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1 Metric Dependency of Conditional Expectation, Gradient, and Laplacian

In this section, we show that the conditional expectation of the target variable is metric independent,
while the gradients and Laplacians are metric dependent. Due to the independency, our goal becomes
clear: by changing metric, we only try to move our estimation toward the conditional expectation, in
which case the mean square error (MSE) is always reduced.

Subsection [I.T| contains the proof showing the invariance of the asymptotic estimation result, and the
following Subsection [I.2] derives how the gradients and Laplacians change with respect to the change
of metric.

1.1 Metric dependency of conditional expectation

The conditional expectation E[y|x] is invariant to the change of metric at x. If we consider a linear
transformation z = LT x with a full-rank transformation matrix L, which is equivalent to a metric
change using A = LLT, it is straightforward to see E[y|x] = E[y|z] for all x and their corresponding
z = L Tx. First, we note that the measure is preserved by the metric change: p(x)dx = p(z)dz, and
p(y, x)dydx = p(y, z)dydz. From these equalities, we get

plylx)p(x)dydx = p(y|z)p(z)dydz (D)
= p(ylz)p(x)dydx 2)
for all x and z and therefore, p(y|x) = p(y|z) for all corresponding x and z. Therefore,
Elylx] = /yp(yIX)dy = /yp(yIZ)dy 3)
= Ely|z]. “)

For example, we consider a joint Gaussian,
X /Jx Zx Zx
=N , Y , 5
p((y)) (</~Ly) (ny 2y >> )
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and a linear transformation,

L = 0 c R(D+1)><(D+l)’ (6)
0 1

. . VA X . P
satisfying ( y ) =L ( y ) Then, the mean vector and the covariance matrix in the transformed

space are
<IU’Z>:L/T<;UX>:(LT/J/X> (7)
Hy Hy Hy
and
Ez Ezy . 1T Zx Exy /
(Zyz 2y > =4 (ny 2y L ®
LTS L LT%y, )
= x ). ©
( YyxL 2y
If we consider the conditional density function in the x-space,
y‘xNN(My +2yx2;1(x_,ux)7 Ey - nyz;lxxy)v (10)
then the conditional density function in the z-space is
ylz NN(Hy+2yzE;1(Z_HZ)7 Ey_zyzzzilzzy) 1D
= N(pty + By L(LT SxL) ™ Ly (x = i), (12)
Yy — N L(LTE, L) LTE,,) (13)
= N 1y + Dx B (X = i)y Ty — Ty Ty ) (14)

This is a re-derivation for a Gaussian that shows p(y|x) and p(y|z) have the same density function,
and therefore, E[y|x] = E[y|z]. By the same argument, the conditional variance of y, or E[o7 (x)|x],
is invariant to the metric change.

In fact, we note that the equivalence p(y|x) = p(y|z) can be used without proof from the definition of
conditional density function because there is no uncertainty on the transformation of the conditioning
variable. In other words, conditioning the random variable x to a particular value is equivalent to
conditioning z to a transformed fixed value z = LTx, and using the transformed variable z instead
of x does not affect the density function of y.

1.2 Metric dependency of gradient and Laplacian

While the conditional density is metric independent, the gradient and Laplacian are metric dependent.
In the transformed space using z = L T x, we can show that

1
V.p(z) = mL—lvxp(x), (15)
and
1
Vap(z) = ik L'V L], (16)

where V. and V,, are the gradients with respect to x and z, respectively, and V2 and V2 are the
Laplacians with respect to x and z, respectively. Using A = LLT,
1

V) p(2)V,p(z) = mtr[Aflvxpvjp], (17)
1
Vip(z) = |A|étr [A™ 'V ¥p] . (18)

The metric dependency provides an optimization problem for the minimization of the bias and MSE.

For the derivative of general functions, the coordinate transformation satisfies the relationship:
V.f(z) = L7V, f(x). (19)



1.2.1 Detailed derivation
The detailed derivations of Eq. (I5) and Eq. (I6) are as follows:

We consider a linear transformation z = L " x and the conservation of measure p(x)dx = p(z)dz.
Then we can write

p(z)dz = p(z= L x)|L|dx (20)
= p(x)dx. 1)
Therefore, p(x) = |L|p(z = LTx).

Now, the i-th element of the gradient of density function is

_ ax]

(Vap(2z)); = azl |L\Z oz, o (22)
1 op(x), 1\
— mzj: o, (L™ ") (23)
_ 1 -1 )
= m(L Vp(x))i, 24

and for the Laplacian, the second derivative with respect to the ¢-th element is

) ©3)
_ @;fuw-lw(x)»gj 6)
_ fﬂzk:;ai@_l)fagi )g”;f @7)
_ |%(Lflvvp(x)L*T)ﬁ. (29)

Therefore, the Laplacian of the density function is

0? 1
apz (;) o (L 'VVp(x)L ] (30)

Vap(z) =

The derivative of general function f(x) is different from the derivative of the density functions:

_ 8f

= Y (32)
_ |9t

= [L ax]i . (33)

2 Comparison with Locally Linear Regression and Gaussian Processes

The weakness of the Nadaraya-Watson (NW) estimator is explained in Chapter 6 of [4]], where the
boundary issue in a low-dimensional space is the main motivation for extending the NW estimator to
Locally Linear Regression (LLR) [lL} [17].



LLR introduces two parameter variables o € R and 3 € R” and finds the parameters by solving the

LLR optimization problem with training data D = {x;, y; })¥;:
al 2
: T
a(x), f(x) = ar min e xX; —x)) K(x;,x 34
(%), B(x) gaeRﬁeRD;(y BT( )" K(xi,x) (34)

where « is the estimation of our target value y(x), and § is a nuisance parameter with the estimation
of Vy. With the kernel function K (x;, x), nearby data contribute more for the estimation of v and 3,
otherwise the model is a globally linear model without kernel. With simple calculation, the solution
can be obtained in a closed form:

( g > = (X Wi X)) X Wiy (35)
with the following matrices:
I (x1—x)" i
Xx = : : , (36)
1 (xy—x)"
Wy = diag{K(x1,x%),...,K(xn,x)}, and 37
y = [y....yn]'. (38)
Why is LLR the extension of the NW estimator? If we consider a simpler objective function
N
> (i — o)’ K(xi,%), (39)

i=1

we can find the optimal ¢ minimizing the objective function with a closed form solution:

> K(xi,x)
which is the solution of NW estimation. Therefore, we can consider LLR as the extension of the NW
estimator which estimates the slope of y(x) as well as y(x) at the point of interest x. In fact, if the

vector 3 (= Vy(x)) in LLR is estimated correctly, it eliminates the bias of « due to the slope of y(x)
and asymptotically, the bias of LLR is

a (40)

. h2v?
BlaSLLR = % (41)
where the asymptotic bias can be compared with that of the NW estimator:
Vip(x)V V2
Biasxw = h2 < p(X) y(X) + y(X) > (42)
p(x) 2

with an additional term hQW with the slope of y(x), Vy(x).

Note that the asymptotic variances for the two estimators are the same:

oy (x)

NAD(2y/m)Pp(x)’

Asymptotically, the additional fitting of the slope y(x) with more parameters eliminates the bias
due to that slope. However in many experiments with real data, it is reported that LLR does not
necessarily outperform NW estimation [2} 5]]. Similarly, our experiments incurred high dimensional
properties by using more parameters, and LLR was prone to overfit.

VarLLR = VarNW = (43)

2.1 Locally Linear Regression and Our Metric Learning

Interestingly, both LLR and our method tackle the first term of the asymptotic bias, h? W.

Our metric eliminates this term by choosing a particular metric A, and LLR does so by adopting more



parameters 3. When the true y(x) is a linear function with V2y(x) = 0, both methods eliminate the
asymptotic bias.

However, the two methods are completely different, and the experiments with linear and nonlinear
y(x) show that choosing a metric gives better results than LLR. In the ideal situation where y and x
are jointly Gaussian, LLR performs very well, as depicted in Fig.[I[a) when the linearity assumption
in LLR is satisfied, but once the linearity assumption breaks, the NW estimator usually performs
better than LLR, as shown in Fig. [[(b). In Fig.[I{b) when the Gaussian assumption is broken, it is
obvious that LLR does not make a good prediction. LLR is sensitive to the break of the assumption,
while the proposed metric simply reduces the MSE even with non-Gaussian data.

—b— MSE Euclidean
—b— MSE Metric Est param
—>—MSE LLR

—>— MSE Euclidean

—»— MSE Metric True param|
—>— MSE Metric Est param |
—P—MSE LLR

MSE from expectation of y
MSE from expectation of y

|og(hZ) —UISOQ(h)O 0.5 1 15 2
(a) y(x) is linear (b) y(x) is quadratic

Figure 1: LLR in high dimensional space (a) Linear condition is satisfied in 30-dimensional space,
with number of data 300. (b) Target function is quadratic in 50-dimensional space, with number of
data 500.

Our metric uses the estimated Gaussian parameters, but in Fig. a), we also present the MSE using
the metric from the “true parameters” (red). From the red curve, we can see that once we achieve the
true gradients, the result is better than the best result of LLR with optimal bandwidth. We also note
that in practice, the regime of bandwidth achieving the minimum MSE is very narrow for LLR (light
blue), and often the chosen bandwidth from training data does not perform well for testing data. On
the other hand, according to Fig.[T(a), the small MSE is achieved in metric learning throughout a
wide regime of bandwidth (black), and even a rough choice of bandwidth does not increase the MSE
significantly.

If we summarize the comparison between NW estimation with metric and LLR,

e Both use completely different approaches for regression, but they show the same asymptotic
B2 Y ) Vy(x)
p(x) )
o NW estimation obtains the metric information from a generative model (one Gaussian) using
all data globally, while LLR uses only local data to estimate both the y(x) and Vy(x).

e Empirically, LLR can achieve a very small MSE but only with an exactly chosen bandwidth.
The result is sensitively corrupted by the perturbation of bandwidth. While the MSE from
metric learning is insensitive to the choice of bandwidth.

results; they eliminate the first term of the bias,

2.2 Gaussian Process Regression and Locally Linear Regression

Although NW estimation, LLR, and Gaussian process regression (GPR) are the three most well-
known methods in nonparametric regression, the relationship among them has not been extensively
investigated. GPR considers an infinite dimensional Gaussian, and the regression performs the
inference using the mean of the conditional density function:

y(x) =k Ky (44)
where k is the vector with i-th element k; = K (x;,x), K is the matrix with K;; = K(x;,x;),
and y is the vector with its element y; = y;. In terms of computational complexity, GPR needs to



calculate the inverse of the N x N matrix K with the number of data IV, and LLR needs the inverse
of (D + 1) x (D + 1) matrix X, Wy X,| with the dimensionality D.

First, we note that we can prove LLR is a GPR with a particular choice of GPR kernel. Using
the inverse identity (P~! + BTR™!B)"'BTR™! = PBT(BPBT + R)"' with R=W_ !, B =
Xx, P = %I with small ~y, the following (D + 1) x N matrix can be reformulated

(X W X)X W, = lin})(XI Wi X +4I) 7 X Wy (45)
Y=
1 1
= lim —IX] (X, —IX] +Ww=H~! (46)
707y 2
= lim X (XX, + W H~L (47)
¥—0

Here, L = X5 X,] +yW~! € RV*N is a new kernel matrix with element

T
1 1 i

L = ij 4

=(xie) (o) ramm™ o

If we define a column vector I € RY with a kernel element between x; and x: 1, =

1\ 1 1
( > ( ) =e] ( ) with the column vectore; = [1 0 ... 0] .
X—X X; — X X; — X

Now we consider the regression function using an LLR closed form solution and reformulate it:

J(x) = el (X WeXx) "X, Wiy (49)
= e X} (XX +9W 7y (50)
= 1"y (51)

which is the same formulation as Eq. {4). B

Now we can understand LLR as a special problem of using the kernel defined in Eq. (48) and consider
the GPR as an extending algorithm of the NW estimator. Without any intervening metric, LLR and
GPR have each proposed their own ways of alleviating the bias for nonparametric regression with
kernels. The major difference between NW estimation and LLR/GPR is that the NW estimator only
performs interpolation. The prediction never gives smaller or greater values than the minimum or
maximum of the training outputs, respectively. In particular near the boundary, the unbalanced data
inside and outside the boundary produces bias toward the target values of data inside the boundary.

LLR and GPR do not produce this boundary issue using the extrapolation. LLR uses the slope
estimates using data inside the boundary [4], and it extrapolates using the estimated slope information.
GPR uses an even more flexible method for extrapolation.

In high dimensional space, flexible models suffer from the sparsity of data. For example, LLR
estimates the target value as well as its slope to help reduce the bias, but the slope estimation is prone
to overfit in high dimensional space. Without an appropriate choice of metric, the bias reduction of
flexible models is limited.

3 Local vs. Global Information

Algorithms can use local or global information. Nonparametric methods tend to use local information
from nearby data. Algorithms using global information use the statistics from all data. Total mean and
total covariance are the global information, and globally linear models also use global information.

Because global information cannot capture the detailed shape of the target function even with many
data, a global model cannot perform better than the local model when many data are given. However
in high dimensional space, the number of data cannot be large enough, so often global algorithms
work more robustly than the local model by using effectively more data. The discussion is similar to
that between discriminative and generative models [11]].

The NW estimator is purely a local algorithm; the information from the distant data does not affect the
result. Global configuration of data is never used for obtaining target value, and once significant noise



is applied to nearby data, the result becomes poor. Our metric learning uses a global configuration of
data, capturing the rough covariance structure of whole data and recommends the NW estimator to
give more attention to to the direction and importance of data. Without this metric, the NW estimator
simply ignores the information from global configuration.

LLR and GPR use only local information for prediction. In Table|l} we summarize the information
used by different algorithms. In the table, GMetric is the Gaussian metric in our paper. A global
metric was introduced to minimize the empirical MSE [21] (WMetric), and the metric introduced in
[8, 9]] also uses a global configuration of data (KMetric). In KMetric, the average gradient of each
coordinate is estimated to diminish the weight along the direction having a large average gradient.
Naturally, NW, LLR, and GPR themselves are vulnerable to noise because the effective amount of
utilized data is relatively small. However, the three metrics using global configuration of data are
robust to a small perturbation by noise.

Lastly, our work uses a metric that is different at each point, in contrast to WMetric and KMetric
which use a single metric throughout the space. Our metric depends on Vp(x) at each point x € R”,
but the gradient information comes from the global configuration of data which is robust to noise.
Although our metric uses global information, the applied metric is local depending on the point of
interest. Therefore, the proposed metric is the local metric using global information.

3.1 Non-Gaussianity of Data

The actual prediction is performed by the NW estimator, and the chosen metric only provides
the guidelines for more attention (kernel weights). Because the metric does not directly perform
prediction but only helps NW prediction, the non-Gaussianity of the raw-data is not critically harmful.
Once we have knowledge of all true gradients and Laplacians of data, we do not need a Gaussian
model, but a metric can be directly obtained with amazing NW estimation accuracy, as shown in
Fig.2(b) in the main manuscript.

If the metric is obtained from the information vulnerable to noise, it can be critically harmful. The
equation for the metric has to be simple and robust. By adopting a single Gaussian, we can obtain
a very simple, robust, and quick-to-calculate equation for metric from the analytic properties of
Gaussian.

In what follows, we summarize the reasons why the proposed algorithm provides empirically good
results for all eleven regression datasets:

e The NW estimator is a local algorithm which is very flexible but needs extremely many data.
The algorithm is supported by a metric learned from global information.

e A Gaussian model could provide an analytically derived metric. The metric equation is
simple and robust to noise.

e The proposed metric is a local metric that is more flexible than the global metrics such as
WDMetric and KMetric. Though the metric does not change through simple perturbation of
data by using global configuration of data.

e Non-Gaussianity does not necessarily make harmful results. Our rough Gaussian model
only captures the Gaussian component of the underlying density function with minimal
KL-divergence between the chosen Gaussian and the underlying density function.

e The obtained two-dimensional metric has the effect of dimensionality reduction. We are
now able to use the information from data orthogonal to the two-dimensional space, and the
proposed metric effectively lets the estimator use more data.

4 Comparison with Generative Local Metric for Nearest Neighbor
Classification

An idea for using rough generative models for metric learning is previously proposed in [13] for
nearest neighbor (NN) classification, and the research is extended to [14] providing competitive
results with the state of the art algorithms. Similar ideas have also appeared using asymptotic MSE
for NN classification, though this research does not use generative models [3]. In related research,
the asymptotic bias of NN classification is derived but not used for metric learning [20].



Table 1: Comparison of information for different algorithms

ALGORITHM INFORMATION FOR TRAIN | OBTAINED METRIC
NwW LOCAL

GMETRIC FOR NW GLOBAL LOCAL

LLR LOCAL

GPR LOCAL

WMETRIC FOR NW GLOBAL GLOBAL
KMETRIC FOR NW GLOBAL GLOBAL

NW: NADARAYA-WATSON ESTIMATOR
GMETRIC: GAUSSIAN METRIC

LLR: LOCALLY LINEAR REGRESSION
GPR: GAUSSIAN PROCESS REGRESSION
WMETRIC: WEINBERGER’S METRIC [21]]
KMETRIC: KPOTUFE’S METRIC [8, 9]

The proposed method is closely related to [13]. The idea is to use one Gaussian generative model
to capture the rough covariance structure and help a nonparametric algorithm reduce the bias. The
result of capturing the rough structure and applying the analytically derived metric efficiently reduces
the error for various datasets which are not necessarily close to Gaussian [[14].

We summarize the advances from these previous studies [13,[14]], and they are as follows:

e [13[14]] are designed for NN classification, and our metric is derived for NW estimation.
e Our metric for NW regression has a nice two-dimensional structure, while [13|[14] do not.
e The guarantee of the bias elimination for Gaussian is only applied to our method.

e Variance analysis is provided in our discussion, which also can possibly be applied back to
[13L[14].

e The metric depends on the gradient information which is more robustly estimated from data
than Laplacians, which are the main information for the metric in [13}[14].

5 Exemplar Models for Decision Making

In cognitive science, the NW estimator formulation is the most often used. Since the introduction of
Shepard to the exponential law [[18]], kernel regression formulation in NW estimation has become
the standard formulation for explaining human decision making [6l [19]. The set of models using
NW estimation are called the exemplar model for describing the psychological distance of human
memory.

The mathematical knowledge on distances and kernels can influence the cognitive modeling [[12} [7].
It is also shown in [[15] that exemplar model formulation is closely connected to another famous drift
diffusion model for decision making [[16l]. However, none of these methods has attempted to treat the
metric for better performance of decision making as far as the authors know.

6 Derivation of the Bias and the Variance of Nadaraya-Watson Estimation

6.1 Bias of Nadaraya-Watson regression

This section presents a detailed derivation of the Nadaraya-Watson (NW) bias. The derivation here is
a re-derivation of the bias from several previous studies [10, [17], though none was ever published
using the derived bias equation for metric learning. The bias we derive is the expected deviation of
the estimator from the true mean of the target variable y(x):

Bias = E[j(x)—y(x)] (52)

—y(x)|. 53
ZililK(Xi,,X) y() (53)



Assuming concentration in the denominator and the numerator, we obtain the bias. First, for the
denominator,

1 N
Eoy .. xn [N;K(Xi,x)] = E¢[K(t,x)] (54)
L (t;x) dt (55)
= / (p(x + hz)) K(z)dz (56)

2
= / <p(><) +hz' Vp+ %ZTVVpZ + O(h3))) K(z)dz (57)

2
= px) + D+ O, (58)

where we used the change of variable "‘T" = z to obtain Eq. from Eq. . The Jacobian

relationship, dt = h”dz with dimensionality D, is used, and h” from the Jacobian relationship is
canceled by the change in kernel: K (£7*) = K(z)/hP”. For the integration in Eq. leading

to Eq. , we assume that we are using a kernel satisfying [ K (z)dz = 1, [ zK(z)dz = 0, and
J zz' K (z)dz = I (e.g. a Gaussian kernel). Similarly, the expectation of the numerator becomes

N
1
]Eth,xN,yl,‘..,yN lNzK(X7Xl)yz] = Et,y [K(t7x)y] (59)
i=1

= [t () aay (60)

[ pwiw (o) + 590ty + 009y (61

h2
/ p(x, y)ydy + 5 / yV3p(x,y)dy + O(h')  (62)

2

= PO+ [ yeiedy £ O ()

In the second order term of h, we can further calculate [yV?p(x,y)dy = V2 [y - p(x,y)dy =

2Vp(x) " Vy(x) +y(x)V2p+ p(x)V2y(x), and the bias can be approximated up to the second order
of h:

S KXy (X)] e (va<x>vy<x> V2y(x)

4
>y K (x, %) p(x) Ty ) +O(h7). (64)

6.2 Variance of Nadaraya-Watson regression

2
. . . 1 o, (x)
The variance of the NW estimator is known to be NP @VRP 00
2

o,(x)=E [y?x] —E [y|x)* = J v*p(y|x)dy — y(x)? [4]. In fact, the asymptotic variance up to
the order of h2~ can be obtained as well, and we provide the derivation of the variance up to the

order of 42~ L in this section.

with conditional variance of v,

First, we consider the MSE of the NW estimator:

(Z;v_ Ky y(x)>2 (S K 0w — ) S, Kxi))

Sy K (%, %) =k (Zili1 Kix, X)>2 . (65)

For approximation with perturbation, we calculate the expectation of the nominator and denominator
separately. The denominator can be approximated with

1 N ? 1
E (N Z;K(xi,x)> = NE [K(t,x)Q] + (1 — N) E [K(t7x)]2, (66)



and the nominator can be approximated with

1 & 1 & i
E N ; K(xi,X)y; — Z/(X)N ; K(xi,x) (67)
1 & ’ 1 ’
= E (N;K(an)y) ] +y(x)’E N;K(Xi,x)> ] (68)
1 (& al
—2y(x)E el (Z K(x;,x) Z K(X,»,x)y,)]
— FEIKE0] + (14 4 ) B (©9)
+ %")QE [K(t,%x)%] + y(x)* (1 + 117) E[K(t,x)]°
- Q%E (K (t,%)%y] — 2y(x) (1 - ]1[) E[K(t,x)| E[K(t,x)y].

With similar derivation with the bias, the expectation can be calculated as

2,2 1 1 2 2 h’2 2.2 2 4
BIK%) = g {p(0% +00) + L0 4 y()p) + O}
(70)
2
BIKx%] = 45 mp (P00 + Vst + 00 | a
2 1 1 h‘2 2 4
E[K(t,x)?] = NG {p(x) + v p+O(h )}. (72)

By plugging the above three equations, Eq. (70), (7I), and the expectations in the previous
section, Eq. (58), (63) into Eq. (69), we can obtain the following approximation of the MSE:

N 2
i=1 (X, X
2
B4 (vzg(x) + va(px()xv)p(x)) (74)
Bias?

1 oy(x) B2 [(VPoi(x)p(x)] | (Vy(x))?

* NEp@yE)P { ey +2< TRESER )*O(’#)} 7
Variance

With the above derivation, the variance of the NW estimator can be derived as follows:

Variance = E[(7(x) — E[5(x)])?] (76)
1 op(x)  h* (Vi or(x)p(x)] | (Vy(z))? 4
NP (2/m) [mx) 2 ( a7 T pe) )*O(“ an

with 02(x) = [4*p(y|x)dy — y(x)* which is the conditional variance of y. For Gaussian data,

O'Z (x) is a constant, and the variance can be modified as

, 1 op hE( op _, (Vy(z))?
VaraneeGaussion = Ny (3 /)0 lmx) i <2p<x>2V P ey ) + O

(78)

10
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Figure 2: Empirical MSE of the NW estimator with generated data and calculated bias? and MSE.
Var is the leading term of the derived variance of order . ~". Vary is the variance up to the order of
h2~P . Data are generated using 3-dimensional Gaussian data where one dimensionality is used for y
and the other two dimensionalities are used for x.

In a low-dimensional space, the MSE in Eq. (74) and Eq {73) appr0x1mate the empirical MSE as

o5 (%)
Nh D(2f )P P69
by the noise upon the target value y, and o ( ) is invariant to the metric for x. We explained in
Section 4.3 of the main manuscript how we can effectively reduce the MSE with this leading term.
Instead of trying to reduce the variance, we focus on minimizing the bias and then perform the
bandwidth selection for MSE reduction.

shown in F1g The leading term of the variance is , and this term is mainly caused

7 Closed Form Solution of Eigenvectors

The eigenvectors and the eigenvalues of the matrix B = Vp(x)V'y(x) + Vy(x)V'p(x) can be
obtained in a closed form solution: the eigenvectors are

1 p(x) Vy(x) )
- ; d 79
. 2<1+cose><||w<x>|| vyol) " (79
1 Vp(x) Vy(x) )
- , 80
“2 2<1cose><||Vp<x>|| [y )] (80)
with corresponding eigenvalues
_ IVl vyl 1 .
A= T(X)(cosfﬂrl) 2p(x)(vy Vp+||Vyl|[|[Vpl]), and  (81)
_ IVellliVy()ll I To
o= o (080 = 1) = g (VT = (919D, 52

where 6 is the angle between two gradients Vp(x) and Vy(x).

The sum of the two eigenvalues is the same as the bias. These explicit solutions can also be used
for a faster calculation for metric Ay . In our work, Vy(x) is a constant vector due to a Gaussian
model, and only Vp(x) changes over points.

One particular point is where either Vy(x) or Vp(x) is zero. At this point, the estimation of the NW
estimator is unbiased regardless of the choice of metric. This happens when x and y are uncorrelated
(3yx = 0) or when we estimate the density at the center x = pi,. In these two special cases, metric
learning does not necessarily improve the leading terms of the bias.

11



8 Derivation of WMetric for Experiments
Our derivation of the gradient is slightly different from the derived result in [21]], and we have applied
our gradient in our experiment.

WDMetric in [21]] is a single global metric for all different points. The metric is obtained with
minimization of the empirical MSE:

R=Y (yi—0) (83)
where 3; = y(x;) = % is the NW estimator with the metric matrix A = LL". The
derivative of R with respect to L gives

OR [ o
=) 2yi—yi)|— ; 84
oL~ 2 (yi — %1) < 3L ) (84)
with additional derivatives
8@ 1 ~ aK(XZ‘, Xj)
= = i — Yi ) d 85
oL K(X,L',Xj) ;(y] y) oL an ( )
0K (x;,x; 1
% = _K(Xiaxj)g(xi —Xj)(Xi —Xj)TL, (86)

yielding a gradient of

OR 2 ( Yi — Vi N -
= (= S - K (ki) (ki - x) (ki - %) )L (87)
8L 02 ;Zj;éiK(xiﬂxj); J 7 7 J
Using the gradient, the transformation matrix L can be obtained, and the global metric matrix can
be obtained from A = LL . The correctly derived gradient is slightly different from the equation
presented in the original literature [21]. We used the gradient derived here in Eq. (§7) for the
“WMetric” in our experiments.

The calculation of the gradient is very costly because of the double summation of the matrices. In
Eq. (87), both summations are with respect to the data indexes, and the calculation of one gradient
scales with N2,
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