
Thinking Fast and Slow
with Deep Learning and Tree Search

Thomas Anthony1,�, Zheng Tian1, and David Barber1,2

1University College London
2Alan Turing Institute

�thomas.anthony.14@ucl.ac.uk

Abstract

Sequential decision making problems, such as structured prediction, robotic control,
and game playing, require a combination of planning policies and generalisation of
those plans. In this paper, we present Expert Iteration (EXIT), a novel reinforcement
learning algorithm which decomposes the problem into separate planning and
generalisation tasks. Planning new policies is performed by tree search, while a
deep neural network generalises those plans. Subsequently, tree search is improved
by using the neural network policy to guide search, increasing the strength of new
plans. In contrast, standard deep Reinforcement Learning algorithms rely on a
neural network not only to generalise plans, but to discover them too. We show that
EXIT outperforms REINFORCE for training a neural network to play the board
game Hex, and our final tree search agent, trained tabula rasa, defeats MOHEX 1.0,
the most recent Olympiad Champion player to be publicly released.

1 Introduction

According to dual-process theory [1, 2], human reasoning consists of two different kinds of thinking.
System 1 is a fast, unconscious and automatic mode of thought, also known as intuition or heuristic
process. System 2, an evolutionarily recent process unique to humans, is a slow, conscious, explicit
and rule-based mode of reasoning.

When learning to complete a challenging planning task, such as playing a board game, humans exploit
both processes: strong intuitions allow for more effective analytic reasoning by rapidly selecting
interesting lines of play for consideration. Repeated deep study gradually improves intuitions.
Stronger intuitions feedback to stronger analysis, creating a closed learning loop. In other words,
humans learn by thinking fast and slow.

In deep Reinforcement Learning (RL) algorithms such as REINFORCE [3] and DQN [4], neural
networks make action selections with no lookahead; this is analogous to System 1. Unlike human
intuition, their training does not benefit from a ‘System 2’ to suggest strong policies. In this paper,
we present Expert Iteration (EXIT), which uses a Tree Search as an analogue of System 2; this assists
the training of the neural network. In turn, the neural network is used to improve the performance of
the tree search by providing fast ‘intuitions’ to guide search.

At a low level, EXIT can be viewed as an extension of Imitation Learning (IL) methods to domains
where the best known experts are unable to achieve satisfactory performance. In IL an apprentice
is trained to imitate the behaviour of an expert policy. Within EXIT, we iteratively re-solve the IL
problem. Between each iteration, we perform an expert improvement step, where we bootstrap the
(fast) apprentice policy to increase the performance of the (comparatively slow) expert.
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Typically, the apprentice is implemented as a deep neural network, and the expert by a tree search
algorithm. Expert improvement can be achieved either by using the apprentice as an initial bias in the
search direction, or to assist in quickly estimating the value of states encountered in the search tree,
or both.

We proceed as follows: in section 2, we cover some preliminaries. Section 3 describes the general
form of the Expert Iteration algorithm, and discusses the roles performed by expert and apprentice.

Sections 4 and 5 dive into the implementation details of the Imitation Learning and expert improve-
ment steps of EXIT for the board game Hex. The performance of the resultant EXIT algorithm is
reported in section 6. Sections 7 and 8 discuss our findings and relate the algorithm to previous
works.

2 Preliminaries

2.1 Markov Decision Processes

We consider sequential decision making in a Markov Decision Process (MDP). At each timestep
t, an agent observes a state st and chooses an action at to take. In a terminal state sT , an episodic
reward R is observed, which we intend to maximise.1 We can easily extend to two-player, perfect
information, zero-sum games by learning policies for both players simultaneously, which aim to
maximise the reward for the respective player.

We call a distribution over the actions a available in state s a policy, and denote it π(a|s). The value
function V π(s) is the mean reward from following π starting in state s. By Qπ(s, a) we mean the
expected reward from taking action a in state s, and following policy π thereafter.

2.2 Imitation Learning

In Imitation Learning (IL), we attempt to solve the MDP by mimicking an expert policy π∗ that
has been provided. Experts can arise from observing humans completing a task, or, in the context
of structured prediction, calculated from labelled training data. The policy we learn through this
mimicry is referred to as the apprentice policy.

We create a dataset of states of expert play, along with some target data drawn from the expert, which
we attempt to predict. Several choices of target data have been used. The simplest approach is to ask
the expert to name an optimal move π∗(a|s) [5]. Once we can predict expert moves, we can take
the action we think the expert would have most probably taken. Another approach is to estimate the
action-value function Qπ

∗
(s, a). We can then predict that function, and act greedily with respect

to it. In contrast to direct action prediction, this target is cost-sensitive, meaning the apprentice can
trade-off prediction errors against how costly they are [6].

3 Expert iteration

Compared to IL techniques, Expert Iteration (EXIT) is enriched by an expert improvement step.
Improving the expert player and then resolving the Imitation Learning problem allows us to exploit
the fast convergence properties of Imitation Learning even in contexts where no strong player was
originally known, including when learning tabula rasa. Previously, to solve such problems, researchers
have fallen back on RL algorithms that often suffer from slow convergence, and high variance, and
can struggle with local minima.

At each iteration i, the algorithm proceeds as follows: we create a set Si of game states by self
play of the apprentice π̂i−1. In each of these states, we use our expert to calculate an Imitation
Learning target at s (e.g. the expert’s action π∗i−1(a|s)); the state-target pairs (e.g. (s, π∗i−1(a|s)))
form our dataset Di . We train a new apprentice π̂i on Di (Imitation Learning). Then, we use our
new apprentice to update our expert π∗i = π∗(a|s; π̂i) (expert improvement). See Algorithm 1 for
pseudo-code.

1This reward may be decomposed as a sum of intermediate rewards (i.e. R =
∑T

t=0 rt)
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The expert policy is calculated using a tree search algorithm. By using the apprentice policy to
direct search effort towards promising moves, or by evaluating states encountered during search more
quickly and accurately, we can help the expert find stronger policies. In other words, we bootstrap
the knowledge acquired by Imitation Learning back into the planning algorithm.

The Imitation Learning step is analogous to a human improving their intuition for the task by studying
example problems, while the expert improvement step is analogous to a human using their improved
intuition to guide future analysis.

Algorithm 1 Expert Iteration
1: π̂0 = initial_policy()
2: π∗0 = build_expert(π̂0)
3: for i = 1; i ≤ max_iterations; i++ do
4: Si = sample_self_play(π̂i−1)
5: Di = {(s, imitation_learning_target(π∗i−1(s)))|s ∈ Si}
6: π̂i = train_policy(Di)
7: π∗i = build_expert(π̂i)
8: end for

3.1 Choice of expert and apprentice

The learning rate of EXIT is controlled by two factors: the size of the performance gap between the
apprentice policy and the improved expert, and how close the performance of the new apprentice
is to the performance of the expert it learns from. The former induces an upper bound on the new
apprentice’s performance at each iteration, while the latter describes how closely we approach that
upper bound. The choice of both expert and apprentice can have a significant impact on both these
factors, so must be considered together.

The role of the expert is to perform exploration, and thereby to accurately determine strong move
sequences, from a single position. The role of the apprentice is to generalise the policies that the
expert discovers across the whole state space, and to provide rapid access to that strong policy for
bootstrapping in future searches.

The canonical choice of expert is a tree search algorithm. Search considers the exact dynamics of the
game tree local to the state under consideration. This is analogous to the lookahead human games
players engage in when planning their moves. The apprentice policy can be used to bias search
towards promising moves, aid node evaluation, or both. By employing search, we can find strong
move sequences potentially far away from the apprentice policy, accelerating learning in complex
scenarios. Possible tree search algorithms include Monte Carlo Tree Search [7], α-β Search, and
greedy search [6].

The canonical apprentice is a deep neural network parametrisation of the policy. Such deep networks
are known to be able to efficiently generalise across large state spaces, and they can be evaluated
rapidly on a GPU. The precise parametrisation of the apprentice should also be informed by what
data would be useful for the expert. For example, if state value approximations are required, the
policy might be expressed implicitly through a Q function, as this can accelerate lookup.

3.2 Distributed Expert Iteration

Because our tree search is orders of magnitude slower than the evaluations made during training of
the neural network, EXIT spends the majority of run time creating datasets of expert moves. Creating
these datasets is an embarassingly parallel task, and the plans made can be summarised by a vector
measuring well under 1KB. This means that EXIT can be trivially parallelised across distributed
architectures, even with very low bandwidth.

3.3 Online expert iteration

In each step of EXIT, Imitation Learning is restarted from scratch. This throws away our entire
dataset. Since creating datasets is computationally intensive this can add substantially to algorithm
run time.
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The online version of EXIT mitigates this by aggregating all datasets generated so far at each iteration.
In other words, instead of training π̂i on Di, we train it on D = ∪j≤iDj . Such dataset aggregation is
similar to the DAGGER algorithm [5]. Indeed, removing the expert improvement step from online
EXIT reduces it to DAGGER.

Dataset aggregation in online EXIT allows us to request fewer move choices from the expert at each
iteration, while still maintaining a large dataset. By increasing the frequency at which improvements
can be made, the apprentice in online EXIT can generalise the expert moves sooner, and hence the
expert improves sooner also, which results in higher quality play appearing in the dataset.

4 Imitation Learning in the game Hex

We now describe the implementation of EXIT for the board game Hex. In this section, we develop
the techniques for our Imitation Learning step, and test them for Imitation Learning of Monte Carlo
Tree Search (MCTS). We use this test because our intended expert is a version of Neural-MCTS,
which will be described in section 5.

4.1 Preliminaries

Hex

Hex is a two-player connection-based game played on an n× n hexagonal grid. The players, denoted
by colours black and white, alternate placing stones of their colour in empty cells. The black player
wins if there is a sequence of adjacent black stones connecting the North edge of the board to the
South edge. White wins if they achieve a sequence of adjacent white stones running from the West
edge to the East edge. (See figure 1).

Figure 1: A 5× 5 Hex game, won by white. Figure from Huang et al. [? ].

Hex requires complex strategy, making it challenging for deep Reinforcement Learning algorithms; its
large action set and connection-based rules means it shares similar challenges for AI to Go. However,
games can be simulated efficiently because the win condition is mutually exclusive (e.g. if black has
a winning path, white cannot have one), its rules are simple, and permutations of move order are
irrelevant to the outcome of a game. These properties make it an ideal test-bed for Reinforcement
Learning. All our experiments are on a 9× 9 board size.

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an any-time best-first tree-search algorithm. It uses repeated
game simulations to estimate the value of states, and expands the tree further in more promising
lines. When all simulations are complete, the most explored move is taken. It is used by the leading
algorithms in the AAAI general game-playing competition [8]. As such, it is the best known algorithm
for general game-playing without a long RL training procedure.

Each simulation consists of two parts. First, a tree phase, where the tree is traversed by taking actions
according to a tree policy. Second, a rollout phase, where some default policy is followed until the
simulation reaches a terminal game state. The result returned by this simulation can then be used to
update estimates of the value of each node traversed in the tree during the first phase.

Each node of the search tree corresponds to a possible state s in the game. The root node corresponds
to the current state, its children correspond to the states resulting from a single move from the current
state, etc. The edge from state s1 to s2 represents the action a taken in s1 to reach s2, and is identified
by the pair (s1, a).
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At each node we store n(s), the number of iterations in which the node has been visited so far. Each
edge stores both n(s, a), the number of times it has been traversed, and r(s, a) the sum of all rewards
obtained in simulations that passed through the edge. The tree policy depends on these statistics. The
most commonly used tree policy is to act greedily with respect to the upper confidence bounds for
trees formula [7]:

UCT(s, a) =
r(s, a)

n(s, a)
+ cb

√
log n(s)

n(s, a)
(1)

When an action a in a state sL is chosen that takes us to a position s′ not yet in the search tree, the
rollout phase begins. In the absence of domain-specific information, the default policy used is simply
to choose actions uniformly from those available.

To build up the search tree, when the simulation moves from the tree phase to the rollout phase, we
perform an expansion, adding s′ to the tree as a child of sL.2 Once a rollout is complete, the reward
signal is propagated through the tree (a backup), with each node and edge updating statistics for visit
counts n(s), n(s, a) and total returns r(s, a).

In this work, all MCTS agents use 10,000 simulations per move, unless stated otherwise. All use a
uniform default policy. We also use RAVE. Full details are in the appendix. [9].

4.2 Imitation Learning from Monte Carlo Tree Search

In this section, we train a standard convolutional neural network3 to imitate an MCTS expert. Guo et
al. [11] used a similar set up on Atari games. However, their results showed that the performance of
the learned neural network fell well short of the MCTS expert, even with a large dataset of 800,000
MCTS moves. Our methodology described here improves on this performance.

Learning Targets

In Guo et al. [11], the learning target used was simply the move chosen by MCTS. We refer to this
as chosen-action targets (CAT), and optimise the Kullback–Leibler divergence between the output
distribution of the network and this target. So the loss at position s is given by the formula:

LCAT = − log[π(a∗|s)]

where a∗ = argmaxa(n(s, a)) is the move selected by MCTS.

We propose an alternative target, which we call tree-policy targets (TPT). The tree policy target is
the average tree policy of the MCTS at the root. In other words, we try to match the network output
to the distribution over actions given by n(s, a)/n(s) where s is the position we are scoring (so
n(s) = 10, 000 in our experiments). This gives the loss:

LTPT = −
∑
a

n(s, a)

n(s)
log[π(a|s)]

Unlike CAT, TPT is cost-sensitive: when MCTS is less certain between two moves (because they
are of similar strength), TPT penalises misclassifications less severely. Cost-sensitivity is a desirable
property for an imitation learning target, as it induces the IL agent to trade off accuracy on less
important decisions for greater accuracy on critical decisions.

In EXIT, there is additional motivation for such cost-sensitive targets, as our networks will be used
to bias future searches. Accurate evaluations of the relative strength of actions never made by the
current expert are still important, since future experts will use the evaluations of all available moves
to guide their search.

2Sometimes multiple nodes are added to the tree per iteration, adding children to s′ also. Conversely,
sometimes an expansion threshold is used, so sL is only expanded after multiple visits.

3Our network architecture is described in the appendix. We use Adam [10] as our optimiser.
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Sampling the position set

Correlations between the states in our dataset may reduce the effective dataset size, harming learning.
Therefore, we construct all our datasets to consist of uncorrelated positions sampled using an
exploration policy. To do this, we play multiple games with an exploration policy, and select a single
state from each game, as in Silver et al. [12]. For the initial dataset, the exploration policy is MCTS,
with the number of iterations reduced to 1,000 to reduce computation time and encourage a wider
distribution of positions.

We then follow the DAGGER procedure, expanding our dataset by using the most recent apprentice
policy to sample 100,000 more positions, again sampling one position per game to ensure that there
were no correlations in the dataset. This has two advantages over sampling more positions in the
same way: firstly, selecting positions with the apprentice is faster, and secondly, doing so results in
positions closer to the distribution that the apprentice network visits at test time.

4.3 Results of Imitation Learning

Based on our initial dataset of 100,000 MCTS moves, CAT and TPT have similar performance in the
task of predicting the move selected by MCTS, with average top-1 prediction errors of 47.0% and
47.7%, and top-3 prediction errors of 65.4% and 65.7%, respectively.

However, despite the very similar prediction errors, the TPT network is 50± 13 Elo stronger than the
CAT network, suggesting that the cost-awareness of TPT indeed gives a performance improvement. 4

We continued training the TPT network with the DAGGER algorithm, iteratively creating 3 more
batches of 100,000 moves. This additional data resulted in an improvement of 120 Elo over the first
TPT network. Our final DAGGER TPT network achieved similar performance to the MCTS it was
trained to emulate, winning just over half of games played between them (87/162).

5 Expert Improvement in Hex

We now have an Imitation Learning procedure that can train a strong apprentice network from MCTS.
In this section, we describe our Neural-MCTS (N-MCTS) algorithms, which use such apprentice
networks to improve search quality.

5.1 Using the Policy Network

Because the apprentice network has effectively generalised our policy, it gives us fast evaluations
of action plausibility at the start of search. As search progresses, we discover improvements on this
apprentice policy, just as human players can correct inaccurate intuitions through lookahead.

We use our neural network policy to bias the MCTS tree policy towards moves we believe to be
stronger. When a node is expanded, we evaluate the apprentice policy π̂ at that state, and store it. We
modify the UCT formula by adding a bonus proportional to π̂(a|s):

UCTP−NN(s, a) = UCT(s, a) + wa
π̂(a|s)

n(s, a) + 1

Where wa weights the neural network against the simulations. This formula is adapted from one
found in Gelly & Silver [9]. Tuning of hyperparameters found that wa = 100 was a good choice for
this parameter, which is close to the average number of simulations per action at the root when using
10,000 iterations in the MCTS. Since this policy was trained using 10,000 iterations too, we would
expect that the optimal weight should be close to this average.

The TPT network’s final layer uses a softmax output. Because there is no reason to suppose that
the optimal bonus in the UCT formula should be linear in the TPT policy probability, we view the
temperature of the TPT network’s output layer as a hyperparameter for the N-MCTS and tune it to
maximise the performance of the N-MCTS.

4When testing network performance, we greedily select the most likely move, because CAT and TPT may
otherwise induce different temperatures in the trained networks’ policies.
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When using the strongest TPT network from section 4, N-MCTS using a policy network significantly
outperforms our baseline MCTS, winning 97% of games. The neural network evaluations cause a
two times slowdown in search. For comparison, a doubling of the number of iterations of the vanilla
MCTS results in a win rate of 56%.

5.2 Using a Value Network

Strong value networks have been shown to be able to substantially improve the performance of MCTS
[12]. Whereas a policy network allows us to narrow the search, value networks act to reduce the
required search depth compared to using inaccurate rollout-based value estimation.

However, our imitation learning procedure only learns a policy, not a value function. Monte Carlo
estimates of V π

∗
(s) could be used to train a value function, but to train a value function without

severe overfitting requires more than 105 independent samples. Playing this many expert games is
well beyond our computation resources, so instead we approximate V π

∗
(s) with the value function

of the apprentice, V π̂(s), for which Monte Carlo estimates are cheap to produce.

To train the value network, we use a KL loss between V (s) and the sampled (binary) result z:
LV = −z log[V (s)]− (1− z) log[1− V (s)]

To accelerate the tree search and regularise value prediction, we used a multitask network with
separate output heads for the apprentice policy and value prediction, and sum the losses LV and
LTPT.

To use such a value network in the expert, whenever a leaf sL is expanded, we estimate V (s). This is
backed up through the tree to the root in the same way as rollout results are: each edge stores the
average of all evaluations made in simulations passing through it. In the tree policy, the value is
estimated as a weighted average of the network estimate and the rollout estimate.5

6 Experiments

6.1 Comparison of Batch and Online EXIT to REINFORCE

We compare EXIT to the policy gradient algorithm found in Silver et al. [12], which achieved
state-of-the-art performance for a neural network player in the related board game Go. In Silver et al.
[12], the algorithm was initialised by a network trained to predict human expert moves from a corpus
of 30 million positions, and then REINFORCE [3] was used. We initialise with the best network
from section 4. Such a scheme, Imitation Learning initialisation followed by Reinforcement Learning
improvement, is a common approach when known experts are not sufficiently strong.

In our batch EXIT, we perform 3 training iterations, each time creating a dataset of 243,000 moves.

In online EXIT, as the dataset grows, the supervised learning step takes longer, and in a naïve
implementation would come to dominate run-time. We test two forms of online EXIT that avoid this.
In the first, we create 24,300 moves each iteration, and train on a buffer of the most recent 243,000
expert moves. In the second, we use all our data in training, and expand the size of the dataset by
10% each iteration.

For this experiment we did not use any value networks, so that network architectures between the
policy gradient and EXIT are identical. All policy networks are warm-started to the best network
from section 4.

As can be seen in figure 2, compared to REINFORCE, EXIT learns stronger policies faster. EXIT also
shows no sign of instability: the policy improves consistently each iteration and there is little variation
in the performance between each training run. Separating the tree search from the generalisation
has ensured that plans don’t overfit to a current opponent, because the tree search considers multiple
possible responses to the moves it recommends.

Online expert iteration substantially outperforms the batch mode, as expected. Compared to the
‘buffer’ version, the ‘exponential dataset’ version appears to be marginally stronger, suggesting that
retaining a larger dataset is useful.

5This is the same as the method used in Silver et al. [12]
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Figure 2: Elo ratings of policy gradient network and EXIT networks through training. Values are the
average of 5 training runs, shaded areas represent 90% confidence intervals. Time is measured by
number of neural network evaluations made. Elo calculated with BayesElo [13]

.

6.2 Comparison of Value and Policy EXIT

With sufficiently large datasets, a value network can be learnt to improve the expert further, as
discussed in section 5.2. We ran asynchronous distributed online EXIT using only a policy network
until our datasets contained ∼ 550, 000 positions. We then used our most recent apprentice to add a
Monte Carlo value estimate from each of the positions in our dataset, and trained a combined policy
and value apprentice, giving a substantial improvement in the quality of expert play.

We then ran EXIT with a combined value-and-policy network, creating another ∼ 7, 400, 000 move
choices. For comparison, we continued the training run without using value estimation for equal time.
Our results are shown in figure 3, which shows that value-and-policy-EXIT significantly outperforms
policy-only-EXIT. In particular, the improved plans from the better expert quickly manifest in a
stronger apprentice.

We can also clearly see the importance of expert improvement, with later apprentices comfortably
outperforming experts from earlier in training.

Figure 3: Apprentices and experts in distributed online EXIT, with and without neural network value
estimation. MOHEX’s rating (10,000 iterations per move) is shown by the black dashed line.

6.3 Performance Against MOHEX

Versions of MOHEX have won every Computer Games Olympiad Hex tournament since 2009.
MOHEX is a highly optimised algorithm, utilising a complex, hand-made theorem-proving algorithm

8



which calculates provably suboptimal moves, to be pruned from search, and an improved rollout
policy; it also optionally uses a specialised end-game solver, particularly powerful for small board
sizes. In contrast, our algorithm learns tabula rasa, without game-specific knowledge beside the rules
of the game. Here we compare to the most recent available version, MOHEX 1.0 [14].

To fairly compare MOHEX to our experts with equal wall-clock times is difficult, as the relative
speeds of the algorithms are hardware dependent: MOHEX’s theorem prover makes heavy use of the
CPU, whereas for our experts, the GPU is the bottleneck. On our machine MOHEX is approximately
50% faster.6 We tested EXIT against 10,000 iteration-MOHEX on default settings, 100,000 iteration-
MOHEX, and against 4 second per move-MOHEX (with parallel solver switched on). EXIT won all
matches using just 10,000 iterations per move, results in the table below:

EXIT Setting Time/move EXIT win rate MOHEX Setting Solver Time/move

104 iterations ∼ 0.3s 75.3% 104 iterations No ∼ 0.2s
104 iterations ∼ 0.3s 59.3% 105 iterations No ∼ 2s
104 iterations ∼ 0.3s 55.6% 4s/move Yes 4s

7 Related work

EXIT has several connections to existing RL algorithms, resulting from different choices of expert
class. For example, we can recover a version of Policy Iteration [15] by using Monte Carlo Search as
our expert; in this case it is easy to see that Monte Carlo Tree Search gives stronger plans than Monte
Carlo Search.

Previous works have also attempted to achieve Imitation Learning that outperforms the original
expert. Silver et al. [12] use Imitation Learning followed by Reinforcement Learning. Kai-Wei,
et al. [16] use Monte Carlo estimates to calculate Q∗(s, a), and train an apprentice π to maximise∑
a π(a|s)Q∗(s, a). At each iteration after the first, the rollout policy is changed to a mixture of the

most recent apprentice and the original expert. This too can be seen as blending an RL algorithm
with Imitation Learning: it combines Policy Iteration and Imitation Learning.

Neither of these approaches is able to improve the original expert policy. They are useful when strong
experts exist, but only at the beginning of training. In contrast, because EXIT creates stronger experts
for itself, it is able to use experts throughout the training process.

AlphaGo Zero (AG0)[17], presents an independently developed version of ExIt, 7 and showed that
it achieves state-of-the-art performance in Go. We include a detailed comparison of these closely
related works in the appendix.

Unlike standard Imitation Learning methods, EXIT can be applied to the Reinforcement Learning
problem: it makes no assumptions about the existence of a satisfactory expert. EXIT can be applied
with no domain specific heuristics available, as we demonstrate in our experiment, where we used a
general purpose search algorithm as our expert class.

8 Conclusion

We have introduced a new Reinforcement Learning algorithm, Expert Iteration, motivated by the
dual process theory of human thought. EXIT decomposes the Reinforcement Learning problem by
separating the problems of generalisation and planning. Planning is performed on a case-by-case basis,
and only once MCTS has found a significantly stronger plan is the resultant policy generalised. This
allows for long-term planning, and results in faster learning and state-of-the-art final performance,
particularly for challenging problems.

We show that this algorithm significantly outperforms a variant of the REINFORCE algorithm in
learning to play the board game Hex. The resultant tree search algorithm beats MoHex 1.0, indicating
competitiveness with state-of-the-art heuristic search methods, despite being trained tabula rasa.

6This machine has an Intel Xeon E5-1620 and nVidia Titan X (Maxwell), our tree search takes 0.3 seconds
for 10,000 iterations, while MOHEX takes 0.2 seconds for 10,000 iterations, with multithreading.

7Our original version, with only policy networks, was published before AG0 was published, but after its
submission. Our value networks were developed before AG0 was published, and published after Silver et al.[17]
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A Comparison to AlphaGo Zero

Silver et al. [17] independently developed the EXIT algorithm, and applied it to Go. The result,
AlphaGo Zero, outperformed the previous state-of-the art AlphaGo program while learning tabula
rasa. Here we enumerate some of the similarities and differences between our implementations of the
algorithm.

Both algorithms use tree policy targets for training the apprentice policy, however AlphaGo Zero
uses Monte Carlo value estimates from the expert for the value network’s training target, we use
estimates from the apprentice. With approximately 100,000 times more computation during training
than we used, the extra cost of such estimates is presumably outweighed by their greater accuracy.
AlphaGo Zero includes all positions from all games in its dataset, whereas our positions are chosen
to be independent samples from the exploration distribution.

In our implementation, we use the KL loss for both value and policy losses; AlphaGo Zero uses
mean-square error for the value prediction. AlphaGo Zero also uses L2 regularisation of their network
parameters, we use early stopping instead, and reinitialise neural network weights at each iteration
before retraining on new data.

AlphaGo Zero uses a residual neural network with 79 layers, and significantly more units in each layer.
Compared to a more standard CNN such as ours, they find significantly improved IL performance.

Our MCTS makes use of RAVE and rollouts, whereas AlphaGo Zero relies entirely on its value
networks for evaluating moves. We also make use of warm-starting, progressing from a vanilla-MCTS
expert to using only a policy network, and finally to using both policy and value networks. These
warm starts are not essential for learning to play Hex, but they save substantially on computation
early in training.

In AlphaGo Zero, before each expert improvement, they include verification that the new expert is
indeed superior to the previous. They only change to a new expert if it defeats the current expert.
Such tests would be prohibitively expensive compared to our training times, and we didn’t find them
to be necessary.

Unlike AlphaGo Zero, during dataset creation, we perform MCTS synchronously with no speed
reduction, via the techniques described in appendix B.

When creating training data, AlphaGo Zero adds Dirichlet noise to the prior policy at the root node
of the search. This guarantees that all moves may be tried by the tree search, thus avoiding local
optima. We do not use this trick, and our UCT formula includes a more usual exploration term, which
guarantees that every move at the root will be attempted at least once, and so the apprentice policy
will never completely disregard a move. We do not know whether noise at the root would help in
Hex.

B Fast calculation of expert moves

Because calculation of neural networks is faster when done in batches, and is performed on a GPU,
most implementations of N-MCTS calculate their neural networks asynchronously: when a node is
expanded, the position is added to a GPU calculation queue, but search continues. Once the queue
length reaches the desired batch size B, the neural network policy can be calculated for the first B
states on the queue, and the information is added to the appropriate nodes.

Compared to waiting until the evaluation has taken place, this asynchronous neural net calculation
substantially increases the rate at which MCTS iterations can take place: batching neural net calcu-
lations improves GPU throughput, and the CPU never sits idle waiting for evaluations. However,
because search continues before evaluations are returned, suboptimal moves are made in the tree
where prior information has not yet been calculated.

In the EXIT setting, we can avoid asynchronous N-MCTS, CPU idle time and small calculation
batches on our GPU. This is because we are creating a large dataset of N-MCTS moves, and can
calculate multiple moves simultaneously. Suppose we have a set P of positions to search from, and
that |P | > 2B . Each CPU thread gets a position p1 from P , and continues search from that position
until a NN evaluation is needed. It then saves the current search state (which can be expressed as a

12



single pointer to the current tree node), and submits the necessary calculation to the GPU queue. It
then moves on to another position p2 from P , which isn’t awaiting a neural net evaluation.

C Monte Carlo Tree Search Parameters and Rapid Action Value Estimation
(RAVE)

RAVE is a technique for providing estimates of the values of moves in the search tree more rapidly
in the early stages of exploring a state than is achieved with UCT alone. This is important, because
the Monte Carlo value heuristic requires multiple samples to achieve a low variance estimate of the
value, which is particularly problematic when there are many actions available.

A common property of many games is that a move that is strong at time t2 is likely to have also been
strong at time t1 < t2. For instance, in stone placing games such as Go and Hex, if claiming a cell is
useful, it may also have been advantageous to claim it earlier. RAVE attempts to exploit this heuristic
to harness estimates for many actions from a single rollout.

RAVE statistics nRAVE(s), nRAVE(s, a) and rRAVE(s, a) are stored that correspond to the statistics
used in normal UCT. After a simulation s1, a1, s2, a2, ..., sT , with result R, RAVE statistics are
updated as follows:

nRAVE(sti , atj ) := nRAVE(sti , atj ) + 1 ∀ ti < tj

rRAVE(sti , atj ) := rRAVE(sti , atj ) +R ∀ ti < tj

nRAVE(sti) :=
∑
a

nRAVE(sti , a) ∀ ti

In other words, the statistics for state sti are updated for each action that came subsequently as if the
action were taken first. This is also known as the all-moves-as-first heuristic, and is applicable in any
domain where actions can often be transposed.

To use the statistics a UCTRAVE is calculated, and averaged with the standard UCT into the tree
policy to give UCTU,RAVE, which then chooses the action. Specifically:

UCTRAVE(s, a) =
rRAVE(s, a)

nRAVE(s, a)
+ cb

√
log nRAVE(s)

nRAVE(s, a)

β(s, a) =

√
cRAVE

3n(s) + cRAVE

UCTU,RAVE =β(s, a)UCTRAVE(s, a)

+ (1− β(s, a))UCT(s, a)

The weight factor β(s, a) trades the low variance values given by RAVE with the bias of that estimate.
As the number of normal samples n(s) increases, the weight given to the RAVE samples tends to 0.
cRAVE governs how quickly the RAVE values are down-weighted as the number of samples increases.

When using a policy network, the formulae are:

UCTP−NN(s, a) =UCT(s, a) + wa
π̂(a|s, τ)
n(s, a) + 1

UCTP−NN,RAVE(s, a) =β(s, a)UCTRAVE(s, a)

+ (1− β(s, a))UCT(s, a)

+ wa
π̂(a|s, τ)
n(s, a) + 1

When using both policy and value estimates, the formulae are:

13



UCTPV−NN(s, a) =UCT(s, a) + wa
π̂(a|s, τ)
n(s, a) + 1

+ wvQ̂(s, a)

UCTPV−NN,RAVE(s, a) =β(s, a)UCTRAVE(s, a)

+ (1− β(s, a))UCT(s, a)

+ wa
π̂(a|s, τ)
n(s, a) + 1

+ wvQ̂(s, a)

Where Q̂(s, a) is the backed up average of the network value estimates at the edge s, a.

Table 1: Monte Carlo Tree Search Parameters. Vanilla-MCTS refers to the parameters used in section
4. N-MCTS parameters are for when only a policy network is used and when both policy and value
networks are used.

Parameter Vanilla-MCTS N-MCTS (policy) N-MCTS (policy & value)

Iterations 10,000 10,000 10,000
Exploration Constant cb 0.25 0.05 0.05
cRAVE 3000 3000 3000
Expansion Threshold 0 1 1
NN Weight wa N/A 100 100
NN Output Softmax Temperature τ N/A 0.1 0.1
Value Network Weight wv N/A N/A 0.75

D Neural Network Architecture

Input Features. We use the same state representation as Young et al. [18]: a two-dimensional state
of 9× 9 Hex board is extended to a 6 channel input. The 6 channels represent: black stone locations,
white stone locations, black stones connected to the north edge, black stones connected to the south
edge, white stones connected to the west edge and white stones connected to the east edge.

In line with Young et al. [18], to help with the use of convolutions up to the board edge, we also
expand the board, adding two extra rows or columns to each side. On the extra cells thus created, we
add dummy stones: along the North and South edges, black stones, along the East and West edges,
White stones. In each corner of the padding, we ‘place both a black and a white stone’. The resultant
encoding of the board is shown in figure 4.

Playing Hex on this expanded board, with the dummy stones providing connections in the same way
as stones played by players, does not change the game, but it means that convolutions centred at the
edge of the board have more meaningful input than would be provided by zero-padding these cells.

Neural network architecture. Our network has 13 convolution layers followed by 2 parallel fully
connected softmax output layers.

The parallel softmax outputs represent the move probabilities if it is black to move, and the move
probabilities if it is white to move. Before applying the softmax function, a mask is used to remove
those moves which are invalid in the current position (i.e. those cells that already have a stone in
them).

When also predicting state value, we add two more outputs, each outputting a scalar with a sigmoid
non-linearity. This estimates the winning probability, depending on which player is next to move.

Because the board topology is a hexagonal grid, we use hexagonal filters for our convolutional layers.
A 3× 3 hexagonal filter centred on a cell covers that cell, and the 6 adjacent cells.

In convolution layers 1-8 and layer 12, the layer input is first zero padded and then convolved with
64 3× 3 hexagonal filters with stride 1. Thus the shape of the layer’s output is the same as its input.
Layers 9 and 10 do not pad their input, and layers 11 and 13 do not pad, and have 1× 1 filters.
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Figure 4: The 6-channel encoding used as input for our NN

Our convolution layers use Exponential linear unit (ELU) [21] nonlinearities. Different biases are
used in each position for all convolution layers and normalisation propagation [20] is applied in layers
1-12.

This architecture is illustrated in figure 5.

Training details. At each training step, a randomly selected mini batch of 250 samples is selected
from the training data set and Adam [10] is used as optimiser. We regularise the network with early
stopping. The early stopping point is the first epoch after which the validation errors increase 3 times
consecutively. An epoch is one iteration over each data point in the data set.
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Figure 5: The NN architecture

16



E Matches between EXIT and MOHEX

EXIT is clearly stronger than MOHEX 1.0. MOHEX 2.0 is ∼250 Elo stronger than MOHEX 1.0 on
11× 11, with the strength difference usually slightly lower on smaller boards. Although the most
recent versions of MOHEX are not available for comparison, we conclude that EXIT is competitive
with state of the art for (scalable) heuristic search methods, but cannot say whether it exceeds it,
particularly for larger 11x11 or 13x13 boards, which are more typical for tournament play. Future
work should verify the scalability of the method, and compare directly to state-of-the-art methods.

We present six games between EXIT (10,000 iterations per move) and MOHEX8 (100,000 iterations
per move), from a match of 162 games (consisting of one game each as black per legal opening
move), of which EXIT won 59.3%. Here MOHEX only uses its MCTS; in tournament play it uses
DFPN solver in parallel to the MCTS. The games were chosen with ‘even’ opening moves that don’t
give either player a large advantage, and to show some of the relative strengths and weaknesses of
both algorithms.
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Figure 6: EXIT (black) vs MOHEX (white)

8Source code from git://benzene.git.sourceforge.net/gitroot/benzene/benzene
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Figure 7: MOHEX (black) vs EXIT (white)
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Figure 9: MOHEX (black) vs EXIT (white)
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