
A Learning Error Analysis for Structured Prediction
with Approximate Inference (Supplementary)

Yuanbin Wu1, 2, Man Lan1, 2, Shiliang Sun1, Qi Zhang3, Xuanjing Huang3

1School of Computer Science and Software Engineering, East China Normal University
2Shanghai Key Laboratory of Multidimensional Information Processing

3School of Computer Science, Fudan University
{ybwu, mlan, slsun}@cs.ecnu.edu.cn, {qz, xjhuang}@fudan.edu.cn

1 Proofs

1.1 Proof of Theorem 4

Proof. Let distribution P,Q be both Gaussian:

P (w′) =
1

Z1
exp{−∥w′∥2

2
}, Q(w′|w) = 1

Z2
exp{−∥w′ − αw∥2

2
},

where α is a parameter which will be set later, and DKL(Q∥P ) = α2∥w∥2

2 . We assume the following
claim is true and prove it later.

Claim 1. Let α = (1+ ρ)
√

2 ln 2mλS

∥w∥2 , then with probability at least 1− ∥w∥2

m over the selection of
w′, the following holds for any xi:

h-(xi, w
′) ∈ {y|mρi

(xi, y
∗
i , y, w) ≤ Mi} if h′(·, w) ∈ H- (1)

h+(xi, w
′) ∈ {y|mρi

(xi, y
∗
i , y, w) ≥ −Mi} if h′(·, w) ∈ H+. (2)

We consider underestimate inference (the proof is similar in the case of overestimate inference). For
simplicity, denote the set of w′ satisfying Equation (1) by Ai(w

′). We have

EQ(w′|w)l(yi, h
-(xi, w

′))

=

∫
Ai(w′)

l(yi, h
-(xi, w

′))dQ+

∫
Ac

i (w
′)

l(yi, h
-(xi, w

′))dQ

≤max
y

l(yi, y)I(mρi
(xi, y

∗
i , y, w) ≤ Mi) +

∥w∥2

m
.

Summing over i and using Lemma 2, we get the conclusion:

L(Q,S, h(·, w))

≤ 1

m

m∑
i=1

max
y

l(yi, y)I(mρi
(xi, y

∗
i , y, w) ≤ Mi) +

∥w∥2

m

= L(w, S) + ∥w∥2

m
.

We are left to prove the claim. We will first focus on underestimation (Equation 1). From the
property of the Gaussian distribution, for any ε > 0 we have

Pw′∼Q(w′|w)(|w′
p − αwp| ≥ ε) ≤ 2 exp(−ε2

2
),
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where wp is an element in w. For any y, using the union bound over all non-zero feature dimension
of Φ(xi, y), we have |w′

p − αwp| < ε with probability at least 1− 2λS exp
(
− ε2

2

)
over the choice

of w′. For those w′, if some y implies mρi(xi, y
∗
i , y, w) > Mi, then

mρi
(xi, h(xi, w

′), y, w′)≥ mρi
(xi, y

∗
i , y, w

′)

= mρi
(xi, y

∗
i , y, αw) +mρi

(xi, y
∗
i , y, w

′ − αw)

> αMi + (w′ − αw)⊺∆ρi
(xi, y

∗
i , y)

> αMi − ε∥∆ρi
(xi, y

∗
i , y)∥1.

Taking α = ε(1+ρ), we get mρi(xi, h(xi, w
′), y, w′) > 0, which means y ̸= h′(xi, w

′). Finally, the

value of α can be obtained by 2λS exp
(
− ε2

2

)
≤ ∥w∥2

m . We complete the proof for underestimate
approximation.

For overestimation (Equation 2), we have a similar argument. If some y implies mρi(xi, y
∗
i , y, w) <

−Mi, then

mρi(xi, h(xi, w
′), y, w′)= mρi(xi, h(xi, w

′), y, αw) +mρi(xi, h(xi, w
′), y, w′ − αw)

≤ mρi
(xi, y

∗
i , y, αw) +mρi

(xi, h(xi, w
′), y, w′ − αw)

< −αMi + (w′ − αw)⊺∆ρi
(xi, h(xi, w

′), y)

< −αMi + ε∥∆ρi
(xi, h(xi, w

′), y)∥1.

Taking α = ε(1 + ρ), we get mρi(xi, h(xi, w
′), y, w′) < 0, which means y ̸= h′(xi, w

′).

1.2 Proof of Theorem 6

Proof. Let y′∗i = h(xi, w
′), y′-i = h-(xi, w

′), y′+i = h+(xi, w
′), we first establish the following upper

bound for mρi(xi, y
′∗
i , y′-i , w

′).

mρi
(xi, y

′∗
i , y′-i , w

′)

= ρiw
′⊺Φ(xi, y

′∗
i )− w′⊺Φ(xi, y

′-
i )

≤ ρiw
′⊺Φ(xi, y

′∗
i )− w′⊺Φ(xi, y

′-
i )−ρiw

⊺Φ(xi, y
∗
i ) + w⊺Φ(xi, y

-
i)︸ ︷︷ ︸

≥0

= ρiw
′⊺Φ(xi, y

′∗
i )− ρiw

⊺Φ(xi, y
′∗
i ) + ρiw

⊺Φ(xi, y
′∗
i )− ρiw

⊺Φ(xi, y
∗
i )︸ ︷︷ ︸

≤0

+w⊺Φ(xi, y
-
i)− w′⊺Φ(xi, y

′-
i )

≤ ρi(w
′ − w)⊺Φ(xi, y

′∗
i ) + w⊺Φ(xi, y

-
i)− w′⊺Φ(xi, y

′-
i )︸ ︷︷ ︸

τ -stable

≤ ρi∥w′ − w∥∞Mi + τ∥w′ − w∥∞Mi

≤ (ρi + τ)∥w′ − w∥∞Mi.

Similarly, for mρi
(xi, y

′∗
i , y′+i , w

′), we have the following lower bound.

mρi
(xi, y

′∗
i , y′+i , w

′)

= ρiw
′⊺Φ(xi, y

′∗
i )− w′⊺Φ(xi, y

′+
i )

≥ ρiw
′⊺Φ(xi, y

′∗
i )− w′⊺Φ(xi, y

′+
i )−ρiw

⊺Φ(xi, y
∗
i ) + w⊺Φ(xi, y

+
i )︸ ︷︷ ︸

≤0

= ρiw
′⊺Φ(xi, y

′∗
i )− ρiw

⊺Φ(xi, y
∗
i ) + w⊺Φ(xi, y

+
i )− w′⊺Φ(xi, y

′+
i )

≥ ρiw
′⊺Φ(xi, y

∗
i )− ρiw

⊺Φ(xi, y
∗
i ) + w⊺Φ(xi, y

+
i )− w′⊺Φ(xi, y

′+
i )︸ ︷︷ ︸

τ -stable

≥ ρi(w
′ − w)⊺Φ(xi, y

∗
i )− τ∥w′ − w∥∞Mi

≥ −(ρi + τ)∥w′ − w∥∞Mi.

To complete the proof, we are left to establish the following claim which is similar to Claim 1 in
Theorem 4.
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Claim 2. Let α = (1+2ρ+τ)
√
2 ln 2mλS

∥w∥2 , then with probability at least 1− ∥w∥2

m over the selection
of w′, the following holds for any xi:

h-(xi, w
′) ∈ {y|mρi(xi, y

∗
i , y, w) ≤ Mi}.

h+(xi, w
′) ∈ {y|mρi(xi, y

∗
i , y, w) ≥ −Mi}.

First, for the case of underestimation, using the property of Gaussian distribution and the union
bound (like the proof of Theorem 4), we have |w′

p − αwp| < ε with probability at least

1− 2λS exp
(
− ε2

2

)
over the choice of w′. For those w′, if some y implies mρi(xi, y

∗
i , y, w) > Mi,

then

mρi(xi, h(xi, w
′), y, w′)≥ mρi(xi, y

∗
i , y, w

′)

= mρi
(xi, y

∗
i , y, αw) +mρi

(xi, y
∗
i , y, w

′ − αw)

> αMi + (w′ − αw)⊺∆ρi
(xi, y

∗
i , y)

> αMi − ε∥∆ρi
(xi, y

∗
i , y)∥1.

Taking α = (1 + 2ρ + τ)ε, we get mρ(xi, h(xi, w
′), y, w′) > (ρ + τ)εMi, which means y ̸=

h(xi, w
′). Similarly, we can establish the claim for the case of overestimation.

1.3 Mistake Bounds of Algorithm 3

The mistake bounds results (and their proofs) of structured percetron and PA are almost identical to
the results with exact inference algorithms. We only show the bounds of the structured perceptron
which is from Collins [2002]. For PA, we refer the readers to Crammer et al. [2006].
Theorem 3. Let h-(·, w) be a ρ-approximation of h(·, w) for all w. If there is a u such that
mρ(x, y, y

-, u) ≥ δ > 0 and R = supx,y ∥Φ(x, y)∥2, then the number of mistakes made by the

structured prediction in Figure 3 is bounded by 2(1+ρ)R2

δ2 .

Proof. Let NT be the number of mistakes which have been made before round T . Following the
standard argument,

u⊺wt+1= u⊺wt + u⊺(ρΦ(xt, yt)− Φ(xt, y
-
t)) ≥ NT δ,

∥wt+1∥2= ∥wt∥2 + 2w⊺
t (ρΦ(xt, yt)− Φ(xt, y

-
t)) + ∥ρΦ(xt, yt)− Φ(xt, y

-
t)∥2

≤ ∥vt∥2 + 2(1 + ρ)R2 ≤ 2NT (1 + ρ)R2.

The inequality is from w⊺
t Φ(xt, y

-
t) > ρw⊺

t Φ(xt, y
∗
t ).

Remark. Note that the above mistake bound requires h-(·, w) to be a ρ-approximation over all w.
We could relax the requirement that only for the u, h-[u] is ρ-approximation. In order to do so, we
need to modify to the update condition in Figure 3 from yt ̸= y-

t to ρw⊺
t Φ(xt, yt) < w⊺

t Φ(xt, y
-
t).

On the other sides, since the ρ is considered to be a tunable parameter in practice, we think that we
can use the original update condition without pain.

2 Additional Experiments on Sequential Labelling

Figure 1 describes the overall performances over different inference algorithms. Methods for com-
parison include: the exact inference (“Viterbi”), an algorithm which outputs the second best se-
quence using dynamic programming similar to the Viterbi (“2nd-bst”), a greedy search algorithm
(“greedy”), the proposed greedy iterative decoding algorithm (“gid”), and a mixed algorithm which
is a random selection between the Viterbi and greedy iterative decoding with u = 0.8 (“mix.8”).
We compare the tag accuracy and training time in bar plots, and append F1-values of chunking and
word segmentation in tables.

In general, the accuracy decreases as the approximation rate decreases, while the training time will
increase. For the greedy iterative decoding, it is faster than the Viterbi on all tasks, especially on
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chunking and POS tagging which have large size tag sets (23 and 45). And its accuracy is higher
than the “2nd-bst” on chu, pos and msr. Hence, “gid” could be an effective inference algorithm for
sequential labelling. For the “mix.8” setting, it makes a clear trade-off between time and accuracy,
which shows that the random selection method could be utilized to search for a balanced algorithm.
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Figure 1: Overview of inference algorithms.

Finally, we give results of random selection experiments with ρ > 1 in Figure 2. We can see that the
performances are lower than that of ρ < 1.
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Figure 2: Results of the new learning algorithms with ρ ≥ 1. The x-axis represents the random
selection parameters between “gid” and “Viterbi”. The y-axis is label accuracy.
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