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Abstract

This paper shows how metric learning can be used with Nadaraya-Watson (NW)
kernel regression. Compared with standard approaches, such as bandwidth selec-
tion, we show how metric learning can significantly reduce the mean square error
(MSE) in kernel regression, particularly for high-dimensional data. We propose a
method for efficiently learning a good metric function based upon analyzing the
performance of the NW estimator for Gaussian-distributed data. A key feature of
our approach is that the NW estimator with a learned metric uses information from
both the global and local structure of the training data. Theoretical and empirical
results confirm that the learned metric can considerably reduce the bias and MSE
for kernel regression even when the data are not confined to Gaussian.

1 Introduction

The Nadaraya-Watson (NW) estimator has long been widely used for nonparametric regression
[16} 26]. The NW estimator uses paired samples to compute a locally weighted average via a kernel
function, K(-,-): RP? x RP — R, where D is the dimensionality of data samples. The resulting
estimated output for an input x € R¥ is given by the equation:

N
_ Zi:1 K(Xia X)yi
Y K(xi,x)

for data D = {x;,v;}Y, with x; € R? and y; € R, and a translation-invariant kernel
K(x;,x) = K((x — x;)?). This estimator is regarded as a fundamental canonical method in
supervised learning for modeling non-linear relationships using local information. It has previously
been used to interpret predictions using kernel density estimation [[11]], memory retrieval, decision
making models [[19]], minimum empirical mean square error (MSE) with local weights [10} 23], and
sampling-based Bayesian inference [25]]. All of these interpretations utilize the fact that the estimator
will asymptotically converge to the optimal [E;,(|x) [y] with minimum MSE given an infinite number
of data samples.

y(x) (D

However, with finite samples, the NW output 7(x) is no longer optimal and can deviate significantly
from the true conditional expectation. In particular, the weights given along the directions of large
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(b) K(x,x;; A)=K((x— xi)TA(x - x;))

Figure 1: Metric dependency of kernels. The level curves of kernels are hyper-spheres for isotropic
kernels in (a), while they are hyper-ellipsoids for kernels with the Mahalanobis metric as shown in (b).
The principal directions of hyper-ellipsoids are the eigenvectors of the symmetric positive definite
matrix A which is used in the Mahalanobis distance. When the target variable y varies along the Vy
direction in the figure, the weighted average will give less bias if the metric is extended along the
orthogonal direction of Vy as shown in (b).

variability in y—e.g. the direction of Vy as in Fig. [[(a)—causes significant deviation. In this case,
naively changing the kernel shape, as shown in Fig.[I[(b), can alleviate the deviation. In this work, we
investigate more sophisticated methods for finding appropriate kernel shapes via metric learning.

Metric learning is used to find specific directions with increased variability. Using information from
the training examples, metric learning shrinks or extends distances in directions that are more or
less important. A number of studies have focused on using metric learning for nearest neighbor
classification [3| 16, I8, [17, 27]], and many recent works have applied it to kernel methods as well
(12,113 28]]. Most of these approaches focus on modifying relative distances using triplet relationships
or minimizing empirical error with some regularization.

In conventional NW regression, the deviation due to finite sampling is mitigated by controlling the
bandwidth of the kernel function. The bandwidth controls the balance between the bias and the
variance of the estimator, and the finite-sample deviation is reduced with appropriate selection of the
bandwidth [9} 20, 21]]. Other approaches include trying to explicitly subtract an estimated bias [3 [24]]
or using a higher-order kernel which eliminates the leading-order terms of the bias [22]. However,
many of these direct approaches behave improperly in high-dimensional spaces for two reasons;
distance information is dominated by noise, and by using only nearby data, local algorithms suffer
due to the small number of data used effectively by the algorithms.

In this work, we apply a metric learning method for mitigating the bias. Differently from conventional
metric learning methods, we analyze the metric effect on the asymptotic bias and variance of the NW
estimator. Then we apply a generative model to alleviate the bias in a high-dimensional space. Our
theoretical analysis shows that with a jointly Gaussian assumption on x and ¥, the metric learning
method reduces to a simple eigenvector problem of finding a two-dimensional embedding space
where the noise is effectively removed. Our approach is similar to the previous method in applying a
simple generative model to mitigate the bias [18]], but our analysis shows that there always exists a
metric that eliminates the leading-order bias for any shape of Gaussians, and two dimensionality is
enough to achieve the zero bias. The algorithm based on this analysis shows a good performance for
many benchmark datasets. We interpret the result to mean that the NW estimator indirectly uses the
global information through the rough generative model, and the results are improved because the
information from the global covariance structure is additionally used, which would never be used in
NW estimation otherwise.

One well-known extension of NW regression for reducing its bias is locally linear regression (LLR)
[23]. LLR shows a zero-bias as well for data from Gaussian, but the parameter is solely estimated
locally, which is prone to overfitting in high-dimensional problems. In our experiments, we compare
our method with LLR and demonstrate that our method compares favorably with LLR and other
competitive methods..

The rest of the paper is organized as follows. In Section 2, we explain our metric learning formulation
for kernel regression. In Section 3, we derive the bias and its relationship to the metric, and our
proposed algorithm is introduced in Section 4. In Section 5, we provide experiments with other
standard regression methods, and conclude with a discussion in Section 6.



2 Metric Learning in Kernel Methods

We consider a Mahalanobis-type distance for metric learning. The Mahalanobis-type distance between
two data points x; € R and x; € RP is defined in this work as

i = %5114 = /(xi —x) TAGe —x;), (40, AT =4, |4]=1) )

with a symmetric positive definite matrix A € RP*D and |A|, the determinant of A. By using this
metric, we consider a metric space where the distance is extended or shrunk along the directions
of eigenvectors of A, while the volume of the hypersphere is kept the same due to the determinant
constraint. With an identity matrix A = I, we obtain the conventional Euclidean distance.

A kernel function capturing the local information typically decays rapidly outside a certain distance;
conventionally a bandwidth parameter h is used to control the effective number of data within the
range of interests. If we use the Gaussian kernel as an example, with the aforementioned metric and
bandwidth, the kernel function can be written as

LER )
h \/27TDhD

where the “relative” bandwidths along individual directions are determined by A, and the overall size
of the kernel is determined by h.

K(x;,x) = K( Xp (222 (xi — %) A(x; x)>, 3)

3 Bias of Nadaraya-Watson Kernel Estimator

We first note that our target function is the conditional expectation y(x) = E[y|x], and it is invariant
to metric change. When we consider a D-dimensional vector x € R” and its stochastic prediction
y € R, the conditional expectation y(x) = E[y|x] minimizes the MSE. If we consider two different
spaces with coordinates x € R” and z € R” and a linear transformation between these two spaces,
z = LTx, with a full-rank square matrix L € RP*P the expectation of y is invariant to the
coordinate change satisfying E[y|x] = E[y|z], because the conditional density is preserved by the
metric change: p(y|x) = p(y|z) for all corresponding x and z, and

Ely|x] = / y p(ylx)dy = / y plylz)dy = Elylz]. @

The equivalence means that the target function is invariant to metric change with A = LL T, and
considering that the NW estimator achieves the optimal prediction E[y|x] with infinite data, optimal
prediction is achieved with infinite data regardless of the choice of metric. Thus the metric dependency
is actually a finite sampling effect along with the bias and the variance.

3.1 Maetric Effects on Bias

The bias is the expected deviation of the estimator from the true mean of the target variable y(x):

SN K (xi,X)y;
vy K(xi,x)

Standard methods for calculating the bias assume asymptotic concentration around the means, both in
the numerator and in the denominator of the NW estimator. Usually, the numerator and denominator
of the bias are approximated separately, and the bias of the whole NW estimator is calculated using
a plug-in method [15| 23]. We assume a kernel satisfying [ K(z)dz = 1, [ zK(z)dz = 0, and
[ 22" K(z)dz = I. For example, the Gaussian kernel in Eq. (3) satisfies all of these conditions.
Then we can first approximate the denominator a

Bias = E[y(x) —y(x)] ZE[ —y(x)|- (5)

1 & h2
Ex,,..xn [N ZZ:; K(xi,x)] =p(x) + 7V2p(x) + (’)(h4)’ (6)

'See Appendix in the supplementary material for the detailed derivation.



with Laplacian V2, the trace of the Hessian with respect to x. Similarly, the expectation of the
numerator becomes

N 2
Exi...., NH > K(x, xi)yi] = p(x)y(x) + %Vﬂp(x)y(x)l +O(nY). )

i=1

Using the plug-ins of Eq. (6) and Eq. (7), we can find the leading-order terms of the NW estimation,
and the bias of the NW estimator can be obtained as follows:

Y K x)y ol 2 Vip(x)Vy(x) | VZy(x)
E[Ziilff(x,xi) " )1_h< w2

Here, all gradients V and Laplacians V? are with respect to x. We have noted that the target
y(x) = Ely|x] is invariant to the metric change, and the metric dependency comes from the finite
sample deviation terms. Here, both the gradient and the Laplacian in the deviation are dependent on
the change of metric A.

) + O(hh). (8)

3.2 Conventional Methods of Reducing Bias

Previously, there have been works intended to reduce the deviation [9} 20} 21]. A standard approach
is to adapt the size of bandwidth parameter / under the minimum MSE criterion. Bandwidth selection
has an intuitive motivation of balancing the tradeoff between the bias and the variance; the bias can
be reduced by using a small bandwidth but at the cost of increasing the variance. Therefore, for
bandwidth selection, the bias and variance criteria have to be used at the same time.

Another straightforward and well-known extension of the NW estimator is the locally linear regression
(LLR) [2} 23]. Considering that Eq. is the solution minimizing the local empirical MSE:

N
. 2
= i K 2] ’ 9
y(x) = argmin ;:1 (yi — @) K (x4, x) ©)
the LLR extends this objective function to
o 2
* : T

x), 7 (x)| = ar min P — Qo — x; — X)) K(x;,%X), 10
060 ")) = axg__gmin ) 3 (3= = 87 s =) K (10

to eliminate the noise produced by the linear component of the target function. The vector parameter
B*(x) € RP is the estimated local gradient using local data, and this vector often overfits in a
high-dimensional space resulting in a poor solution of a.

However, LLR asymptotically produces the bias of
2

}
Biasiir = %sz(x) +O(hY). (11)

Eq. (TI) can be compared with the NW bias in Eq. (8], where the bias term from the linear variation
T,
of y with respect to x, hQW, is eliminated.

4 Maetric for Nadaraya-Watson Regression

In this section, we propose a metric that appropriately reduces the metric-dependent bias of the NW
estimator.

4.1 Nadaraya-Watson Regression for Gaussian

In order to obtain a metric, we first provide the following theorem which guarantees the existence of
a good metric that eliminates the leading order bias at any point regardless of the configuration of
Gaussian.

Theorem 1: At any point X, there exists a metric matrix A, such that for data x € R and the output
y € R jointly generated from any (D + 1)-dimensional Gaussian, the NW regression with distance
d(x,x") = ||x — X'|| a, for x,x" € RP, has a zero leading-order bias.




Based on the theorem, we will consider using the corresponding metric space for NW regression at
each point. The theorem is proven using the following Proposition 2 and Lemma 3, which are general
claims without the Gaussian assumptions.

Proposition 2: There exists a symmetric positive definite matrix A that eliminates the first term
T,

% inside the bias in Eq. (8), when used with the metric in Eq. @), and when there exist two

linearly independent gradients of p(x) and y(x), and p(x) is away from zero.

Proof: We consider a coordinate transformation z = L " x with L satisfying A = LLT. The gradient
of a differentiable function y(.) and a density function p(.) with respect to z is

L 1V p(x), (12)

JE— _1 =17
=LV, V@) =1

z=LTx

V.y(z)

and the scalar V'p(x)Vy(x) in the Euclidean space can be rewritten in the transformed space as

Viop(z)Vay(z) = % (V—;p(Z)sz(z) + Viy(z)V, p(z)) (13)
= ﬁ (Vap(x)L™T L™ 'Vyy(x) + Vay(x) LT L7V p(x))  (14)
= m” [A™ (Vxy(x) Vi p(x) + Vep(x) Vi y(x))] - (15)

The symmetric matrix B = Vy(x)V "p(x) + Vp(x)V " y(x) has rank two with independent Vy(x)
and Vp(x) and can be eigen-decomposed as

B= [ul ug} ( Aol £2 > [ul uQ}T (16)

with eigenvectors u; and uy and nonzero eigenvalues Ay and \o. A sufficient condition for the
existence of A is that the two eigenvalues have different signs, in other words, A1 Ao < 0.

Let Ay > 0 and A2 < 0 without loss of generality, and we choose a positive definite matrix having
the following eigenvector decomposition:

A1 _0 .
A:{ul uQ~~~} 0 A2 ' {ul uQ~~~} . (17)

Then Eq. becomes zero, yielding a zero value for the first term of the bias with nonzero p(x).
Therefore, we can always find A that eliminates the first term of the bias once B has one positive and
one negative eigenvalue, and the following Lemma 3 proves that B always has one positive and one
negative eigenvalue. l

Lemma 3: A symmetric matrix B = (B'+B'") /2 has two nonzero eigenvalues for a rank one matrix
B’ = vV, with two linearly independent vectors, vi and vy. Here, one of the two eigenvalues is
positive, and the other is negative.

Proof: We can reformulate B as

1 1 0 1 T

B = §(V1V2T +vav]) = §[V1 Vz} ( 1 0 ) [V1 V2:|~ (18)
T

If we make a new square matrix of size two, M = {vl vz} B [vl vz}, the determinant of the

matrix is as follows using the eigen-decomposition of B with eigenvectors u; and uy and eigenvalues
A1 and Ag:

M| = [vl VQ} B[v1 VQ} (19)
_ [vl VQ}T[ul uQ} [ Aol f } {ul ugr[vl vz} (20)
= A2 (VlTU1V2TUQ — vlTugv2 ul) , 21



and at the same time, | M| is always negative by the following derivation:

o] [ 8) <0 e

From these calculations, A\; Ay < 0, and \; and A\, always have different signs. ll

1

M| = )

i va] B v

With Proposition 2 and Lemma 3, we always have a metric space associated with A in Eq. that
eliminates the leading order bias of a Gaussian, because V2y(x) = 0 is always satisfied for x and y
which are jointly Gaussian, eliminating the second term of Eq. (8) as well.

4.2 Gaussian Model for Metric Learning

We now know there exists an interesting scaling by a metric change where the NW regression achieves
the bias O(h*). The metric we use is as follows:

A 0
Anw = Blusu_] ( J Y ) [uru | 441, for |Anw|=1. (23)

Here, § is the constant determined from the constraint |Axw| = 1. We use one positive and one
negative eigenvalue, A, > 0 and A_ < 0, from matrix B:

B = Vy(x)V p(x) + Vp(x)V y(x), (24)

and their corresponding eigenvectors uy and u_. A small positive regularization constant -y is added
after being multiplied by the identity matrix.

By adding a regularization term to the metric, the deviation with exact Vp(x) and Vy(x) becomes

h? -1 _ _m? Ar A __4h? Ar — A
nonzero, but a small value, 5= tr[AgwB] = TIEE (MJrv /\7+v> = 5008 ( v ) +

O(~?). However, with small v, the deviation is still low unless p(x) is close to zero, or Vp(x) and
Vy(x) are parallel.

The matrix Anw is obtained for every point of interest, and the NW regression of each point is
performed with a different Anyw calculated at each point. Axw is a function of x, but the changing
part is only the rank two matrix, and the calculation is simple, since we only have to solve the
eigenvector problem of a 2 x 2 matrix for each query point regardless of the original dimensionality.
Note that the bandwidth A is not yet included for the optimization when we obtain the metric. After
we obtain the metric, we can still use bandwidth selection for even better MSE.

In order to obtain the metric Anw, at every query, we need the information of Vp(x) and Vy(x).
The knowledge of true y(x) and p(x) is unknown, and we need to obtain the gradient information
from data again. Previously, the gradient information was obtained locally with a small number of
samples [4} [7], but such methods are not preferred here because we need to overcome the corruption
of the local information in high-dimensional cases. Instead, we use a global parametric model: Using
a single Gaussian model for all data, we estimate the gradient of true y(x) and p(x) at each point
from the global configuration of data fitted by a single Gaussian:

P((2)) =2 () (3 %)

In fact, the target function y(x) = X,xX!(x — px) + py (See Appendix) can be analytically
obtained in a closed form when we estimate the parameters of the Gaussian, but we reuse y(x) for
enhancement of the NW regression, and the NW regression updates y(x) using local information. The

gradients for metric learning can be obtained using Vy(x) = 3 lixy and vp’(’i’)‘) = —f); H(x — Jix)

from the estimated parameters f]x, f]xy, and [iy if the global model is Gaussian. A pseudo-code of
the proposed method is presented in Algorithm T}

4.3 Interpretation of the Metric

The learned metric Anw considers the two-dimensional subspace spanned by Vp(x) =
—p(x)E 1 (x — px) and Vy(x) = X '3y,. The two-dimensionality analysis of the metric shows
that the distant points are used for those in the space orthogonal to this two-dimensional subspace.



Algorithm 1 Generative Local Metric Learning for NW Regression

Input: data D = {x;, y; }¥, and point for regression x
Output: regression output y(x)

Procedure:
1: Find joint covariance matrix X :< >y Zzyx ) and mean vector p :< Z Y ) from data D.
xy x X
2: Obtain two eigenvectors
Vp(x) Vy Vp(x) Vy
u; = + and ug = — , (26)
VeIl [[Vyl| VeIl [[Vyl|
and their corresponding eigenvalues
1 1
A= ——(Vy' d = TVp - 27
1 ) (Vy' Vp+[[Vyll[[Vpl]) and X, 2] (Vy Vo —||IVylll[Vpl)), @7
using
Vp(x) = —p(x)E ' (x — pix) and  Vy = 15, (28)

3: Obtain the transform matrix L using uy, us, A1, and As:

AL+ /T
L JXEFT
W s Vy/T
L= [rammean Ve v/ (29)

\ I E
VA/T

1
with 7= ((A1 +1)(=X2 + )7y 7?)P, a small constant v, and an orthonomal matrix U, €
RP*(P=2) spanning the normal space of u; and us.

4: Perform NW regression at z = L x using transformed dataz; = L' x;,i = 1,..., N.

This fact has the effect of virtually increasing the amount of data compared with algorithms with
isotropic kernels, particularly in high-dimensional space.

The following proposition gives an intuitive explanation that the bias reduction is more important
in high-dimensional space than the reduction of the variance once the optimal bandwidth has been
selected balancing the leading terms of the bias and variance after the change of metric. Proposition
2, Lemma 3, and the following Proposition 4 are obtained without any Gaussian assumption.

Proposition 4: Let us simplify the MSE as the squared bias obtained from the leading terms in
Eq. and the varianceﬂ ie.,

1
f(h)=h'Cy+ 50 31)

Then, at some h*, it has the the minimum f(h,) = Cy in the limit with infinite D, where D is the
dimensionality of data.

Proof: The optimal / can be obtained using 8’;(,?) =0, and the optimal A is
h=h.
1
1 D - CQ D+
h, = N—D+ . 32
() @)
?See Section 6 of the Appendix:

_ (YP@Vy) |, Yy _ 1 5

Cy = ( p(x) + 9 and Cy = (Qﬁ)D p(X) (30)
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Figure 2: (a) Metric calculation for a Gaussian and gradient Vy. (b) Empirical MSEs with and
without the metric. (c) Leading order terms in MSE with optimal bandwidth for various numbers of
data.

By plugging A, into f(h) in Eq. (31)), we obtain

4 D\ D+ 4 boes D _a_
f(hy) = N P+ <4> + (D) CrHeytt ~ Cp. (for D> 4). B (33)

In Proposition 4, the first term hiC; is the square of the bias, and the second term %WCQ is the
derived variance. The MSE is minimized in a high-dimensional space only through the minimization
of the bias when it is accompanied by the optimization with respect to the bandwidth h. The plot of
MSE in Fig. Jfc) shows that the MSE with bandwidth selection quickly approaches C1 in particular
with a small number of data. The derivation shows that we can ignore the variance optimization with
respect to the metric change. We only focus on achieving a small bias and rather than minimizing the
variance, the bandwidth selection follows later.

S Experiments

The proposed algorithm is evaluated using both synthetic and real datasets. For a Gaussian, Fig. [2{a)
depicts the eigenvectors along with the eigenvalues of the matrix B = VyV'p + VpV'y at different
points in the two-dimensional subspace spanned by Vy and Vp. The metric can be compared with
the adaptive scaling proposed in [[14], which determines the metric according to the average amount
of Vy. Our metric also uses Vy, but the metric is determined using the relationship with Vp.

Fig. (@) shows the metric eigenvalues and eigenvectors at each point for a two-dimensional Gaussian
with a covariance contour in the figure. With Gaussian data, the MSE with the proposed metric is
shown along with MSE with the Euclidean metric in Fig. 2[b). The metric is obtained from the
estimated parameter of a jointly Gaussian model, where the result with a learned metric shows a huge
difference in the MSE.

For real-data experiments, we used the Delve datasets (Abalone, Bank-8fm, Bank-32fh, CPU), UCI
datasets (Community, NavalC, NavalT, Protein, Slice), KEEL datasets (Ailerons, Elevators, Puma32h)
[1]], and datasets from a previous paper (Pendulum, Pol) [15]. The datasets include dozens of features
and several thousands to tens of thousands of data. Using a Gaussian model with regularized
maximum likelihood estimated parameters, we apply a metric which minimizes the bias with a fixed
v = max(|A1], |A2]) x 1072, and we choose h from a pre-chosen validation set. NW estimation with
the proposed metric (NW+GMetric) is compared with the conventional NW estimation (NW), LLR
(LLR), the previous metric learning method for NW regression (NW+WMetric [28]], NW+KMetric
[14]), a more flexible Gaussian process regression (GPR) with the Gaussian kernel, and the Gaussian

globally linear model (GGL) using y(x) = Syx Sy *(X — Jix) + fiy-

For eleven datasets among a total of fourteen datasets, the NW estimation with the proposed metric
statistically achieves one of the best performances. Even when the estimation does not achieve
the best performance, the metric always reduces the MSE from the original NW estimation. In
particular, in the Slice, Pol, CPU, NavalC, and NavalT datasets, GGL performs poorly showing the
non-Gaussianity of data, while the metric using the same information effectively reduces the MSE
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Figure 3: Regression with real-world datasets. NW is the NW regression with conventionial kernels,
NW+GMetric is the NW regression with the proposed metric, LLR is the locally linear regression,
NW+WMetric [28] and NW+KMetric [[14] are different metrics for NW regression, GPR is the
Gaussian process regression, and GGL is the Gaussian globally linear model. Normalized MSE
(NMSE) is the ratio between the MSE and the variance of the target value. If we constantly choose
the mean of the target, we get an NMSE of 1.

from the original NW estimator. A detailed discussion comparing the proposed method with other
methods for non-Gaussian data is provided in Section 3 and 4 of the Appendix.

6 Conclusions

An effective metric function is investigated for reducing the bias of NW regression. Our analysis has
shown that the bias can be minimized under certain generative assumptions. The optimal metric is
obtained by solving a series of eigenvector problems of size 2 by 2 and needs no explicit gradients or
curvature information.

The Gaussian model captures only the rough covariance structure of whole data. The proposed
approach uses the global covariance to identify the directions that are most likely to have gradient
components, and the experiments with real data show that the method is effective for more reliable
and less biased estimation. This is in contrast to LLR which attempts to eliminate the linear noise, but
the noise elimination relies on a small number of local data. In contrast, our model uses additional
information from distant data only if they are close in the projected two-dimensional subspace. As a
result, the metric allows a more reliable unbiased estimation of the NW estimator.

We have also shown that minimizing the variance is relatively unimportant in high-dimensional
spaces compared to minimizing the bias, especially when the bandwidth selection method is used.
Consequently, our bias minimization method can achieve sufficiently low MSE without the additional
computational cost incurred by empirical MSE minimization.
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