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Abstract

In recent years, great progress has been made in a variety of application domains
thanks to the development of increasingly deeper neural networks. Unfortunately,
the huge number of units of these networks makes them expensive both computa-
tionally and memory-wise. To overcome this, exploiting the fact that deep networks
are over-parametrized, several compression strategies have been proposed. These
methods, however, typically start from a network that has been trained in a stan-
dard manner, without considering such a future compression. In this paper, we
propose to explicitly account for compression in the training process. To this end,
we introduce a regularizer that encourages the parameter matrix of each layer to
have low rank during training. We show that accounting for compression during
training allows us to learn much more compact, yet at least as effective, models
than state-of-the-art compression techniques.

1 Introduction
With the increasing availability of large-scale datasets, recent years have witnessed a resurgence of
interest for Deep Learning techniques. Impressive progress has been made in a variety of application
domains, such as speech, natural language and image processing, thanks to the development of new
learning strategies [15, 53, 30, 45, 26, 3] and of new architectures [31, 44, 46, 23]. In particular, these
architectures tend to become ever deeper, with hundreds of layers, each of which containing hundreds
or even thousands of units.

While it has been shown that training such very deep architectures was typically easier than smaller
ones [24], it is also well-known that they are highly over-parameterized. In essence, this means that
equally good results could in principle be obtained with more compact networks. Automatically
deriving such equivalent, compact models would be highly beneficial in runtime- and memory-
sensitive applications, e.g., to deploy deep networks on embedded systems with limited hardware
resources. As a consequence, many methods have been proposed to compress existing architectures.

An early trend for such compression consisted of removing individual parameters [33, 22] or entire
units [36, 29, 38] according to their influence on the output. Unfortunately, such an analysis of
individual parameters or units quickly becomes intractable in the presence of very deep networks.
Therefore, currently, one of the most popular compression approaches amounts to extracting low-rank
approximations either of individual units [28] or of the parameter matrix/tensor of each layer [14].
This latter idea is particularly attractive, since, as opposed to the former one, it reduces the number of
units in each layer. In essence, the above-mentioned techniques aim to compress a network that has
been pre-trained. There is, however, no guarantee that the parameter matrices of such pre-trained
networks truly have low-rank. Therefore, these methods typically truncate some of the relevant
information, thus resulting in a loss of prediction accuracy, and, more importantly, do not necessarily
achieve the best possible compression rates.

In this paper, we propose to explicitly account for compression while training the initial deep network.
Specifically, we introduce a regularizer that encourages the parameter matrix of each layer to have
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low rank in the training loss, and rely on a stochastic proximal gradient descent strategy to optimize
the network parameters. In essence, and by contrast with methods that aim to learn uncorrelated units
to prevent overfitting [5, 54, 40], we seek to learn correlated ones, which can then easily be pruned
in a second phase. Our compression-aware training scheme therefore yields networks that are well
adapted to the following post-processing stage. As a consequence, we achieve higher compression
rates than the above-mentioned techniques at virtually no loss in prediction accuracy.

Our approach constitutes one of the very few attempts at explicitly training a compact network
from scratch. In this context, the work of [4] has proposed to learn correlated units by making
use of additional noise outputs. This strategy, however, is only guaranteed to have the desired
effect for simple networks and has only been demonstrated on relatively shallow architectures. In
the contemporary work [51], units are coordinated via a regularizer acting on all pairs of filters
within a layer. While effective, exploiting all pairs can quickly become cumbersome in the presence
of large numbers of units. Recently, group sparsity has also been employed to obtain compact
networks [2, 50]. Such a regularizer, however, acts on individual units, without explicitly aiming to
model their redundancies. Here, we show that accounting for interactions between the units within a
layer allows us to obtain more compact networks. Furthermore, using such a group sparsity prior in
conjunction with our compression-aware strategy lets us achieve even higher compression rates.

We demonstrate the benefits of our approach on several deep architectures, including the 8-layers
DecomposeMe network of [1] and the 50-layers ResNet of [23]. Our experiments on ImageNet and
ICDAR show that we can achieve compression rates of more than 90%, thus hugely reducing the
number of required operations at inference time.

2 Related Work

It is well-known that deep neural networks are over-parametrized [13]. While, given sufficient
training data, this seems to facilitate the training procedure, it also has two potential drawbacks. First,
over-parametrized networks can easily suffer from overfitting. Second, even when they can be trained
successfully, the resulting networks are expensive both computationally and memory-wise, thus
making their deployment on platforms with limited hardware resources, such as embedded systems,
challenging. Over the years, much effort has been made to overcome these two drawbacks.

In particular, much progress has been made to reduce overfitting, for example by devising new
optimization strategies, such as DropOut [45] or MaxOut [16]. In this context, other works have
advocated the use of different normalization strategies, such as Batch Normalization [26], Weight
Normalization [42] and Layer Normalization [3]. Recently, there has also been a surge of methods
aiming to regularize the network parameters by making the different units in each layer less correlated.
This has been achieved by designing new activation functions [5], by explicitly considering the
pairwise correlations of the units [54, 37, 40] or of the activations [9, 52], or by constraining the
weight matrices of each layer to be orthonormal [21].

In this paper, we are more directly interested in addressing the second drawback, that is, the large
memory and runtime required by very deep networks. To tackle this, most existing research has
focused on pruning pre-trained networks. In this context, early works have proposed to analyze the
saliency of individual parameters [33, 22] or units [36, 29, 38, 34], so as to measure their impact on
the output. Such a local analysis, however, quickly becomes impractically expensive when dealing
with networks with millions of parameters.

As a consequence, recent works have proposed to focus on more global methods, which analyze
larger groups of parameters simultaneously. In this context, the most popular trend consists of
extracting low-rank approximations of the network parameters. In particular, it has been shown that
individual units can be replaced by rank 1 approximations, either via a post-processing step [28, 46]
or directly during training [1, 25]. Furthermore, low-rank approximations of the complete parameter
matrix/tensor of each layer were computed in [14], which has the benefit of reducing the number of
units in each layer. The resulting low-rank representation can then be fine-tuned [32], or potentially
even learned from scratch [47], given the rank of each layer in the network. With the exception of
this last work, which assumes that the ranks are known, these methods, however, aim to approximate
a given pre-trained model. In practice, however, the parameter matrices of this model might not have
low rank. Therefore, the resulting approximations yield some loss of accuracy and, more importantly,
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will typically not correspond to the most compact networks. Here, we propose to explicitly learn a
low-rank network from scratch, but without having to manually define the rank of each layer a priori.

To this end, and in contrast with the above-mentioned methods that aim to minimize correlations,
we rather seek to maximize correlations between the different units within each layer, such that
many of these units can be removed in a post-processing stage. In [4], additional noise outputs were
introduced in a network to similarly learn correlated filters. This strategy, however, is only justified for
simple networks and was only demonstrated on relatively shallow architectures. The contemporary
work [51] introduced a penalty during training to learn correlated units. This, however, was achieved
by explicitly computing all pairwise correlations, which quickly becomes cumbersome in very deep
networks with wide layers. By contrast, our approach makes use of a low-rank regularizer that can
effectively be optimized by proximal stochastic gradient descent.

Our approach belongs to the relatively small group of methods that explicitly aim to learn a compact
network during training, i.e., not as a post-processing step. Other methods have proposed to make
use of sparsity-inducing techniques to cancel out individual parameters [49, 10, 20, 19, 35] or
units [2, 50, 55]. These methods, however, act, at best, on individual units, without considering the
relationships between multiple units in the same layer. Variational inference [17] has also been used
to explicitly compress the network. However, the priors and posteriors used in these approaches
will typically zero out individual weights. Our experiments demonstrate that accounting for the
interactions between multiple units allows us to obtain more compact networks.

Another line of research aims to quantize the weights of deep networks [48, 12, 18]. Note that,
in a sense, this research direction is orthogonal to ours, since one could still further quantize our
compact networks. Furthermore, with the recent progress in efficient hardware handling floating-point
operations, we believe that there is also high value in designing non-quantized compact networks.

3 Compression-aware Training of Deep Networks

In this section, we introduce our approach to explicitly encouraging compactness while training a
deep neural network. To this end, we propose to make use of a low-rank regularizer on the parameter
matrix in each layer, which inherently aims to maximize the compression rate when computing a
low-rank approximation in a post-processing stage. In the following, we focus on convolutional neural
networks, because the popular visual recognition models tend to rely less and less on fully-connected
layers, and, more importantly, the inference time of such models is dominated by the convolutions in
the first few layers. Note, however, that our approach still applies to fully-connected layers.

To introduce our approach, let us first consider the l-th layer of a convolutional network, and denote
its parameters by θl ∈ RKl×Cl×dH

l ×dW
l , where Cl and Kl are the number of input and output channels,

respectively, and dH
l and dW

l are the height and width of each convolutional kernel. Alternatively,
these parameters can be represented by a matrix θ̂l ∈ RKl×Sl with Sl =CldH

l dW
l . Following [14], a

network can be compacted via a post-processing step performing a singular value decomposition of
θ̂l and truncating the 0, or small, singular values. In essence, after this step, the parameter matrix
can be approximated as θ̂l ≈UlMT

l , where Ul is a Kl× rl matrix representing the basis kernels, with
rl ≤min(Kl ,Sl), and Ml is an Sl× rl matrix that mixes the activations of these basis kernels.

By making use of a post-processing step on a network trained in the usual way, however, there is
no guarantee that, during training, many singular values have become near-zero. Here, we aim to
explicitly account for this post-processing step during training, by seeking to obtain a parameter
matrix such that rl << min(Kl ,Sl). To this end, given N training input-output pairs (xi,yi), we
formulate learning as the regularized minimization problem

min
Θ

1
N

N

∑
i=1

`(yi, f (xi,Θ))+ r(Θ) , (1)

where Θ encompasses all network parameters, `(·, ·) is a supervised loss, such as the cross-entropy,
and r(·) is a regularizer encouraging the parameter matrix in each layer to have low rank.

Since explicitly minimizing the rank of a matrix is NP-hard, following the matrix completion
literature [7, 6], we make use of a convex relaxation in the form of the nuclear norm. This lets us
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write our regularizer as

r(Θ) = τ

L

∑
l=1
‖θ̂l‖∗ , (2)

where τ is a hyper-parameter setting the influence of the regularizer, and the nuclear norm is defined

as ‖θ̂l‖∗ = ∑
rank(θ̂l)
j=1 σ

j
l , with σ

j
l the singular values of θ̂l .

In practice, to minimize (1), we make use of proximal stochastic gradient descent. Specifically,
this amounts to minimizing the supervised loss only for one epoch, with learning rate ρ , and then
applying the proximity operator of our regularizer. In our case, this can be achieved independently
for each layer. For layer l, this proximity operator corresponds to solving

θ
∗
l = argmin

θ̄l

1
2ρ
‖θ̄l− θ̂l‖2

F + τ‖θ̄l‖∗ , (3)

where θ̂l is the current estimate of the parameter matrix for layer l. As shown in [6], the solution to
this problem can be obtained by soft-thresholding the singular values of θ̂l , which can be written as

θ
∗
l =UlΣl(ρτ)V T

l , where Σl(ρτ) = diag([(σ1
l −ρτ)+, . . . ,(σ

rank(θ̂l)
l −ρτ)+]), (4)

Ul and Vl are the left - and right-singular vectors of θ̂l , and (·)+ corresponds to taking the maximum
between the argument and 0.

3.1 Low-rank and Group-sparse Layers

While, as shown in our experiments, the low-rank solution discussed above significantly reduces
the number of parameters in the network, it does not affect the original number of input and output
channels Cl and Kl . By contrast, the group-sparsity based methods [2, 50] discussed in Section 2
cancel out entire units, thus reducing these numbers, but do not consider the interactions between
multiple units in the same layer, and would therefore typically not benefit from a post-processing
step such as the one of [14]. Here, we propose to make the best of both worlds to obtain low-rank
parameter matrices, some of whose units have explicitly been removed.

To this end, we combine the sparse group Lasso regularizer used in [2] with the low-rank one
described above. This lets us re-define the regularizer in (1) as

r(Θ) =
L

∑
l=1

(
(1−α)λl

√
Pl

Kl

∑
n=1
‖θ n

l ‖2 +αλl‖θl‖1

)
+ τ

L

∑
l=1
‖θ̂l‖∗ , (5)

where Kl is the number of units in layer l, θ n
l denotes the vector of parameters for unit n in layer

l, Pl is the size of this vector (the same for all units in a layer), α ∈ [0,1] balances the influence
of sparsity terms on groups vs. individual parameters, and λl is a layer-wise hyper-parameter. In
practice, following [2], we use only two different values of λl ; one for the first few layers and one for
the remaining ones.

To learn our model with this new regularizer consisting of two main terms, we make use of the
incremental proximal descent approach proposed in [39], which has the benefit of having a lower
memory footprint than parallel proximal methods. The proximity operator for the sparse group Lasso
regularizer also has a closed form solution derived in [43] and provided in [2].

3.2 Benefits at Inference

Once our model is trained, we can obtain a compact network for faster and more memory-efficient
inference by making use of a post-processing step. In particular, to account for the low rank of the
parameter matrix of each layer, we make use of the SVD-based approach of [14]. Specifically, for
each layer l, we compute the SVD of the parameter matrix as θ̂l = ŨlΣ̃lṼl and only keep the rl singular
values that are either non-zero, thus incurring no loss, or larger than a pre-defined threshold, at some
potential loss. The parameter matrix can then be represented as θ̂l =UlMl , with Ul ∈RCldH

l dW
l ×rl and

Ml = ΣlVl ∈ Rrl×Kl). In essence, every layer is decomposed into two layers. This incurs significant
memory and computational savings if rl(CldH

l dW
l +Kl)<< (CldH

l dW
l Kl).
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Furthermore, additional savings can be achieved when using the sparse group Lasso regularizer
discussed in Section 3.1. Indeed, in this case, the zeroed-out units can explicitly be removed, thus
yielding only K̂l filters, with K̂l < Kl . Note that, except for the first layer, units have also been
removed from the previous layer, thus reducing Cl to a lower Ĉl . Furthermore, thanks to our low-rank
regularizer, the remaining, non-zero, units will form a parameter matrix that still has low rank, and
can thus also be decomposed. This results in a total of rl(ĈldH

l dW
l + K̂l) parameters.

In our experiments, we select the rank rl based on the percentage el of the energy (i.e., the sum of
singular values) that we seek to capture by our low-rank approximation. This percentage plays an
important role in the trade-off between runtime/memory savings and drop of prediction accuracy. In
our experiments, we use the same percentage for all layers.

4 Experimental Settings

Datasets: For our experiments, we used two image classification datasets: ImageNet [41] and
ICDAR, the character recognition dataset introduced in [27]. ImageNet is a large-scale dataset
comprising over 15 million labeled images split into 22,000 categories. We used the ILSVRC-
2012 [41] subset consisting of 1000 categories, with 1.2 million training images and 50,000 validation
images. The ICDAR dataset consists of 185,639 training samples combining real and synthetic
characters and 5,198 test samples coming from the ICDAR2003 training set after removing all
non-alphanumeric characters. The images in ICDAR are split into 36 categories. The use of ICDAR
here was motivated by the fact that it is fairly large-scale, but, in contrast with ImageNet, existing
architectures haven’t been heavily tuned to this data. As such, one can expect our approach consisting
of training a compact network from scratch to be even more effective on this dataset.

Network Architectures: In our experiments, we make use of architectures where each kernel
in the convolutional layers has been decomposed into two 1D kernels [1], thus inherently having
rank-1 kernels. Note that this is orthogonal to the purpose of our low-rank regularizer, since, here,
we essentially aim at reducing the number of kernels, not the rank of individual kernels. The
decomposed layers yield even more compact architectures that require a lower computational cost for
training and testing while maintaining or even improving classification accuracy. In the following, a
convolutional layer refers to a layer with 1D kernels, while a decomposed layer refers to a block of
two convolutional layers using 1D vertical and horizontal kernels, respectively, with a non-linearity
and batch normalization after each convolution.

Let us consider a decomposed layer consisting of C and K input and output channels, respectively.
Let v̄ and h̄T be vectors of length dv and dh, respectively, representing the kernel size of each 1D
feature map. In this paper, we set dh = dv ≡ d. Furthermore, let ϕ(·) be a non-linearity, and xc denote
the c-th input channel of the layer. In this setting, the activation of the i-th output channel fi can be
written as

fi = ϕ(bh
i +

L

∑
l=1

h̄T
il ∗ [ϕ(bv

l +
C

∑
c=1

v̄lc ∗ xc)]), (6)

where L is the number of vertical filters, corresponding to the number of input channels for the
horizontal filters, and bv

l and bh
l are biases.

We report results with two different models using such decomposed layers: DecomposeMe [1] and
ResNets [23]. In all cases, we make use of batch-normalization after each convolutional layer 1. We
rely on rectified linear units (ReLU) [31] as non-linearities, although some initial experiments suggest
that slightly better performance can be obtained with exponential linear units [8]. For DecomposeMe,
we used two different Dec8 architectures, whose specific number of units are provided in Table 1. For
residual networks, we used a decomposed ResNet-50, and empirically verified that the use of 1D
kernels instead of the standard ones had no significant impact on classification accuracy.

Implementation details: For the comparison to be fair, all models, including the baselines, were
trained from scratch on the same computer using the same random seed and the same framework.
More specifically, we used the torch-7 multi-gpu framework [11].
1 We empirically found the use of batch normalization after each convolutional layer to have more impact with
our low-rank regularizer than with group sparsity or with no regularizer, in which cases the computational cost
can be reduced by using a single batch normalization after each decomposed layer.
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1v 1h 2v 2h 3v 3h 4v 4h 5v 5h 6v 6h 7v 7h 8v 8h
Dec256

8 32/11 64/11 128/5 192/5 256/3 384/3 256/3 256/3 256/3 256/3 256/3 256/3 256/3 256/3 256/3 256/3
Dec512

8 32/11 64/11 128/5 192/5 256/3 384/3 256/3 256/3 512/3 512/3 512/3 512/3 512/3 512/3 512/3 512/3
Dec512

3 48/9 96/9 160/9 256/9 512/8 512/8 – – – – – – – – – –

Table 1: Different DecomposeMe architectures used on ImageNet and ICDAR. Each entry rep-
resents the number of filters and their dimension.

Layer / Confλ 0 1 2 3 4 5 6 7 8 9 10 11
1v to 2h – 0.0127 0.051 0.204 0.255 0.357 0.051 0.051 0.051 0.051 0.051 0.153
3v to 8h – 0.0127 0.051 0.204 0.255 0.357 0.357 0.408 0.510 0.255 0.765 0.51

Table 2: Sparse group Lasso hyper-parameter configurations. The first row provides λ for the
first four convolutional layers, while the second one shows λ for the remaining layers. The first five
configurations correspond to using the same regularization penalty for all the layers, while the later
ones define weaker penalties on the first two layers, as suggested in [2].

For ImageNet, training was done on a DGX-1 node using two-P100 GPUs in parallel. We used
stochastic gradient descent with a momentum of 0.9 and a batch size of 180 images. The models were
trained using an initial learning rate of 0.1 multiplied by 0.1 every 20 iterations for the small models
(Dec256

8 in Table 1) and every 30 iterations for the larger models (Dec512
8 in Table 1). For ICDAR, we

trained each network on a single TitanX-Pascal GPU for a total of 55 epochs with a batch size of
256 and 1,000 iterations per epoch. We follow the same experimental setting as in [2]: The initial
learning rate was set to an initial value of 0.1 and multiplied by 0.1. We used a momentum of 0.9.

For DecomposeMe networks, we only performed basic data augmentation consisting of using random
crops and random horizontal flips with probability 0.5. At test time, we used a single central crop.
For ResNets, we used the standard data augmentation advocated for in [23]. In practice, in all models,
we also included weight decay with a penalty strength of 1e−4 in our loss function. We observed
empirically that adding this weight decay prevents the weights to overly grow between every two
computations of the proximity operator.

In terms of hyper-parameters, for our low-rank regularizer, we considered four values: τ ∈{0,1,5,10}.
For the sparse group Lasso term, we initially set the same λ to every layer to analyze the effect of
combining both types of regularization. Then, in a second experiment, we followed the experimental
set-up proposed in [2], where the first two decomposed layers have a lower penalty. In addition, we
set α = 0.2 to favor promoting sparsity at group level rather than at parameter level. The sparse group
Lasso hyper-parameter values are summarized in Table 2.

Computational cost: While a convenient measure of computational cost is the forward time,
this measure is highly hardware-dependent. Nowadays, hardware is heavily optimized for current
architectures and does not necessarily reflect the concept of any-time-computation. Therefore, we
focus on analyzing the number of multiply-accumulate operations (MAC). Let a convolution be
defined as fi = ϕ(bi +∑

C
j=1 Wi j ∗ x j), where each Wi j is a 2D kernel of dimensions dH × dW and

i ∈ [1, . . .K]. Considering a naive convolution algorithm, the number of MACs for a convolutional
layer is equal to PCKdhdW where P is the number of pixels in the output feature map. Therefore,
it is important to reduce CK whenever P is large. That is, reducing the number of units in the first
convolutional layers has more impact than in the later ones.

5 Experimental Results

Parameter sensitivity and comparison to other methods on ImagNet: We first analyze the
effect of our low-rank regularizer on its own and jointly with the sparse group Lasso one on MACs
and accuracy. To this end, we make use of the Dec256

8 model on ImageNet, and measure the impact
of varying both τ and λ in Eq. 5. Note that using τ = λ = 0 corresponds to the standard model,
and τ = 0 and λ 6= 0 to the method of [2]. Below, we report results obtained without and with the
post-processing step described in Section 3.2. Note that applying such a post-processing on the
standard model corresponds to the compression technique of [14]. Fig. 1 summarizes the results of
this analysis.
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(a) (b) (c)

Figure 1: Parameter sensitivity for Dec256
8 on ImageNet. (a) Accuracy as a function of the

regularization strength. (b) MACs directly after training. (c) MACS after the post-processing step
of Section 3.2 for el = {100%,80%}. In all the figures, isolated points represent the models trained
without sparse group Lasso regularizer. The red point corresponds to the baseline, where no low-rank
or sparsity regularization was applied. The specific sparse group Lasso hyper-parameters for each
configuration Confλ are given in Table 2.

Figure 2: Effect of the low-rank regularizer on its own on Dec256
8 on ImageNet. (Left) Number

of units per layer. (Right) Effective rank per layer for (top) el=100% and (bottom) el=80%. Note that,
on its own, our low-rank regularizer already helps cancel out entire units, thus inherently performing
model selection.

In Fig. 1(a), we can observe that accuracy remains stable for a wide range of values of τ and λ . In
fact, there are even small improvements in accuracy when a moderate regularization is applied.

Figs. 1(b,c) depict the MACs without and with applying the post-processing step discussed in
Section 3.2. As expected, the MACs decrease as the weights of the regularizers increase. Importantly,
however, Figs. 1(a,b) show that several models can achieve a high compression rate at virtually no
loss in accuracy. In Fig. 1(c), we provide the curves after post-processing with two different energy
percentages el = {100%,80%}. Keeping all the energy tends to incur an increase in MAC, since
the inequality defined in Section 3.2 is then not satisfied anymore. Recall, however, that, without
post-processing, the resulting models are still more compact than and as accurate as the baseline one.
With el = 80%, while a small drop in accuracy typically occurs, the gain in MAC is significantly
larger. Altogether, these experiments show that, by providing more compact models, our regularizer
lets us consistently reduce the computational cost over the baseline.

Interestingly, by looking at the case where Confλ = 0 in Fig. 1(b), we can see that we already
significantly reduce the number of operations when using our low-rank regularizer only, even without
post-processing. This is due to the fact that, even in this case, a significant number of units are
automatically zeroed-out. Empirically, we observed that, for moderate values of τ , the number of
zeroed-out singular values corresponds to complete units going to zero. This can be observed in
Fig. 2(left), were we show the number of non-zero units for each layer. In Fig. 2(right), we further
show the effective rank of each layer before and after post-processing.
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Baseline [14] [2] Ours Ours+[2] Ours+[2]
hyper-params – el = 90% – τ = 15,el = 90% τ = 15,el = 90% τ = 15,el = 100%
# Params 3.7M 3.6M 525K 728K 318K 454K
top-1 88.6% 88.5% 89.6% 88.8% 89.7% 90.5%

Table 3: Comparison to other methods on ICDAR.

Low-Rank appx. no SVD
Imagenet Top-1 Params MAC Params MAC
Dec512

8 -el=80% 66.8 -53.5 -46.2 -39.5 -25.3
Dec512

8 -el=100% 67.6 -21.1 -4.8 -39.5 -25.3

Low-Rank appx. no SVD
ICDAR Top-1 Params MAC Params MAC
Dec512

3 -el=80% 89.6 -91.9 -92.9 -89.2 -81.6
Dec512

3 -el=100% 90.8 -85.3 -86.8 -89.2 -81.6

Table 4: Accuracy and compression rates for Dec512
8 models on ImageNet (left) and Dec512

3 on
ICDAR (right). The number of parameters and MACs are given in % relative to the baseline model
(i.e., without any regularizer). A negative value indicates reduction with respect to the baseline. The
accuracy of the baseline is 67.0 for ImageNet and 89.3 for ICDAR.

el = 80% el = 100% no SVD baseline (τ = 0)
Dec256

8 -τ = 1 97.33 125.44 94.60 94.70
Dec256

8 -τ = 5 88.33 119.27 90.55 94.70
Dec256

8 -τ = 10 85.78 110.35 91.36 94.70

Table 5: Forward time in milliseconds (ms) using a Titan X (Pascal). We report the average over
50 forward passes using a batch size of 256. A large batch size minimizes the effect of memory
overheads due to non-hardware optimizations.

Comparison to other approaches on ICDAR: We now compare our results with existing ap-
proaches on the ICDAR dataset. As a baseline, we consider the Dec512

3 trained using SGD and L2
regularization for 75 epochs. For comparison, we consider the post-processing approach in [14]
with el = 90%, the group-sparsity regularization approach proposed in [2] and three different in-
stances of our model. First, using τ = 15, no group-sparsity and el = 90%. Then, two instances
combining our low-rank regularizer with group-sparsity (Section 3.1) with el = 90% and el = 100%.
In this case, the models are trained for 55 epochs and then reloaded and fine tuned for 20 more
epochs. Table 3 summarizes these results. The comparison with [14] clearly evidences the benefits
of our compression-aware training strategy. Furthermore, these results show the benefits of further
combining our low-rank regularizer with the groups-sparsity one of [2].

In addition, we also compare our approach with L1 and L2 regularizers on the same dataset and with
the same experimental setup. Pruning the weights of the baseline models with a threshold of 1e−4
resulted in 1.5M zeroed-out parameters for the L2 regularizer and 2.8M zeroed-out parameters for
the L1 regularizer. However, these zeroed out weights are sparsely located within units (neurons).
Applying our post-processing step (low-rank approximation with el = 100%) to these results yielded
models with 3.6M and 3.2M parameters for L2 and L1 regularizers, respectively. The top-1 accuracy
for these two models after post-processing was 87% and 89%, respectively. Using a stronger L1
regularizer resulted in lower top-1 accuracy. By comparison, our approach yields a model with 3.4M
zeroed-out parameters after post-processing and a top-1 accuracy of 90%. Empirically, we found the
benefits of our approach to hold for varying regularizer weights.

Results with larger models: In Table 4, we provide the accuracies and MACs for our approach and
the baseline on ImageNet and ICDAR for Dec512

8 models. Note that using our low-rank regularizer
yields more compact networks than the baselines for similar or higher accuracies. In particular, for
ImageNet, we achieve reductions in parameter number of more than 20% and more than 50% for
el = 100% and el = 80%, respectively. For ICDAR, these reductions are around 90% in both cases.

We now focus on our results with a ResNet-50 model on ImageNet. For post-processing we used
el = 90% for all these experiments which resulted in virtually no loss of accuracy. The baseline
corresponds to a top-1 accuracy of 74.7% and 18M parameters. Applying the post-processing step on
this baseline resulted in a compression rate of 4%. By contrast, our approach with low-rank yields
a top-1 accuracy of 75.0% for a compression rate of 20.6%, and with group sparsity and low-rank
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Epoch Num. parameters accuracy Total
reload Total no SVD top-1 train-time

Baseline – 3.7M – 88.4% 1.69h
r5 5 3.2M 3.71M 89.8% 1.81h
r15 15 210K 2.08M 90.0% 0.77h
r25 25 218K 1.60M 90.0% 0.88h
r35 35 222K 1.52M 89.0% 0.99h
r45 45 324K 1.24M 90.1% 1.12h
r55 55 388K 1.24M 89.2% 1.26h
r65 65 414K 1.23M 87.7% 1.36h

Figure 3: Forward-Backward training time in milliseconds when varying the reload epoch for
Dec512

3 on ICDAR. (Left) Forward-backward time per batch in milliseconds (with a batch size of
32). (Right) Summary of the results of each experiment. Note that we could reduce the training time
from 1.69 hours (baseline) to 0.77 hours by reloading the model at the 15th epoch. This corresponds
to a relative training-time speed up of 54.5% and yields a 2% improvement in top-1 accuracy.

jointly, a top-1 accuracy of 75.2% for a compression rate of 27%. By comparison, applying [2] to the
same model yields an accuracy of 74.5% for a compression rate of 17%.

Inference time: While MACs represent the number of operations, we are also interested in the
inference time of the resulting models. Table 5 summarizes several representative inference times
for different instances of our experiments. Interestingly, there is a significant reduction in inference
time when we only remove the zeroed-out neurons from the model. This is a direct consequence
of the pruning effect, especially in the first layers. However, there is no significant reduction in
inference time when post-processing our model via a low-rank decomposition. The main reason for
this is that modern hardware is designed to compute convolutions with much fewer operations than
a naive algorithm. Furthermore, the actual computational cost depends not only on the number of
floating point operations but also on the memory bandwidth. In modern architectures, decomposing a
convolutional layer into a convolution and a matrix multiplication involves (with current hardware)
additional intermediate computations, as one cannot reuse convolutional kernels. Nevertheless, we
believe that our approach remains beneficial for embedded systems using customized hardware, such
as FPGAs.

Additional benefits at training time: So far, our experiments have demonstrated the effectiveness
of our approach at test time. Empirically, we found that our approach is also beneficial for training,
by pruning the network after only a few epochs (e.g., 15) and reloading and training the pruned
network, which becomes much more efficient. Specifically, Table 3 summarizes the effect of varying
the reload epoch for a model relying on both low-rank and group-sparsity. We were able to reduce the
training time (with a batch size of 32 and training for 100 epochs) from 1.69 to 0.77 hours (relative
speedup of 54.5%). The accuracy also improved by 2% and the number of parameters reduced from
3.7M (baseline) to 210K (relative 94.3% reduction). We found this behavior to be stable across a
wide range of regularization parameters. If we seek to maintain accuracy compared to the baseline,
we found that we could achieve a compression rate of 95.5% (up to 96% for an accuracy drop of
0.5%), which corresponds to a training time reduced by up to 60%.

6 Conclusion
In this paper, we have proposed to explicitly account for a post-processing compression stage when
training deep networks. To this end, we have introduced a regularizer in the training loss to encourage
the parameter matrix of each layer to have low rank. We have further studied the case where this
regularizer is combined with a sparsity-inducing one to achieve even higher compression. Our
experiments have demonstrated that our approach can achieve higher compression rates than state-of-
the-art methods, thus evidencing the benefits of taking compression into account during training. The
SVD-based technique that motivated our approach is only one specific choice of compression strategy.
In the future, we will therefore study how regularizers corresponding to other such compression
mechanisms can be incorporated in our framework.
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