity of the decoupled model is preserved. The
stochastic gradient can be computed in linear time by performing sampling of the residual inducing
points αr.

B Variational Inference with Decoupled Gaussian Processes

Here we provide the details of the variational inference problem used to learn DGPs:

max
q(f),θ

Lθ(q(f) = max
q(f),θ

∫
q(f) log

pθ(y|f)p(f)

q(f)
df = max

q(f),θ
Eq[log pθ(y|f)]−KL[q||p], (15)

14The idea of combining the partially shared representation and the canonical parametrization is brought up
by Hugh Salimbeni in our discussion at the conference.

13

B.1 KL Divergence

B.1.1 Evaluation

First, we show how to evaluate the KL-divergence. We do so by extending the KL-divergence between
two finite-dimensional subspace-parametrized Gaussian measures to infinite dimensional space and
show that it is well-defined.

Recall for two d-dimensional Gaussian distributions q(f) = N (f |µ,Σ) and p = N (f |µ̄, Σ̄), the
KL-divergence is given as
Proposition 1.

KL[q||p] :=

∫
log

q(f)

p(f)
dµq(f) =

∫
q(f) log

q(f)

p(f)
df

=
1

2

(
tr
(
Σ̄−1Σ

)
+ (µ− µ̄)T Σ̄−1(µ− µ̄) + ln

|Σ̄|
|Σ|
− d
)

Now consider q and p are subspace parametrized as

p(f) = N (f |µ̄, Σ̄) = N (f |Ψᾱā, (I + Ψβ̄B̄ΨT
β̄

)−1)

q(f) = N (f |µ,Σ) = N (f |Ψαa, (I + ΨβBΨT
β)−1).

(16)

By Proposition 1, we derive the representation of KL-divergence which is applicable even when
d is infinite. Recall in the infinite dimensional case, µ, Σ, µ̄, and Σ̄ are objects in the RKHS H
(Cameron-Martin space).
Theorem 1. Assume q and p are two subspace parametrized Gaussian measures given as (16).
Regardless of the dimension ofH, the following holds

KL[q||p] =
−1

2
tr
((

Kβ + Kβ,β̄B̄Kβ̄,β

)
(B−1 + Kβ)−1

)
+

1

2
log |I + KβB|

+
1

2
aT
(
Kα + Kα,β̄B̄Kβ̄,α

)
a− aT

(
Kα,ᾱ + Kα,β̄B̄Kβ̄,ᾱ

)
ā + C (17)

where

C =
1

2

(
tr
(
Kβ̄B̄

)
− log |I + Kβ̄B̄|+ āT

(
Kᾱ + Kᾱ,β̄B̄Kβ̄,ᾱ

)
ā
)

In particular, if p is normal (i.e. p(f) = N (f |0, I)), then

KL[q||p] =
1

2
aTKαa +

1

2
log |I + KβB|+ −1

2
tr
(
Kβ(B−1 + Kβ)−1

)
Proof.
To prove, we derive each term in (17) as follows.

First, we derive tr
(
Σ̄−1Σ

)
− d. Define R = (B−1 + Kβ)−1. Then we can write

Σ = (I + ΨβBΨT
β)−1 = I −Ψβ(B−1 + ΨT

βΨβ)−1ΨT
β = I −ΨβRΨT

β . (18)

Using (18), we can derive

Σ̄−1Σ = (I + Ψβ̄B̄ΨT
β̄)
(
I −ΨβRΨT

β

)
= I + Ψβ̄B̄ΨT

β̄ −ΨβRΨT
β −Ψβ̄B̄Kβ̄,βRΨT

β

and therefore

tr
(
Σ̄−1Σ

)
− d = tr (I)− d+ tr

(
Kβ̄B̄

)
− tr

(
R
(
Kβ + Kβ,β̄B̄Kβ̄,β

))
= tr

(
Kβ̄B̄

)
− tr

(
R
(
Kβ + Kβ,β̄B̄Kβ̄,β

))
Note this term does not depend on the ambient dimension.

Second, we derive log(|Σ̄|/|Σ|): Since

log |Σ−1| = log |B−1 + Kβ ||B| = log |I + KβB|.

14

it holds that

log
|Σ̄|
|Σ|

= log |I + KβB| − log |I + Kβ̄B̄|.

Finally, we derive the quadratic term:

(µ− µ̄)T Σ̄−1(µ− µ̄)

= µT Σ̄−1µ− 2µ̄T Σ̄−1µ+ µ̄Σ̄−1µ̄

= aTΨT
α

(
I + Ψβ̄B̄ΨT

β̄

)
Ψαa− 2āTΨT

ᾱ

(
I + Ψβ̄B̄ΨT

β̄

)
Ψαa + āTΨT

ᾱ

(
I + Ψβ̄B̄ΨT

β̄

)
Ψᾱ5̄a

= aT
(
Kα + Kα,β̄B̄Kβ̄,α

)
a− 2āT

(
Kᾱ,α + Kᾱ,β̄B̄Kβ̄,α

)
a + āT

(
Kᾱ + Kᾱ,β̄B̄Kβ̄,ᾱ

)
ā

Remarks The above expression is well defined even when B � 0, because (B−1+Kβ)−1 = B(I+
KβB)−1. Particularly, we can parametrize B = LLT with Cholesky factor L ∈ RMβ×Mβ in practice
so the problem is unconstrained. The required terms can be stably computed:

(
B−1 + Kβ

)−1
=

LH−1LT and log |I + KβB| = log |H|, where H = I + LTKβL.

B.1.2 Gradients

Here we derive the equations of the gradient of the variational inference problem of SVDGP. The
purpose here is to show the complexity of calculating the gradients. These equations are useful in
implementing SVDGP using basic linear algebra routines, while computational-graph libraries based
on automatic differentiation are also applicable and easier to apply.

To derive the gradients, we first introduce some short-hand
Gα = Kα + Kα,β̄B̄Kβ̄,α

Gα,ᾱ = Kα,ᾱ + Kα,β̄B̄Kβ̄,ᾱ

Gβ = Kβ + Kβ,β̄B̄Kβ̄,β

and write KL[q||p] as

KL[q||p] =
−1

2
tr
(
Gβ(B−1 + Kβ)−1

)
+

1

2
log |I + KβB|+ 1

2
aTGαa− aTGα,ᾱā.

We then give the equations to compute the derivatives below. For compactness of notation, we use �
to denote element-wise product and use 1 to denote the vector of ones. In addition, we introduce a
linear operator diag with overloaded definitions:

1. diag : RN → RN×N which constructs a diagonal matrix from a vector
2. diag : RN×N → RN which extracts the diagonal elements of a matrix to a vector.

Proposition 2. The gradients of KL[q||p] is as follows:
∇aKL[q||p] = Gαa−Gα,ᾱā

∇αKL[q||p] = diag(a) (∂αGαa− ∂αGα,ᾱā)

∇BKL[q||p] =
1

2
(I + KβB)−1 (KβBKβ −∆β) (I + BKβ)−1

∇βKL[q||p] =
(
∂βKβ � (B−1 + Kβ)−1Gβ(B−1 + Kβ)−1

)
1−

(
∂β∆β � (B−1 + Kβ)−1

)
1

where ∆β = Gβ −Kβ and ∂ is defined as the partial derivative with respect to the left argument.15

In particular, if the p is normal,
∇aKL[q||p] = Kαa

∇αKL[q||p] = diag(a)∂αKαa

∇BKL[q||p] =
1

2
(I + KβB)−1KβBKβ(I + BKβ)−1

∇βKL[q||p] =
(
∂βKβ � (B−1 + Kβ)−1Kβ(B−1 + Kβ)−1

)
1

15The additional factor of 2 is due to Kβ is symmetric.

15

The derivation of Proposition 2 is simply mechanical, so we omit it here.

Here we only show the derivative with respect to B. Suppose B = LLT . Then one can apply the
chain rule and get

∇LKL[q||p] = 2∇BKL[q||p]L.

B.2 Expected Log-Likelihood

B.2.1 Evaluation

The evaluation of the expected log-likelihood depends on the mean and covariance in (8) , which we
repeat here

m̂α
|y(x) = kx,αa, k̂β|y(x, x′) = kx,x′ − kx,β

(
B−1 + Kβ

)−1
kβ,x′ .

Its derivation is trivial by the definition of q in (16) and (18). For N observations, the vector form
m̂ ∈ RN and ŝ ∈ RN of the mean and the covariance above evaluated on each observation can be
computed in O(N) as

m̂ = KX,αa

ŝ = diag
(
KX −KX,β(B−1 + Kβ)−1Kβ,X

)
= diag(KX)−

(
KX,β � (KX,β(B−1 + Kβ)−1)

)
1

= diag(KX)−
(
KX,β � (KX,βB(I + KβB)−1)

)
1.

Given m̂ and ŝ, the expected log-likelihood can be evaluated either in closed-form for Gaussian
likelihood or by sampling for general likelihoods.

B.2.2 Gradients

The computation of the gradients of the expected log-likelihood can be completed in two steps. First,
we compute the gradients of Eq[log pθ(y|f)] with respect to (θ, m̂, ŝ) (i.e. ∇m̂e, ∇ŝe, and ∇θ̂e).
Because log pθ(y|f) is the sum of N terms, this step can be done in O(N): for each observation x,
let q(f(x)) = N (f(x)|m̂, ŝ) be a scalar Gaussian; under standard regularity conditions, we have

∇m̂Eq[log pθ(y|f(x))] = Eq[∇m̂ log q(f(x)) log pθ(y|f(x))]

∇ŝEq[log pθ(y|f(x))] = Eq[∇ŝ log q(f(x)) log pθ(y|f(x))]

∇θEq[log pθ(y|f(x))] = Eq[∇θ log pθ(y|f(x))]

where∇θ log pθ(y|f(x)) can be found, for example, in [22]. The above can be calculated in closed-
form for Gaussian likelihood or by sampling for general likelihoods.

Next we propagate these gradients by chain rule. The results are summarized below.

Proposition 3. Let e = Eq[log pθ(y|f)]. Suppose k(x, x′) = ρ2gs(x, x
′) for some hyper-parameters

ρ, s ∈ R. The gradients of e are as follows:

∇ae = KT
X,α∇m̂e

∇αe = diag(a)∂KT
X,α∇m̂e

∇Be = −(I + KβB)−1KT
X,βdiag(∇ŝe)KX,β(I + BKβ)−1

∇β ê = 2(∂KT
β � (Ωdiag(∇ŝe)Ω

T))1− 2(Ω� ∂Kβ,X)∇ŝe

∇log ρe = m̂T∇m̂e+ 2ŝT∇ŝe

∇se = (∂sKX,αa)T∇m̂e− 21T (Ω� ∂sKβ,X)∇ŝe

where Ω = B(I + KβB)−1Kβ,X .

The derivation of Proposition 3 is only technical, so we omit it here.

16

C Experiment Setup

C.1 The Covariance Function

For all the models, we assume the prior is zero mean and has covariance defined by a SE-ARD
kernel [19]

k(x, x′) = ρ2φTxφx = ρ2
D∏
d=1

exp(
−(xd − x′d)2

2s2
d

),

where sd > 0 is the length scale of dimension d. For the variational posterior, we use the generalized
SE-ARD kernel [2]

ψTx ψx′ =

D∏
d=1

(
2lx,dlx′,d
l2x,d + l2x′,d

)1/2

exp

(
−‖xd − x

′
d‖2

l2x,d + l2x′,d

)
, (19)

where lx,d = sd · cx,d is the length-scale parameter. That is, we evaluate

C[Lmf(x̃m), Lnf(x̃n)] = ψTx̃mψx̃n

where the associated length-scalar parameters implicitly define the linear operators Lm and Ln.

This kernel is first introduced in [26] by convoluting a SE-ARD kernel with Gaussian integral kernels,
and later modified into its current form (19) in [2]. From (19), we see it contains SE-ARD as a special
case. That is, ψx = φx when cx,d = 1, ∀d ∈ {1, . . . , D}. But in general cx,d can be a function of x.
Therefore, it can be shown that ψx spans an RKHS that contains the RKHSs spanned by φx for all
length-scales, and every cross covariance can be computed as C[Lmf(x̃m), f(x)] = ρψTx̃mφx.

Note: all the algorithms in our comparisons use this generalized SE-ARD kernel.

C.2 Online Learning Procedure

Algorithm 1 summarizes the online learning procedure used by all stochastic algorithms (the algo-
rithms differs only in whether the bases are shared and how the model is updated; see Table 1.), where
each learner has to optimize all the parameters on-the-fly using i.i.d. data. The hyper-parameters are
first initialized heuristically by median trick using the first mini-batch (in the GPR experiments, sd
is initialized as the median of pairwise distances of the sampled observations; σ2 is initialized as
the variance of the sampled outputs; ρ = 1). We incrementally build up the variational posterior by
including N∆ ≤ Nm observations in each mini-batch as the initialization of new variational basis
functions (we initialize a new variational basis as x̃m = xn and cx̃,d = 1, where xn is a sample from
the current mini-batch). Then all the hyper-parameters and the variational parameters are updated
online. These steps are repeated for T iterations.

17

D Complete Experimental Results

D.1 Experimental Results on KUKA datasets

SVDGP SVI iVSGPR VSGPR GPR

Y1 0.985 0.336 0.411 0.085 -3.840
Y2 1.359 0.458 0.799 0.468 -23.218
Y3 0.951 0.312 0.543 0.158 -8.145
Y4 1.453 0.528 0.906 0.722 -0.965
Y5 1.350 0.311 0.377 0.425 -0.990
Y6 1.278 0.367 0.631 0.559 -0.639
Y7 1.458 0.425 0.877 0.886 0.449

mean 1.262 0.391 0.649 0.472 -5.335
std 0.195 0.076 0.201 0.265 7.777

(a) Variational Lower Bound (105)

SVDGP SVI iVSGPR VSGPR GPR

Y1 0.058 0.186 0.165 0.171 0.257
Y2 0.028 0.146 0.095 0.126 0.249
Y3 0.058 0.195 0.133 0.181 0.298
Y4 0.027 0.124 0.088 0.114 0.198
Y5 0.028 0.195 0.178 0.132 0.243
Y6 0.034 0.178 0.137 0.140 0.224
Y7 0.028 0.155 0.099 0.108 0.146

mean 0.037 0.169 0.128 0.139 0.231
std 0.013 0.025 0.033 0.026 0.045

(b) Prediction Error (nMSE)
Table 3: Experimental results of KUKA1 after 2,000 iteration. Yi denotes the ith output.

SVDGP SVI iVSGPR VSGPR GPR

Y1 1.047 0.398 0.631 0.399 -3.709
Y2 1.387 0.450 0.767 0.515 -31.315
Y3 0.976 0.321 0.568 0.232 -12.230
Y4 1.404 0.507 0.630 0.654 -1.026
Y5 1.332 0.317 0.378 0.511 -0.340
Y6 1.260 0.368 0.585 0.538 -0.221
Y7 1.405 0.437 0.519 0.918 0.526

mean 1.259 0.400 0.583 0.538 -6.902
std 0.165 0.065 0.110 0.197 10.770

(a) Variational Lower Bound (105)

SVDGP SVI iVSGPR VSGPR GPR

Y1 0.056 0.168 0.126 0.151 0.281
Y2 0.026 0.147 0.102 0.124 0.248
Y3 0.056 0.194 0.127 0.179 0.325
Y4 0.029 0.127 0.127 0.110 0.186
Y5 0.029 0.189 0.170 0.125 0.232
Y6 0.035 0.181 0.144 0.144 0.232
Y7 0.034 0.152 0.166 0.104 0.133

mean 0.038 0.166 0.137 0.134 0.234
std 0.012 0.023 0.022 0.024 0.058

(b) Prediction Error (nMSE)
Table 4: Experimental results of KUKA2 after 2,000 iterations. Yi denotes the ith output.

18

D.2 Experimental Results on MuJoCo datasets

SVDGP SVI iVSGPR VSGPR GPR

Y1 7.373 3.195 5.948 4.312 -22.256
Y2 6.019 2.141 3.905 2.328 -45.351
Y3 6.350 2.543 4.695 2.991 -147.881
Y4 5.852 2.417 4.792 2.468 -23.999
Y5 6.280 2.609 5.316 3.622 -8.626
Y6 5.152 1.043 4.418 3.452 -11296.669
Y7 5.270 2.093 4.183 1.676 -7745.055
Y8 6.471 2.585 5.040 3.068 -47.540
Y9 5.293 0.979 2.592 1.482 -73477.168

mean 6.007 2.178 4.543 2.822 -10312.727
std 0.673 0.692 0.898 0.871 22679.778

(a) Variational Lower Bound (105)

SVDGP SVI iVSGPR VSGPR GPR

Y1 0.049 0.087 0.067 0.088 0.133
Y2 0.068 0.163 0.112 0.122 0.196
Y3 0.064 0.134 0.091 0.112 0.213
Y4 0.073 0.144 0.087 0.121 0.179
Y5 0.068 0.132 0.080 0.103 0.159
Y6 0.094 0.251 0.107 0.131 0.253
Y7 0.084 0.168 0.100 0.145 0.348
Y8 0.063 0.132 0.087 0.104 0.178
Y9 0.088 0.255 0.165 0.131 0.258

mean 0.072 0.163 0.099 0.118 0.213
std 0.013 0.053 0.026 0.016 0.061

(b) Prediction Error (nMSE)
Table 5: Experimental results of MUJOCO1 after 2,000 iterations. Yi denotes the ith output.

SVDGP SVI iVSGPR VSGPR GPR

Y1 7.249 3.013 6.429 4.161 -33.219
Y2 5.994 2.475 4.800 2.770 -23.276
Y3 6.239 2.258 4.819 3.044 -59.757
Y4 5.935 2.093 4.489 2.547 -27.259
Y5 6.387 2.452 5.457 3.725 -1.786
Y6 7.320 1.087 4.639 4.043 -24.198
Y7 5.346 1.754 3.947 1.667 -255179.052
Y8 6.448 2.505 5.193 3.812 -190.294
Y9 6.237 0.683 2.596 2.241 -37673.328

mean 6.350 2.036 4.708 3.112 -32579.130
std 0.586 0.699 0.993 0.825 79570.425

(a) Variational Lower Bound (105)

SVDGP SVI iVSGPR VSGPR GPR

Y1 0.051 0.095 0.056 0.085 0.138
Y2 0.069 0.133 0.085 0.111 0.186
Y3 0.066 0.149 0.087 0.113 0.182
Y4 0.071 0.160 0.094 0.127 0.197
Y5 0.065 0.137 0.074 0.101 0.148
Y6 0.051 0.241 0.097 0.073 0.139
Y7 0.081 0.187 0.107 0.142 0.363
Y8 0.063 0.133 0.081 0.106 0.214
Y9 0.067 0.270 0.157 0.106 0.300

mean 0.065 0.167 0.093 0.107 0.207
std 0.009 0.053 0.026 0.019 0.072

(b) Prediction Error (nMSE)
Table 6: Experimental results of MUJOCO2 after 2,000 iterations. Yi denotes the ith output.

19

	Subspace Parametrization and Notes to Practitioners
	Numerical Convergence Issues
	Non-convexity and Initialization
	Hybrid Subspace Parametrization

	Variational Inference with Decoupled Gaussian Processes
	KL Divergence
	Evaluation
	Gradients

	Expected Log-Likelihood
	Evaluation
	Gradients

	Experiment Setup
	The Covariance Function
	Online Learning Procedure

	Complete Experimental Results
	Experimental Results on KUKA datasets
	Experimental Results on MuJoCo datasets

