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Abstract

In this work we derive a variant of the classic Glivenko-Cantelli Theorem, which
asserts uniform convergence of the empirical Cumulative Distribution Function
(CDF) to the CDF of the underlying distribution. Our variant allows for tighter
convergence bounds for extreme values of the CDF.
We apply our bound in the context of revenue learning, which is a well-studied
problem in economics and algorithmic game theory. We derive sample-complexity
bounds on the uniform convergence rate of the empirical revenues to the true
revenues, assuming a bound on the kth moment of the valuations, for any (possibly
fractional) k > 1.
For uniform convergence in the limit, we give a complete characterization and a
zero-one law: if the first moment of the valuations is finite, then uniform conver-
gence almost surely occurs; conversely, if the first moment is infinite, then uniform
convergence almost never occurs.

1 Introduction

A basic task in machine learning is to learn an unknown distribution µ, given access to samples
from it. A natural and widely studied criterion for learning a distribution is approximating its
Cumulative Distribution Function (CDF). The seminal Glivenko-Cantelli Theorem [13, 6] addresses
this question when the distribution µ is over the real numbers. It determines the behavior of the
empirical distribution function as the number of samples grows: let X1, X2, . . . be a sequence of i.i.d.
random variables drawn from a distribution µ on R with Cumulative Distribution Function (CDF) F ,
and let x1, x2, . . . be their realizations. The empirical distribution µn is

µn ,
1

n

n∑
i=1

δxi ,
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where δxi is the constant distribution supported on xi. Let Fn denote the CDF of µn, i.e., Fn(t) ,
1
n ·
∣∣{1 ≤ i ≤ n : xi ≤ t}

∣∣. The Glivenko-Cantelli Theorem formalizes the statement that µn
converges to µ as n grows, by establishing that Fn(t) converges to F (t), uniformly over all t ∈ R:
Theorem 1.1 (Glivenko-Cantelli Theorem, [13, 6]). Almost surely,

lim
n→∞

sup
t

∣∣Fn(t)− F (t)
∣∣ = 0.

Some twenty years after Glivenko [13] and Cantelli [6] discovered this theorem, Dvoretzky, Kiefer,
and Wolfowitz (DKW) [12] strengthened this result by giving an almost1 tight quantitative bound on
the convergence rate. In 1990, Massart [17] proved a tight inequality, confirming a conjecture due to
Birnbaum and McCarty [3]:

Theorem 1.2 ([17]). Pr
[
supt

∣∣Fn(t)− F (t)
∣∣ > ε

]
≤ 2 exp(−2nε2) for all ε > 0, n ∈ N.

The above theorems show that, with high probability, F and Fn are close up to some additive error.
We would have liked to prove a stronger, multiplicative bound on the error:

∀t :
∣∣F (t)− Fn(t)

∣∣ ≤ ε · F (t).

However, for some distributions, the above event has probability 0, no matter how large n is. For
example, assume that µ satisfies F (t) > 0 for all t. Since the empirical measure µn has finite support,
there is t with Fn(t) = 0; for such a value of t, such a multiplicative approximation fails to hold.

So, the above multiplicative requirement is too strong to hold in general. A natural compromise is to
consider a submultiplicative bound:

∀t :
∣∣F (t)− Fn(t)

∣∣ ≤ ε · F (t)α,

where 0 ≤ α < 1. When α = 0, this is the additive bound studied in the context of the Glivenko-
Cantelli Theorem. When α = 1, this is the unattainable multiplicative bound. Our first main result
shows that the case of α < 1 is attainable:
Theorem 1.3 (Submultiplicative Glivenko-Cantelli Theorem). Let ε > 0, δ > 0 and 0 ≤ α < 1.
There exists n0(ε, δ, α) such that for all n > n0, with probability 1− δ:

∀t :
∣∣F (t)− Fn(t)

∣∣ ≤ ε · F (t)α.

It is worth pointing out a central difference between Theorem 1.3 and other generalizations of
the Glivenko-Cantelli Theorem: for example, the seminal work of Vapnik and Chervonenkis [24]
shows that for every class of events F of VC dimension d, there is n0 = n0(ε, δ, d) such that for
every n ≥ n0, with probability 1 − δ it holds that ∀A ∈ F :

∣∣p(A) − pn(A)
∣∣ ≤ ε. This yields

Glivenko-Cantelli by plugging F =
{

(−∞, t] : t ∈ R
}

, which has VC dimension 1. In contrast,
the submultiplicative bound from Theorem 1.3 does not even extend to the VC dimension 1 class
F =

{
{t} : t ∈ R

}
. Indeed, pick any distribution p over R such that p

(
{t}
)

= 0 for every t, and
observe that for every sample x1, . . . , xn, it holds that pn

(
{xi}

)
≥ 1/n, however p

(
{xi}

)
= 0, and

therefore, as long as α > 0, it is never the case that
∣∣∣p({xi})− pn({xi})∣∣∣ ≤ p({xi})α.

Our second main result gives an explicit upper bound on n0(ε, δ, α):
Theorem 1.4 (Submultiplicative Glivenko-Cantelli Bound). Let ε, δ ≤ 1/4, and α < 1. Then

n0(ε, δ, α) ≤ max

 ln
(
6/δ
)

2ε2

(εδ
3

)− 4α
1−α

, (D + 1)

(
10 · ln

(
12 · D + 4

δ(1− α)

)) 4α
1−α
 ,

where D = ln(6/δ)
2ε2

(
εδ
6 · ln

(
1+α
2α

))− 4α
1−α

.

Note that for fixed ε, δ, when α → 0 the above bound approaches the familiar O
(

ln(1/δ)
ε2

)
bound

by DKW [12] and Massart [17] for α = 0. On the other hand, when α→ 1 the above bound tends
1The inequality due to [12] has a larger constant C in front of the exponent on the right hand side.
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to∞, reflecting the fact that the multiplicative variant of Glivenko-Cantelli (α = 1) does not hold.
Theorems 1.3 and 1.4 are proven in the supplementary material.

Note that the dependency of the above bound on the confidence parameter δ is polynomial. This
contrasts with standard uniform convergence rates, which, due to applications of concentration bounds
such as Chernoff/Hoeffding, achieve logarithmic dependencies on δ. These concentration bounds are
not applicable in our setting when the CDF values are very small, and we use Markov’s inequality
instead. The following example shows that a polynomial dependency on δ is indeed necessary and is
not due to a limitation of our proof.

Example 1.5. For large n, consider n independent samples x1, . . . , xn from the uniform distribution
over [0, 1], and set α = 1/2 and ε = 1. The probability of the event

∃i : xi ≤ 1/n3

is roughly 1/n2: indeed, the complementary event has probability (1−1/n3)n ≈ exp(−1/n2) ≈ 1−
1/n2. When this happens, we have: Fn(1/n3) ≥ 1/n >> 1/n3+1/n3/2 = F (1/n3)+

[
F (1/n3)

]1/2
.

Note that this happens with probability inverse polynomial in n (roughly 1/n2) and not inverse
exponential.

An application to revenue learning. We demonstrate an application of our Submultiplicative
Glivenko-Cantelli Theorem in the context of a widely studied problem in economics and algorithmic
game theory: the problem of revenue learning. In the setting of this problem, a seller has to decide
which price to post for a good she wishes to sell. Assume that each consumer draws her private
valuation for the good from an unknown distribution µ. We envision that a consumer with valuation v
will buy the good at any price p ≤ v, but not at any higher price. This implies that the expected
revenue at price p is simply r(p) , p · q(p), where q(p) , PrV∼µ[V ≥ p].
In the language of machine learning, this problem can be phrased as follows: the examples domain
Z , R+ is the set of all valuations v. The hypothesis space H , R+ is the set of all prices p. The
revenue (which is a gain, rather than loss) of a price p on a valuation v is the function p · 1{p≤v}.
The well-known revenue maximization problem is to find a price p∗ that maximizes the expected
revenue, given a sample of valuations drawn i.i.d. from µ. In this paper, we consider the more
demanding revenue estimation problem: the problem of well-approximating r(p), simultaneously for
all prices p, from a given sample of valuations. (This clearly also implies a good estimation of the
maximum revenue and of a price that yields it.) More specifically, we address the following question:
when do the empirical revenues, rn(p) , p · qn(p), where qn(p) , PrV∼µn [V ≥ p] = 1

n ·
∣∣{1 ≤

i ≤ n : xi ≥ t}
∣∣, uniformly converge to the true revenues r(p)? More specifically, we would like to

show that for some n0, for n ≥ n0 we have with probability 1− δ that∣∣r(p)− rn(p)
∣∣ ≤ ε.

The revenue estimation problem is a basic instance of the more general problem of uniform conver-
gence of empirical estimates. The main challenge in this instance is that the prices are unbounded
(and so are the private valuations that are drawn from the distribution µ).

Unfortunately, there is no (upper) bound on n0 that is only a function of ε and δ. Moreover, even if
we add the expectation of valuations, i.e., E[V ] where V is distributed according to µ, still there is no
bound on n0 that is a function of only those three parameters (see Section 2.3 for an example). In
contrast, when we consider higher moments of the distribution µ, we are able to derive bounds on the
value of n0. These bounds are based on our Submultiplicative Glivenko-Cantelli Bound. Specifically,
assume that EV∼µ[V 1+θ] ≤ C for some θ > 0 and C ≥ 1. Then, we show that for any ε, δ ∈ (0, 1),
we have

Pr
[
∃v :

∣∣r(v)− rn(v)
∣∣ > ε

]
≤ Pr

[
∃v :

∣∣q(v)− qn(v)
∣∣ > ε

C
1

1+θ

q(v)
1

1+θ

]
.

This essentially reduces uniform convergence bounds to our Submultiplicative Glivenko-Cantelli
variant. It then follows that there exists n0(C, θ, ε, δ) such that for any n ≥ n0, with probability at
least 1− δ,

∀v :
∣∣rn(v)− r(v)

∣∣ ≤ ε.
3



We remark that when θ is large, our bound yields n0 ≈ O
(

ln(1/δ)
ε2

)
, which recovers the standard

sample complexity bounds obtainable via DKW [12] and Massart [17].

When θ → 0, our bound diverges to infinity, reflecting the fact (discussed above) that there is no
bound on n0 that depends only on ε, δ, and E[V ]. Nevertheless, we find that E[V ] qualitatively
determines whether uniform convergence occurs in the limit. Namely, we show that

• If Eµ[V ] <∞, then almost surely limn→∞ supv
∣∣r(v)− rn(v)

∣∣ = 0,

• Conversely, if Eµ[V ] =∞, then almost never limn→∞ supv
∣∣r(v)− rn(v)

∣∣ = 0.

1.1 Related work

Generalizations of Glivenko-Cantelli. Various generalizations of the Glivenko-Cantelli Theorem
were established. These include uniform convergence bounds for more general classes of functions as
well as more general loss functions (for example, [24, 23, 16, 2]). The results that concern unbounded
loss functions are most relevant to this work (for example, [9, 8, 23]). We next briefly discuss the
relevant results from Cortes et al. [8] in the context of this paper; more specifically, in the context of
Theorem 1.3. To ease presentation, set α in this theorem to be 1/2. Theorem 1.3 analyzes the event
where the empirical quantile is bounded by2

qn(p) ≤ q(p) + ε
√
q(p),

qn(p) ≥ q(p)− ε
√
q(p).

whereas, [8] analyzes the event where it is bounded it by:

qn(p) ≤ Õ
(
q(p) +

√
q(p)/n+ 1/n

)
,

qn(p) ≥ Ω̃
(
q(p)−

√
qn(p)/n− 1/n

)
Thus, the main difference is the additive 1/n term in the bound from [8]. In the context of uniform
convergence of revenues, it is crucial to use the upper bound on the empirical quantile as we do,
as it guarantees that large prices will not overfit, which is the main challenge in proving uniform
convergence in this context. In particular, the upper bound from [8] does not provide any guarantee
on the revenues of prices p >> n, as for such prices p · 1/n >> 1.

It is also worth pointing out that our lower bound on the empirical quantile implies that with high
probability the quantile of the maximum sampled point is at least 1/n2 (or more generally, at least
1/n1/α when α 6= 1/2), while the bound from [8] does not imply any non-trivial lower bound.

Another, more qualitative difference is that unlike the bounds in [8] that apply for general VC classes,
our bound is tailored for the class of thresholds (corresponding to CDF/quantiles), and does not
extend even to other classes of VC dimension 1 (see the discussion after Theorem 1.3).

Uniform convergence of revenues. The problem of revenue maximization is a central problem in
economics and Algorithmic Game Theory (AGT). The seminal work of Myerson [20] shows that
given a valuation distribution for a single good, the revenue-maximizing selling mechanism for this
good is a posted-price mechanism. In the recent years, there has been a growing interest in the case
where the valuation distribution is unknown, but the seller observes samples drawn from it. Most
papers in this direction assume that the distribution meets some tail condition that is considered
“natural” within the algorithmic game theory community, such as boundedness [18, 21, 19, 1, 14, 10]3,
such as a condition known as Myerson-regularity [11, 15, 7, 10], or such as a condition known as
monotone hazard rate [15].4 These papers then go on to derive computation- or sample-complexity

2For consistency with the canonical statement of the Glivenko-Cantelli theorem, we stated our submultiplica-
tive variants of this theorem with regard to the CDFs Fn and F . However, these results also hold when replacing
these CDFs with the respective quantiles (tail CDFs) qn and q. See Section 2.2 for details.

3The analysis of [1] assumes a bound on the realized revenue (from any possible valuation profile) of any
mechanism/auction in the class that they consider. For the class of posted-price mechanisms, this is equivalent
to assuming a bound on the support of the valuation distribution. Indeed, for any valuation v, pricing at v
gives realized revenue v (from the valuation v), and so unbounded valuations (together with the ability to post
unbounded prices) imply unbounded realized revenues.

4Both Myerson-regularity and monotone hazard rate are conditions on the second derivative of the revenue
as a function of the quantile of the underlying distribution. In particular, they impose restrictions on the tail of
the distribution.
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bounds on learning an optimal price (or an optimal selling mechanism from a given class) for a
distribution that meets the assumed condition.

A recurring theme in statistical learning theory is that learnability guarantees are derived via a,
sometimes implicit, uniform convergence bound. However, this has not been the case in the context
of revenue learning. Indeed, while some papers that studied bounded distributions [18, 21, 19, 1]
did use uniform convergence bounds as part of their analysis, other papers, in particular those
that considered unbounded distributions, had to bypass the usage of uniform convergence by more
specialized arguments. This is due to the fact that many unbounded distributions do not satisfy
any uniform convergence bound. As a concrete example, the (unbounded, Myerson-regular) equal
revenue distribution5 has an infinite expectation and therefore, by our Theorem 2.3, satisfies no
uniform convergence, even in the limit. Thus, it turns out that the works that studied the popular
class of Myerson-regular distributions [11, 15, 7, 10] indeed could not have hoped to establish
learnability via a uniform convergence argument. For instance, the way [11, 7] establish learnability
for Myerson-regular distributions is by considering the guarded ERM algorithm (an algorithm that
chooses an empirical revenue maximizing price that is smaller than, say, the

√
nth largest sampled

price), and proving a uniform convergence bound, not for all prices, but only for prices that are, say,
smaller than the

√
nth largest sampled price, and then arguing that larger prices are likely to have a

small empirical revenue, compared to the guarded empirical revenue maximizer. This means that the
guarded ERM will output a good price, but it does not (and cannot) imply uniform convergence for
all prices.

We complement the extensive literature surveyed above in a few ways. The first is generalizing
the revenue maximization problem to a revenue estimation problem, where the goal is to uniformly
estimate the revenue of all possible prices, when no bound on the possible valuations is given (or
even exists). The problem of revenue estimation arises naturally when the seller has additional
considerations when pricing her good, such as regulations that limit the price choice, bad publicity
if the price is too high (or, conversely, damage to prestige if the price is too low), or willingness to
suffer some revenue loss for better market penetration (which may translate to more revenue in the
future). In such a case, the seller may wish to estimate the revenue loss due to posting a discounted
(or inflated) price.

The second, and most important, contribution to the above literature is that we consider arbitrary
distributions rather than very specific and limited classes of distributions (e.g., bounded, Myerson-
regular, monotone hazard rate, etc.). Third, we derive finite sample bounds in the case that the
expected valuation is bounded for some moment larger than 1. We further derive a zero-one law for
uniform convergence in the limit that depends on the finiteness of the first moment. Technically, our
bounds are based on an additive error rather than multiplicative ones, which are popular in the AGT
community.

1.2 Paper organization

The rest of the paper is organized as follows. Section 2 contains the application of our Submulti-
plicative Glivenko-Cantelli to revenue estimation, and Section 3 contains a discussion and possible
directions of future work. The proof of the Submultiplicative Glivenko-Cantelli variant, and some
extensions of it, appear in the supplementary material.

2 Uniform Convergence of Empirical Revenues

In this section we demonstrate an application of our Submultiplicative Glivenko-Cantelli variant by
establishing uniform convergence bounds for a family of unbounded random variables in the context
of revenue estimation.

2.1 Model

Consider a good g that we wish to post a price for. Let V be a random variable that models the
valuation of a random consumer for g. Technically, it is assumed that V is a nonnegative random
variable, and we denote by µ its induced distribution over R+. A consumer who values g at a

5This is a distribution that satisfies the special property that all prices have the same expected revenue.
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valuation v is willing to buy the good at any price p ≤ v, but not at any higher price. This implies
that the realized revenue to the seller from a (posted) price p is the random variable p · 1{p≤V }. The
quantile of a value v ∈ R+ is

q(v) = q(v;µ) , µ
(
{x : x ≥ v}

)
.

This models the fraction of the consumers in the population that are willing to purchase the good if
priced at v. The expected revenue from a (posted) price p ∈ R+ is

r(p) = r(p;µ) , E
µ

[
p · 1{p≤V }

]
= p · q(p).

Let V1, V2, . . . be a sequence of i.i.d. valuations drawn from µ, and let v1, v2, . . . be their realizations.
The empirical quantile of a value v ∈ R+ is

qn(v) = q(v;µn) , 1
n ·
∣∣{1 ≤ i ≤ n : vi ≥ v}

∣∣.
The empirical revenue from a price p ∈ R+ is

rn(p) = r(p;µn) , E
µn

[
p · 1{p≤V }

]
= p · qn(p).

The revenue estimation error for a given sample of size n is

εn , sup
p

∣∣rn(p)− r(p)
∣∣.

It is worth highlighting the difference between revenue estimation and revenue maximization. Let p∗
be a price that maximizes the revenue, i.e., p∗ ∈ arg supp r(p). The maximum revenue is r∗ = r(p∗).
The goal in many works in revenue maximization is to find a price p̂ such that r∗ − r(p̂) ≤ ε, or
alternatively, to bound r∗/r(p̂).

Given a revenue-estimation error εn, one can clearly maximize the revenue within an additive error
of 2εn by simply posting a price p∗n ∈ arg maxp rn(p), thereby attaining revenue r∗n = r(p∗n). This
follows since

r∗n = r(p∗n) ≥ rn(p∗n)− εn ≥ rn(p∗)− εn ≥ r(p∗)− 2εn = r∗ − 2εn.

Therefore, good revenue estimation implies good revenue maximization.

We note that the converse does not hold. Namely, there are distributions for which revenue maximiza-
tion is trivial but revenue estimation is impossible. One such case is the equal revenue distribution,
where all values in the support of µ have the same expected revenue. For such distributions, the
problem of revenue maximization becomes trivial, since any posted price is optimal. However, as
follows from Theorem 2.3, since the expected revenue of such distributions is infinite, almost never
do the empirical revenues uniformly converge to the true revenues.

2.2 Quantitative bounds on the uniform convergence rate

Recall that we are interested in deriving sample bounds that would guarantee uniform convergence
for the revenue estimation problem. We will show that given an upper bound on the kth moment of
V for some k > 1, we can derive a finite sample bound. To this end we utilize our Submultiplicative
Glivenko-Cantelli Bound (Theorem 1.4).

We also consider the case of k = 1, namely that E[V ] is bounded, and show that in this case there is
still uniform convergence in the limit, but that there cannot be any guarantees on the convergence
rate. Interestingly, it turns out that E[V ] <∞ is not only sufficient but also necessary so that in the
limit, the empirical revenues uniformly converge to the true revenues (see Section 2.3).

We begin by showing that bounds on the kth moment for k > 1 yield explicit bounds on the
convergence rate. It is convenient to parametrize by setting k = 1 + θ, where θ > 0.
Theorem 2.1. Let EV∼µ[V 1+θ] ≤ C for some θ > 0 and C ≥ 1, and let ε, δ ∈ (0, 1). Set6

n0 = Õ

(
ln(1/δ)

ε2
C

2
1+θ

(
6 · C

1
1+θ

εδ ln
(
1 + θ/2

))4/θ
)
. (1)

For any n ≥ n0, with probability at least 1− δ,
∀v :

∣∣rn(v)− r(v)
∣∣ ≤ ε.

6The Õ conceals low order terms.
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Note that when θ is large, this bound approaches the standard O
(

ln(1/δ)
ε2

)
sample complexity bound

of the additive Glivenko-Cantelli. For example, if all moments are uniformly bounded, then the
convergence is roughly as fast as in standard uniform convergence settings (e.g., VC-dimension based
bounds).

The proof of Theorem 2.1 follows from Theorem 1.4 and the next proposition, which reduces bounds
on the uniform convergence rate of the empirical revenues to our Submultiplicative Glivenko-Cantelli.
Proposition 2.2. Let EV∼µ[V 1+θ] ≤ C for some θ > 0 and C ≥ 1, and let ε, δ ∈ (0, 1). Then,

Pr
[
∃v :

∣∣r(v)− rn(v)
∣∣ > ε

]
≤ Pr

[
∃v :

∣∣q(v)− qn(v)
∣∣ > ε

C
1

1+θ

q(v)
1

1+θ

]
.

Thus, to prove Theorem 2.1, we first note that Theorem 1.4 (as well as Theorem 1.3) also holds
when Fn and F are respectively replaced in the definition of n0 with qn and q (indeed, applying
Theorem 1.4 to the measure µ′ defined by µ′(A) , µ

(
{−a | a ∈ A}

)
yields the required result with

regard to the measure µ). We then plug ε← ε

C
1

1+θ
and α← 1

1+θ into this variant of Theorem 1.4 to

yield a bound on the right-hand side of the inequality in Proposition 2.2, whose application concludes
the proof.

Proof of Proposition 2.2. By Markov’s inequality:

q(v) = Pr[V ≥ v] = Pr[V 1+θ ≥ v1+θ] ≤ C

v1+θ
. (2)

Now,

Pr
[
∃v :

∣∣r(v)−rn(v)
∣∣ > ε

]
= Pr

[
∃v :

∣∣v · q(v)−v · qn(v)
∣∣ > ε

]
= Pr

[
∃v :

∣∣v · q(v)−v · qn(v)
∣∣ > ε

(v1+θ · q(v))
1

1+θ

(v1+θ ·q(v))
1

1+θ

]
≤ Pr

[
∃v :

∣∣v · q(v)−v · qn(v)
∣∣ > ε

C
1

1+θ

(v1+θ ·q(v))
1

1+θ

]
= Pr

[
∃v :

∣∣q(v)−qn(v)
∣∣ > ε

C
1

1+θ

q(v)
1

1+θ

]
.

where the inequality follows from Equation (2).

2.3 A qualitative characterization of uniform convergence

The sample complexity bounds in Theorem 2.1 are meaningful as long as θ > 0, but deteriorate
drastically as θ → 0. Indeed, as the following example shows, there is no bound on the uniform
convergence sample complexity that depends only on the first moment of V , i.e., its expectation.

Consider a distribution ηp so that with probability p we have V = 1/p and otherwise V = 0. Clearly,
E[V ] = 1. However, we need to sample mp = O(1/p) valuations to see a single nonzero value.
Therefore, there is no bound on the sample sizemp as a function of the expectation, which is simply 1.

We can now consider the higher moments of ηp. Consider the kth moment, for k = 1 + θ and
θ > 0, so k > 1. For this moment, we have Ap,θ = E[V 1+θ] = pθ/(1+θ), which implies that
mp = O

(
1/(Ap,θ)

(1+θ)/θ
)
. This does allow us to bound mp as a function of θ and E[V 1+θ], but for

small θ we have a huge exponent of approximately 1/θ.

While the above examples show that there cannot be a bound on the sample size as a function of the
expectation of the value, it turns out that there is a very tight connection between the first moment
and uniform convergence:
Theorem 2.3. The following dichotomy holds for a distribution µ on R+:

1. If Eµ[V ] <∞, then almost surely limn→∞ supv
∣∣r(v)− rn(v)

∣∣ = 0.

2. If Eµ[V ] =∞, then almost never limn→∞ supv
∣∣r(v)− rn(v)

∣∣ = 0.
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That is, the empirical revenues uniformly converge to the true revenues if and only if Eµ[V ] <∞.

We use the following basic fact in the Proof of Theorem 2.3:
Lemma 2.4. Let X be a nonnegative random variable. Then

∞∑
n=1

Pr[X ≥ n] ≤ E[X] ≤
∞∑
n=0

Pr[X ≥ n].

Proof. Note that:
∞∑
n=1

1{X≥n} = bXc ≤ X ≤ bXc+ 1 =

∞∑
n=0

1{X≥n}.

The lemma follows by taking expectations.

Proof of Theorem 2.3. We start by proving item 2. Let µ be a distribution such that Eµ
[
V
]

=∞. If
supv v · q(v) = ∞ then for every realization v1, . . . , vn there is some v ≥ max{v1, . . . , vn} such
that v ·q(v) ≥ 1, but v ·qn(v) = 0. So, we may assume supv v ·q(v) <∞. Without loss of generality
we may assume that supv v ·q(v) = 1/2 by rescaling the distribution if needed. Consider the sequence
of events E1, E2, . . . where En denotes the event that Vn ≥ n. Since Eµ

[
V
]

= ∞, Lemma 2.4
implies that

∑∞
n=1 Pr[En] =∞. Thus, since these events are independent, the second Borel-Cantelli

Lemma [4, 5] implies that almost surely, infinitely many of them occur and so infinitely often

Vn · qn(Vn) ≥ 1 ≥ Vn · q(Vn) + 1
2 .

Therefore, the probability that v · qn(v) uniformly converge to v · q(v) is 0.

Item 1 follows from the following monotone domination theorem:

Theorem 2.5. Let F be a family of nonnegative monotone functions, and let F be an upper envelope7

for F . If Eµ[F ] <∞, then almost surely:

lim
n→∞

sup
f∈F

∣∣E
µ

[f ]− E
µn

[f ]
∣∣ = 0.

Indeed, item 1 follows by plugging F =
{
v · 1x≥v : v ∈ R+

}
, which is uniformly bounded by the

identity function F (x) = x. Now, by assumption Eµ[F ] <∞, and therefore, almost surely

lim
n→∞

sup
v∈R+

∣∣r(v)− rn(v)
∣∣ = lim

n→∞
sup
f∈F

∣∣E
µ

[f ]− E
µn

[f ]
∣∣ = 0.

Theorem 2.5 follows by known results in the theory of empirical processes (for example, with some
work it can be proved using Theorem 2.4.3 from Vaart and Wellner [22]). For completeness, we give
a short and basic proof in the supplementary material.

3 Discussion

Our main result is a submultiplicative variant of the Glivenko-Cantelli Theorem, which allows for
tighter convergence bounds for extreme values of the CDF. We show that for the revenue learning
setting our submultiplicative bound can be used to derive uniform convergence sample complexity
bounds, assuming a finite bound on the kth moment of the valuations, for any (possibly fractional)
k > 1. For uniform convergence in the limit, we give a complete characterization, where uniform
convergence almost surely occurs if and only if the first moment is finite.

It would be interesting to find other applications of our submultiplicative bound in other settings. A
potentially interesting direction is to consider unbounded loss functions (e.g., the squared-loss, or
log-loss). Many works circumvent the unboundedness in such cases by ensuring (implicitly) that
the losses are bounded, e.g., through restricting the inputs and the hypotheses. Our bound offers a
different perspective of addressing this issue. In this paper we consider revenue learning, and replace
the boundedness assumption by assuming bounds on higher moments. An interesting challenge is to

7F is an upper envelope for F if F (v) ≥ f(v) for every v ∈ V and f ∈ F .
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prove uniform convergence bounds for other practically interesting settings. One such setting might
be estimating the effect of outliers (which correspond to the extreme values of the loss).

In the context of revenue estimation, this work only considers the most naïve estimator, namely of
estimating the revenues by the empirical revenues. One can envision other estimators, for example
ones which regularize the extreme tail of the sample. Such estimators may have a potential of
better guarantees or better convergence bounds. In the context of uniform convergence of selling
mechanism revenues, this work only considers the basic class of posted-price mechanisms. While
for one good and one valuation distribution, it is always possible to maximize revenue via a selling
mechanism of this class, this is not the case in more complex auction environments. While in many
more-complex environments, the revenue-maximizing mechanism/auction is still not understood well
enough, for environments where it is understood [7, 10, 14] (as well as for simple auction classes that
do not necessarily contain a revenue-maximizing auction [19, 1]) it would also be interesting to study
relaxations of the restrictive tail or boundedness assumptions currently common in the literature.
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