
Learning multiple visual domains with residual
adapters

Sylvestre-Alvise Rebuffi1 Hakan Bilen1,2 Andrea Vedaldi1

1 Visual Geometry Group
University of Oxford

{srebuffi,hbilen,vedaldi}@robots.ox.ac.uk

2 School of Informatics
University of Edinburgh

Abstract

There is a growing interest in learning data representations that work well for many
different types of problems and data. In this paper, we look in particular at the
task of learning a single visual representation that can be successfully utilized in
the analysis of very different types of images, from dog breeds to stop signs and
digits. Inspired by recent work on learning networks that predict the parameters of
another, we develop a tunable deep network architecture that, by means of adapter
residual modules, can be steered on the fly to diverse visual domains. Our method
achieves a high degree of parameter sharing while maintaining or even improving
the accuracy of domain-specific representations. We also introduce the Visual
Decathlon Challenge, a benchmark that evaluates the ability of representations to
capture simultaneously ten very different visual domains and measures their ability
to perform well uniformly.

1 Introduction

While research in machine learning is often directed at improving the performance of algorithms on
specific tasks, there is a growing interest in developing methods that can tackle a large variety of
different problems within a single model. In the case of perception, there are two distinct aspects of
this challenge. The first one is to extract from a given image diverse information, such as image-level
labels, semantic segments, object bounding boxes, object contours, occluding boundaries, vanishing
points, etc. The second aspect is to model simultaneously many different visual domains, such as
Internet images, characters, glyph, animal breeds, sketches, galaxies, planktons, etc (fig. 1).

In this work we explore the second challenge and look at how deep learning techniques can be used
to learn universal representations [5], i.e. feature extractors that can work well in several different
image domains. We refer to this problem as multiple-domain learning to distinguish it from the more
generic multiple-task learning.

Multiple-domain learning contains in turn two sub-challenges. The first one is to develop algorithms
that can learn well from many domains. If domains are learned sequentially, but this is not a
requirement, this is reminiscent of domain adaptation. However, there are two important differences.
First, in standard domain adaptation (e.g. [9]) the content of the images (e.g. “telephone”) remains
the same, and it is only the style of the images that changes (e.g. real life vs gallery image). Instead
in our case a domain shift changes both style and content. Secondly, the difficulty is not just to adapt
the model from one domain to another, but to do so while making sure that it still performs well on
the original domain, i.e. to learn without forgetting [21].

The second challenge of multiple-domain learning, and our main concern in this paper, is to construct
models that can represent compactly all the domains. Intuitively, even though images in different
domains may look quite different (e.g. glyph vs. cats), low and mid-level visual primitives may still
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Figure 1: Visual Decathlon. We explore deep architectures that can learn simultaneously different
tasks from very different visual domains. We experiment with ten representative ones: (a) Aircraft, (b)
CIFAR-100, (c) Daimler Pedestrians, (d) Describable Textures, (e) German Traffic Signs, (f) ILSVRC
(ImageNet) 2012, (g) VGG-Flowers, (h) OmniGlot, (i) SVHN, (j) UCF101 Dynamic Images.

be largely shareable. Sharing knowledge between domains should allow to learn compact multivalent
representations. Provided that sufficient synergies between domains exist, multivalent representations
may even work better than models trained individually on each domain (for a given amount of training
data).

The primary contribution of this paper (section 3) is to introduce a design for multivalent neural
network architectures for multiple-domain learning (section 3 fig. 2). The key idea is reconfigure
a deep neural network on the fly to work on different domains as needed. Our construction is based on
recent learning-to-learn methods that showed how the parameters of a deep network can be predicted
from another [2, 16]. We show that these formulations are equivalent to packing the adaptation
parameters in convolutional layers added to the network (section 3). The layers in the resulting
parametric network are either domain-agnostic, hence shared between domains, or domain-specific,
hence parametric. The domain-specific layers are changed based on the ground-truth domain of the
input image, or based on an estimate of the latter obtained from an auxiliary network. In the latter
configuration, our architecture is analogous to the learnet of [2].

Based on such general observations, we introduce in particular a residual adapter module and
use it to parameterize the standard residual network architecture of [13]. The adapters contain a
small fraction of the model parameters (less than 10%) enabling a high-degree of parameter sharing
between domains. A similar architecture was concurrently proposed in [31], which also results in
the possibility of learning new domains sequentially without forgetting. However, we also show a
specific advantage of the residual adapter modules: the ability to modulate adaptation based on the
size of the target dataset.

Our proposed architectures are thoroughly evaluated empirically (section 5). To this end, our second
contribution is to introduce the visual decathlon challenge (fig. 1 and section 4), a new benchmark
for multiple-domain learning in image recognition. The challenge consists in performing well
simultaneously on ten very different visual classification problems, from ImageNet and SVHN to
action classification and describable texture recognition. The evaluation metric, also inspired by the
decathlon discipline, rewards models that perform better than strong baselines on all the domains
simultaneously. A summary of our finding is contained in section 6.

2 Related Work

Our work touches on multi-task learning, learning without forgetting, domain adaptation, and other
areas. However, our multiple-domain setup differs in ways that make most of the existing approaches
not directly applicable to our problem.

Multi-task learning (MTL) looks at developing models that can address different tasks, such as
detecting objects and segmenting images, while sharing information and computation among them.
Earlier examples of this paradigm have focused on kernel methods [10, 1] and deep neural network
(DNN) models [6]. In DNNs, a standard approach [6] is to share earlier layers of the network, training
the tasks jointly by means of back-propagation. Caruana [6] shows that sharing network parameters
between tasks is beneficial also as a form of regularization, putting additional constraints on the
learned representation and thus improving it.

MTL in DNNs has been applied to various problems ranging from natural language processing [8, 22],
speech recognition [14] to computer vision [41, 42, 4]. Collobert et al. [8] show that semi-supervised
learning and multi-task learning can be combined in a DNN model to solve several language
processing prediction tasks such as part-of-speech tags, chunks, named entity tags and semantic
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roles. Huang et al. [14] propose a shared multilingual DNN which shares hidden layers across
many languages. Liu et al. [22] combine multiple-domain classification and information retrieval for
ranking web search with a DNN. Multi-task DNN models are also reported to achieve performance
gains in computer vision problems such as object tracking [41], facial-landmark detection [42], object
and part detection [4], a collection of low-level and high-level vision tasks [18]. The main focus of
these works is learning a diverse set of tasks in the same visual domain. In contrast, our paper focuses
on learning a representation from a diverse set of domains.

Our investigation is related to the recent paper of [5], which studied the “size” of the union of different
visual domains measured in terms of the capacity of the model required to learn it. The authors
propose to absorb different domain in a single neural network by tuning certain parameters in batch
and instance normalization layers throughout the architecture; we show that our residual adapter
modules, which include the latter as a special case, lead to far superior results.

Life-long learning. A particularly important aspect of MTL is the ability of learning multiple tasks
sequentially, as in Never Ending Learning [25] and Life-long Learning [38]. Sequential learning
typically suffers in fact from forgetting the older tasks, a phenomenon aptly referred to as “catastrophic
forgetting” in [11]. Recent work in life-long learning try to address forgetting in two ways. The first
one [37, 33] is to freeze the network parameters for the old tasks and learn a new task by adding
extra parameters. The second one aims at preserving knowledge of the old tasks by retaining the
response of the original network on the new task [21, 30], or by keeping the network parameters of
the new task close to the original ones [17]. Our method can be considered as a hybrid of these two
approaches, as it can be used to retain the knowledge of previous tasks exactly, while adding a small
number of extra parameters for the new tasks.

Transfer learning. Sometimes one is interested in maximizing the performance of a model on a
target domain. In this case, sequential learning can be used as a form of initialization[29]. This is
very common in visual recognition, where most DNN are initialize on the ImageNet dataset and then
fine-tuned on a target domain and task. Note, however, that this typically results in forgetting the
original domain, a fact that we confirm in the experiments.

Domain adaptation. When domains are learned sequentially, our work can be related to domain
adaptation. There is a vast literature in domain adaptation, including recent contributions in deep
learning such as [12, 39] based on the idea of minimizing domain discrepancy. Long et al. [23]
propose a deep network architecture for domain adaptation that can jointly learn adaptive classifiers
and transferable features from labeled data in the source domain and unlabeled data in the target
domain. There are two important differences with our work: First, in these cases different domains
contain the same objects and is only the visual style that changes (e.g. webcam vs. DSLR), whereas
in our case the object themselves change. Secondly, domain adaptation is a form of transfer learning,
and, as the latter, is concerned with maximizing the performance on the target domain reagardless of
potential forgetting.

3 Method

Our primary goal is to develop neural network architectures that can work well in a multiple-domain
setting. Modern neural networks such as residual networks (ResNet [13]) are known to have very high
capacity, and are therefore good candidates to learn from diverse data sources. Furthermore, even
when domains look fairly different, they may still share a significant amount of low and mid-level
visual patterns. Nevertheless, we show in the experiments (section 5) that learning a ResNet (or a
similar model) directly from multiple domains may still not perform well.

In order to address this problem, we consider a compact parametric family of neural networks
φα : X → V indexed by parameters α. Concretely, X ⊂ RH×W×3 can be a space of RGB images
and V = RHv×Wv×Cv a space of feature tensors. φα can then be obtained by taking all but the last
classification layer of a standard ResNet model. The parametric feature extractors φα is then used to
construct predictors for each domain d as Φd = ψd ◦ φαd

, where αd are domain-specific parameters
and ψd(v) = softmax(Wdv) is a domain-specific linear classifier V → Yd mapping features to
image labels.

If α comprises all the parameters of the feature extractor φα, this approach reduces to learning
independent models for each domain. On the contrary, our goal is to maximize parameter sharing,
which we do below by introducing certain network parametrizations.
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Figure 2: Residual adapter modules. The figure shows a standard residual module with the inclusion
of adapter modules (in blue). The filter coefficients (w1, w2) are domain-agnostic and contains the
vast majority of the model parameters; (α1, α2) contain instead a small number of domain-specific
parameters.

3.1 Learning to learn and filter prediction

The problem of adapting a neural network dynamically to variations of the input data is similar to the
one found in recent approaches to learning to learn. A few authors [34, 16, 2], in particular, have
proposed to learn neural networks that predict, in a data-dependent manner, the parameters of another.
Formally, we can write αd = Aedx where edx is the indicator vector of the domain dx of image x
and A is a matrix whose columns are the parameter vectors αd. As shown later, it is often easy to
construct an auxiliary network that can predict d from x, so that the parameter α = ψ(x) can also be
expressed as the output of a neural network. If d is known, then ψ(x, d) = αd as before, and if not ψ
can be constructed as suggested above or from scratch as done in [2].

The result of this construction is a network φψ(x)(x) whose parameters are predicted by a second
network ψ(x). As noted in [2], while this construction is conceptually simple, its implementation is
more subtle. Recall that the parameters w of a deep convolutional neural network consist primarily of
the coefficients of the linear filters in the convolutional layers. If w = α, then α = ψ(x) would need
to predict millions of parameters (or to learn independent models when d is observed). The solution
of [2] is to use a low-rank decomposition of the filters, where w = π(w0, α) is a function of a filter
basis w0 and α is a small set of tunable parameters.

Here we build on the same idea, with some important extensions. First, we note that linearly
parametrizing a filter bank is the same as introducing a new, intermediate convolutional layer in the
network. Specifically, let Fk ∈ RHf×Wf×Cf be a basis of K filters of size Hf ×Wf operating on
Cf input feature channels. Given parameters [αtk] ∈ RT×K , we can express a bank of T filters as
linear combinations Gt =

∑K
k=1 αtkFk. Applying the bank to a tensor x and using associativity and

linearity of convolution results in G ∗ x =
∑K
k=1 α:k(Fk ∗ x) = α ∗F ∗ x where we interpreted α as

a 1× 1× T ×K filter bank. While [2] used a slightly different low-rank filter decomposition, their
parametrization can also be seen as introducing additional filtering layers in the network.

An advantage of this parametrization is that it results in a useful decomposition, where part of the
convolutional layers contain the domain-agnostic parameters F and the others contain the domain-
specific ones αd. As discussed in section 5, this is particularly useful to address the forgetting
problem. In the next section we refine these ideas to obtain an effective parametrization of residual
networks.

3.2 Residual adapter modules

As an example of parametric network, we propose to modify a standard residual network. Recall that
a ResNet is a chain gm ◦ · · · ◦ g1 of residual modules gt. In the simplest variant of the model, each
residual module g takes as input a tensor RH×W×C and produces as output a tensor of the same size
using g(x;w) = x+ ((w2 ∗ ·) ◦ [·]+ ◦ (w1 ∗ ·))(x). Here w1 and w2 are the coefficients of banks of
small linear filters, [z]+ = max{0, z} is the ReLU operator, w ∗ z is the convolution of z by the filter
bank w, and ◦ denotes function composition. Note that, for the addition to make sense, filters must
be configured such that the dimensions of the output of the last bank are the same as x.

Our goal is to parametrize the ResNet module. As suggested in the previous section, rather than
changing the filter coefficients directly, we introduce additional parametric convolutional layers. In
fact, we go one step beyond and make them small residual modules in their own right and call them
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residual adapter modules (blue blocks in fig. 2). These modules have the form:

g(x;α) = x+ α ∗ x.
In order to limit the number of domain-specific parameters, α is selected to be a bank of 1× 1 filters.

A major advantage of adopting a residual architecture for the adapter modules is that the adapters
reduce to the identity function when their coefficients are zero. When learning the adapters on small
domains, this provides a simple way of controlling over-fitting, resulting in substantially improved
performance in some cases.

Batch normalization and scaling. Batch Normalization (BN) [15] is an important part of very deep
neural networks. This module is usually inserted after convolutional layers in order to normalize
their outputs and facilitate learning (fig. 2). The normalization operation is followed by rescaling and
shift operations s� x+ b, where (s, b) are learnable parameters. In our architecture, we incorporate
the BN layers into the adapter modules (fig. 2). Furthermore, we add a BN module right before the
adapter convolution layer.1 Note that the BN scale and bias parameters are also dataset-dependent –
as noted in the experiments, this alone provides a certain degree of model adaptation.

Domain-agnostic vs domain-specific parameters. If the residual module of fig. 2 is configured to
process an input tensor with C feature channels, and if the domain-agnostic filters w1, w2 are of size
h× h× C, then the model has 2(h2C2 + hC) domain-agnostic parameters (including biases in the
convolutional layers) and 2(C2 + 5C) domain-specific parameters.2 Hence, there are approximately
h2 more domain-agnostic parameters than domain specific ones (usually h2 = 9).

3.3 Sequential learning and avoiding forgetting

While in this paper we are not concerned with sequential learning, we have found it to be a good
strategy to bootstrap a model when a large number of domains have to be learned. However, the most
popular approach to sequential learning, fine-tuning (section 2), is often a poor choice for learning
shared representations as it tends to quickly forget the original tasks.

The challenge in learning without forgetting is to maintain information about older tasks as new
ones are learned (section 2). With respect to forgetting, our adapter modules are similar to the
tower model [33] as they preserve the original model exactly: one can pre-train the domain-agnostic
parameters w on a large domain such as ImageNet, and then fine-tune only the domain-specific
parameters αd for each new domain. Like the tower method, this preserves the original task exactly,
but it is far less expensive as it does not require to introduce new feature channels for each new
domain (a quadratic cost). Furthermore, the residual modules naturally reduce to the identity function
when sufficient shrinking regularization is applied to the adapter weights αw. This allows the adapter
to be tuned depending on the availability of data for a target domain, sometimes significantly reducing
overfitting.

4 Visual decathlon

In this section we introduce a new benchmark, called visual decathlon, to evaluate the performance
of algorithms in multiple-domain learning. The goal of the benchmark is to assess whether a method
can successfully learn to perform well in several different domains at the same time. We do so by
choosing ten representative visual domains, from Internet images to characters, as well as by selecting
an evaluation metric that rewards performing well on all tasks.

Datasets. The decathlon challenge combines ten well-known datasets from multiple visual domains:
FGVC-Aircraft Benchmark [24] contains 10,000 images of aircraft, with 100 images for each of
100 different aircraft model variants such as Boeing 737-400, Airbus A310. CIFAR100 [19] contains
60,000 32× 32 colour images for 100 object categories. Daimler Mono Pedestrian Classification
Benchmark (DPed) [26] consists of 50,000 grayscale pedestrian and non-pedestrian images, cropped
and resized to 18× 36 pixels. Describable Texture Dataset (DTD) [7] is a texture database, con-
sisting of 5640 images, organized according to a list of 47 terms (categories) such as bubbly, cracked,

1While the bias and scale parameters of the latter can be incorporated in the following filter bank, we found
it easier to leave them separated from the latter

2Including all bias and scaling vectors; 2(C2 + 3C) if these are absorbed in the filter banks when possible.
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marbled. The German Traffic Sign Recognition (GTSR) Benchmark [36] contains cropped im-
ages for 43 common traffic sign categories in different image resolutions. Flowers102 [28] is a
fine-grained classification task which contains 102 flower categories from the UK, each consisting of
between 40 and 258 images. ILSVRC12 (ImNet) [32] is the largest dataset in our benchmark con-
tains 1000 categories and 1.2 million images. Omniglot [20] consists of 1623 different handwritten
characters from 50 different alphabets. Although the dataset is designed for one-shot learning, we use
the dataset for standard multi-class classification task and include all the character categories in train
and test splits. The Street View House Numbers (SVHN) [27] is a real-world digit recognition
dataset with around 70,000 32× 32 images. UCF101 [35] is an action recognition dataset of realistic
human action videos, collected from YouTube. It contains 13,320 videos for 101 action categories.
In order to make this dataset compatible with our benchmark, we convert the videos into images by
using the Dynamic Image encoding of [3] which summarizes each video into an image based on a
ranking principle.

Challenge and evaluation. Each dataset Dd, d = 1, . . . , 10 is formed of pairs (x, y) ∈ Dd where x
is an image and y ∈ {1, . . . , Cd} = Yd is a label. For each dataset, we specify a training, validation
and test subsets. The goal is to train the best possible model to address all ten classification tasks
using only the provided training and validation data (no external data is allowed). A model Φ is
evaluated on the test data, where, given an image x and its ground-truth domain dx label, it has to
predict the corresponding label y = Φ(x, dx) ∈ Yd.

Performance is measured in terms of a single scalar score S determined as in the decathlon discipline.
Performing well at this metric requires algorithms to perform well in all tasks, compared to a
minimum level of baseline performance for each. In detail, S is computed as follows:

S =

10∑
d=1

αd max{0, Emax
d − Ed}γd , Ed =

1

|Dtest
d |

∑
(x,y)∈Dtest

d

1{y 6=Φ(x,d)}. (1)

where Ed is the average test error for each domain. Emax
d the baseline error (section 5), above which

no points are scored. The exponent γd ≥ 1 rewards more reductions of the classification error
as this becomes close to zero and is set to γd = 2 for all domains. The coefficient αd is set to
1, 000 (Emax

d )−γd so that a perfect result receives a score of 1,000 (10,000 in total).

Data preprocessing. Different domains contain a different set of image classes as well as a different
number of images. In order to reduce the computational burden, all images have been resized
isotropically to have a shorter side of 72 pixels. For some datasets such as ImageNet, this is a
substantial reduction in resolution which makes training models much faster (but still sufficient to
obtain excellent classification results with baseline models). For the datasets for which there exists
training, validation, and test subsets, we keep the original splits. For the rest, we use 60%, 20% and
20% of the data for training, validation, and test respectively. For the ILSVRC12, since the test labels
are not available, we use the original validation subset as the test subset and randomly sample a new
validation set from their training split. We are planning to make the data and an evaluation server
public soon.

5 Experiments

In this section we evaluate our method quantitatively against several baselines (section 5.1), investigate
the ability of the proposed techniques to learn models for ten very diverse visual domains.

Implementation details. In all experiments we choose to use the powerful ResNets [13] as base
architectures due to their remarkable performance. In particular, as a compromise of accuracy and
speed, we chose the ResNet28 model [40] which consists of three blocks of four residual units. Each
residual unit contains 3 × 3 convolutional, BN and ReLU modules (fig. 2). The network accepts
64× 64 images as input, downscales the spatial dimensions by two at each block and ends with a
global average pooling and a classifier layer followed by a softmax. We set the number of filters to
64, 128, 256 for these blocks respectively. Each network is optimized to minimize its cross-entropy
loss with stochastic gradient descent. The network is run for 80 epochs and the initial learning rate of
0.1 is lowered to 0.01 and then 0.001 gradually.
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Model #par. ImNet Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF mean S

# images 1.3m 7k 50k 30k 4k 40k 2k 26k 70k 9k

Scratch 10× 59.87 57.10 75.73 91.20 37.77 96.55 56.30 88.74 96.63 43.27 70.32 1625
Scratch+ 11× 59.67 59.59 76.08 92.45 39.63 96.90 56.66 88.74 96.78 44.17 71.07 1826

Feature extractor 1× 59.67 23.31 63.11 80.33 45.37 68.16 73.69 58.79 43.54 26.80 54.28 544
Finetune 10× 59.87 60.34 82.12 92.82 55.53 97.53 81.41 87.69 96.55 51.20 76.51 2500
LwF [21] 10× 59.87 61.15 82.23 92.34 58.83 97.57 83.05 88.08 96.10 50.04 76.93 2515

BN adapt. [5] ∼ 1× 59.87 43.05 78.62 92.07 51.60 95.82 74.14 84.83 94.10 43.51 71.76 1363
Res. adapt. 2× 59.67 56.68 81.20 93.88 50.85 97.05 66.24 89.62 96.13 47.45 73.88 2118
Res. adapt. decay 2× 59.67 61.87 81.20 93.88 57.13 97.57 81.67 89.62 96.13 50.12 76.89 2621
Res. adapt. finetune all 2× 59.23 63.73 81.31 93.30 57.02 97.47 83.43 89.82 96.17 50.28 77.17 2643

Res. adapt. dom-pred 2.5× 59.18 63.52 81.12 93.29 54.93 97.20 82.29 89.82 95.99 50.10 76.74 2503

Res. adapt. (large) ∼ 12× 67.00 67.69 84.69 94.28 59.41 97.43 84.86 89.92 96.59 52.39 79.43 3131

Table 1: Multiple-domain networks. The figure reports the (top-1) classification accuracy (%) of
different models on the decathlon tasks and final decathlon score (S). ImageNet is used to prime the
network in every case, except for the networks trained from scratch. The model size is the number of
parameters w.r.t. the baseline ResNet. The fully-finetuned model, written blue, is used as a baseline
to compute the decathlon score.

Model Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF

Finetune 1.1 60.3 3.6 63.1 0.6 80.3 0.7 45.3 1.4 68.1 27.2 73.6 13.4 87.7 0.2 96.6 5.4 51.2
LwF [21] high lr 4.1 61.1 21.0 82.2 23.8 92.3 36.7 58.8 11.5 97.6 34.2 83.1 3.0 88.1 0.2 96.1 18.6 50.0
LwF [21] low lr 38.0 50.6 33.0 80.7 53.3 92.2 47.0 57.2 23.7 96.6 45.7 75.7 21.0 86.0 13.3 94.8 29.0 44.6
Res. adapt. finetune all 59.2 63.7 59.2 81.3 59.2 93.3 59.2 57.0 59.2 97.5 59.2 83.4 59.2 89.8 59.2 96.1 59.2 50.3

Table 2: Pairwise forgetting. Each pair of numbers report the top-1 accuracy (%) on the old task
(ImageNet) and a new target task after the network is fully finetuned on the latter. We also show
the performance of LwF when it is finetuned on the new task with a high and low learning rate,
trading-off forgetting ImageNet and improving the results on the target domain. By comparison, we
show the performance of tuning only the residual adapters, which by construction does not result in
any performance loss in ImageNet while still achieving very good performance on each target task.

5.1 Results

There are two possible extremes. The first one is to learn ten independent models, one for each
dataset, and the second one is to learn a single model where all feature extractor parameters are
shared between the ten domains. We evaluate next different approaches to learn such models.

Pairwise learning. In the first experiment (table 1), we start by learning a ResNet model on ImageNet,
and then use different techniques to extend it to the remaining nine tasks, one at a time. Depending
on the method, this may produce an overall model comprising ten ResNet architectures, or just one
ResNet with a few domain-specific parameters; thus we also report the total number of parameters
used, where 1× is the size of a single ResNet (excluding the last classification layer, which can never
be shared).

As baselines, we evaluate four cases: i) learning an individual ResNet model from scratch for each
task, ii) freezing all the parameters of the pre-trained network, using the network as feature extractor
and only learn a linear classifier, iii) standard finetuning and iv) applying a reimplementation of the
LwF technique of [21] that encourages the fine-tuned network to retain the responses of the original
ImageNet model while learning the new task.

In terms of accuracy, learning from scratch performs poorly on small target datasets and, by learning
10 independent models, requires 10× parameters in total. Freezing the ImageNet feature extraction is
very efficient in terms of parameter sharing (1× parameters in total), preserves the original domain
exactly, but generally performs very poorly on the target domain. Full fine-tuning leads to accurate
results both for large and small datasets; however, it also forgets the ImageNet domain substantially
(table 2), so it still requires learning 10 complete ResNet models for good overall performance.

When LwF is run as intended by the original authors [21], is still leads to a noticeable performance
drop on the original task, even when learning just two domains (table 2), particularly if the target
domain is very different from ImageNet (e.g. Omniglot and SVHN). Still, if one chooses a different
trade-off point and allows the method to forget ImageNet more, it can function as a good regularizer
that slightly outperforms vanilla fine-tuning overall (but still resulting in a 10× model).
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Next, we evaluate the effect of sharing the majority of parameters between tasks, whereas still
allowing a small number of domain-specific parameters to change. First, we consider specializing
only the BN layer scaling and bias parameters, which is equivalent to the approach of [5]. In this
case, less than the 0.1% of the model parameters are domain-specific (for the ten domains, this results
in a model with 1.01× parameters overall). Hence the model is very similar to the one with the
frozen feature extractor; nevertheless, the performances increase very substantially in most cases (e.g.
23.31%→ 43.05% accuracy on Aircraft).

As the next step, we introduce the residual adapter modules, which increase by 11% the number
of parameters per domain, resulting in a 2× model. In the pre-training phase, we first pretrain on
ImageNet the network with the added modules. Then, we freeze the task agnostic parameters and
train the task specific parameters on the different datasets. Differently from vanilla fine-tuning, there
is no forgetting in this setting. While most of the parameters are shared, our method is either close or
better than full fine-tuning. As a further control, we also train 10 models from scratch with the added
parameters (denoted as Scratch+), but do not observe any noticeable performance gain in average,
demonstrating that parameters sharing is highly beneficial. We also contrast learning the adapter
modules with two values of weight decay (0.002 and 0.005) higher than the default 0.0005. These
parameters are obtained after a coarse grid search using cross-validation for each dataset. Using
higher decay significantly improves the performance on smaller datasets such as Flowers, whereas
the smaller decay is best for larger datasets. This shows both the importance and utility of controlling
overfitting in the adaptation process. In practice, there is an almost direct correspondence between
the size of the data and which one of these values to use. The optimal decay can be selected via
validation, but a rough choice can be performed by simply looking at the dataset size.

We also compare to another baseline where we only finetune the last two convolutional layers and
freeze the others, which may be thought to be generic. This amounts to having a network with twice
the number of total parameters in a vanilla ResNet which is equal to our proposed architecture. This
model obtains 64.7% mean accuracy over ten datasets, which is significantly lower than our 73.9%,
likely due to overfitting (controlling overfitting is one of the advantages of our technique).

Furthermore, we also assess the quality of our adapter without residual connections, which corre-
sponds to the low rank filter parametrization of section 3.1; this approach achieves an accuracy of
70.3%, which is worse than our 73.9%. We also observe that this configuration requires notably more
iterations to converge. Hence, the residual architecture for the adapters results in better performances,
better control of overfitting, and a faster convergence.

End-to-end learning. So far, we have shown that our method, by learning only the adapter modules
for each new domain, does not suffer from forgetting. However, for us sequential learning is just a
scalable learning strategy. Here, we also show (table 1) that we can further improve the results by
fine-tuning all the parameters of the network end-to-end on the ten tasks. We do so by sampling a
batch from each dataset in a round robin fashion, allowing each domain to contribute to the shared
parameters. A final pass is done on the adapter modules to take into account the change in the shared
parameters.

Domain prediction. Up to now we assume that the domain of each image is given during test
time for all the methods. If this is unavailable, it can be predicted on the fly by means of a small
neural-network predictor. We train a light ResNet, which is composed three stacks of two residual
networks, half deep as the original net, obtaining 99.8% accuracy in domain prediction, resulting in a
barely noticeable drop in the overall multiple-domain challenge (see Res. adapt dom-pred in table 1).
Note that similar performance drop would be observed for the other baselines.

Decathlon evaluation: overall performance. While so far we have looked at results on individual
domain, the Decathlon score eq. (1) can be used to compare performance overall. As baseline error
rates in eq. (1), we double the error rates of the fully finetuned networks on each task. In this manner,
this 10× model achieves a score of 2,500 points (over 10,000 possible ones, see eq. (1)). The last
column of table 1 reports the scores achieved by the other architectures. As intended, the decathlon
score favors the methods that perform well overall, emphasizes their consistency rather than just their
average accuracy. For instance, although the Res. adapt. model (trained with single decay coefficient
for all domains) performs well in terms of average accuracy (73.88%), its decathlon score (2118) is
relatively low because the model performs poorly in DTD and Flowers. This also shows that, once
the weight decays are configured properly, our model achieves superior performance (2643 points) to
all the baselines using only 2× the capacity of a single ResNet.
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Finally we show that using a higher capacity ResNet28 (12×, ResNet adapt. (large) in table 1), which
is comparable to 10 independent networks, significantly improves our results and outperforms the
finetuning baseline by 600 point in decathlon score. As a matter of fact, this model outperforms the
state-of-the-art [40] (81.2%) by 3.5 points in CIFAR100. In other cases, our performances are in
general in line to current state-of-the-art methods. When this is not the case, this is due to reduced
image resolution (ImageNet, Flower) or due to the choice of a specific video representation in UCF
(dynamic image).

6 Conclusions

As machine learning applications become more advanced and pervasive, building data representations
that work well for multiple problems will become increasingly important. In this paper, we have
introduced a simple architectural element, the residual adapter module, that allows compressing many
visual domains in relatively small residual networks, with substantial parameter sharing between
them. We have also shown that they allow addressing the forgetting problem, as well as adapting to
target domain for which different amounts of training data are available. Finally, we have introduced
a new multi-domain learning challenge, the Visual Decathlon, to allow a systematic comparison of
algorithms for multiple-domain learning.
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