
data used to train our agents. Finally, we thank OpenAI and DeepMind for providing a supportive
research environment and for supporting and encouraging this collaboration.
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A Experimental Details

Many RL environments have termination conditions that depend on the behavior of the agent, such
as ending an episode when the agent dies or falls over. We found that such termination conditions
encode information about the task even when the reward function is not observable. To avoid this
subtle source of supervision, which could potentially confound our attempts to learn from human
preferences only, we removed all variable-length episodes:

• In the Gym versions of our robotics tasks, the episode ends when certain parameters go
outside of a prescribed range (for example when the robot falls over). We replaced these
termination conditions by a penalty which encourages the parameters to remain in the range
(and which the agent must learn).

• In Atari games, we do not send life loss or episode end signals to the agent (we do continue
to actually reset the environment), effectively converting the environment into a single
continuous episode. When providing synthetic oracle feedback we replace episode ends
with a penalty in all games except Pong; the agent must learn this penalty.

Removing variable length episodes leaves the agent with only the information encoded in the
environment itself; human feedback provides its only guidance about what it ought to do.

At the beginning of training we compare a number of trajectory segments drawn from rollouts of an
untrained (randomly initialized) policy. In the Atari domain we also pretrain the reward predictor
for 200 epochs before beginning RL training, to reduce the likelihood of irreversibly learning a bad
policy based on an untrained predictor. For the rest of training, labels are fed in at a rate decaying
inversely with the number of timesteps; after twice as many timesteps have elapsed, we answer about
half as many queries per unit time. The details of this schedule are described in each section. This
“label annealing” allows us to balance the importance of having a good predictor from the start with
the need to adapt the predictor as the RL agent learns and encounters new states. When training
with real human feedback, we attempt to similarly anneal the label rate, although in practice this is
approximate because contractors give feedback at uneven rates.

Except where otherwise stated we use an ensemble of 3 predictors, and draw a factor 10 more clip
pair candidates than we ultimately present to the human, with the presented clips being selected via
maximum variance between the different predictors as described in Section 2.2.4.

A.1 Simulated Robotics Tasks

The OpenAI Gym continuous control tasks penalize large torques. Because torques are not di-
rectly visible to a human supervisor, these reward functions are not good representatives of human
preferences over trajectories and so we removed them.

For the simulated robotics tasks, we optimize policies using trust region policy optimization (TRPO,
Schulman et al., 2015) with discount rate � = 0.995 and � = 0.97. The reward predictor is a two-
layer neural network with 64 hidden units each, using leaky ReLUs (↵ = 0.01) as nonlinearities.8 We
compare trajectory segments that last 1.5 seconds, which varies from 15 to 60 timesteps depending
on the task.

We normalize the reward predictions to have standard deviation 1. When learning from the reward
predictor, we add an entropy bonus of 0.01 on all tasks except swimmer, where we use an entropy
bonus of 0.001. As noted in Section 2.2.1, this entropy bonus helps to incentivize the increased
exploration needed to deal with a changing reward function.

We collect 25% of our comparisons from a randomly initialized policy network at the beginning of
training, and our rate of labeling after T frames 2 ⇤ 106/(T + 2 ⇤ 106).

8All of these reward functions are second degree polynomials of the input features, and so if we were
concerned only with these tasks we could take a simpler approach to learning the reward function. However,
using this more flexible architecture allows us to immediately generalize to tasks for which the reward function
is not so simple, as described in Section 3.2.
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A.2 Atari

Our Atari agents are trained using the standard set of environment wrappers used by Mnih et al.
(2015): 0 to 30 no-ops in the beginning of an episode, max-pooling over adjacent frames, stacking
of 4 frames, a frameskip of 4, life loss ending an episode (but not resetting the environment), and
rewards clipped to [�1, 1].

Atari games include a visual display of the score, which in theory could be used to trivially infer
the reward. Since we want to focus instead on inferring the reward from the complex dynamics
happening in the game, we replace the score area with a constant black background on all seven
games. On BeamRider we additionally blank out the enemy ship count, and on Enduro we blank out
the speedometer.

For the Atari tasks we optimize policies using the A3C algorithm (Mnih et al., 2016) in synchronous
form (A2C), with policy architecture as described in Mnih et al. (2015). We use standard settings for
the hyperparameters: an entropy bonus of � = 0.01, learning rate of 0.0007 decayed linearly to reach
zero after 80 million timesteps (although runs were actually trained for only 50 million timesteps),
n = 5 steps per update, N = 16 parallel workers, discount rate � = 0.99, and policy gradient using
Adam with ↵ = 0.99 and ✏ = 10

�5.

For the reward predictor, we use 84x84 images as inputs (the same as the inputs to the policy), and
stack 4 frames for a total 84x84x4 input tensor. This input is fed through 4 convolutional layers
of size 7x7, 5x5, 3x3, and 3x3 with strides 3, 2, 1, 1, each having 16 filters, with leaky ReLU
nonlinearities (↵ = 0.01). This is followed by a fully connected layer of size 64 and then a scalar
output. All convolutional layers use batch norm and dropout with ↵ = 0.5 to prevent predictor
overfitting. In addition we use `2 regularization with the adapative scheme described in Section 2.2.3.
Since the reward predictor is ultimately used to compare two sums over timesteps, its scale is arbitrary,
and we normalize it to have a standard deviation of 0.05 (we could equivalently have adjusted our
learning rates and entropy bonus, but this choice allowed us to use the same parameters as for the real
reward function).

We compare trajectory segments of 25 timesteps (1.7 seconds at 15 fps with frame skipping).

We collect 500 comparisons from a randomly initialized policy network at the beginning of training,
and our rate of labeling after T frames of training is decreased every 5 ⇤ 106 frames, to be roughly
proportional to 5 ⇤ 106/(T + 5 ⇤ 106).
The predictor is trained asynchronously from the RL agent, and on our hardware typically processes
1 label per 10 RL timesteps. We maintain a buffer of only the last 3,000 labels and loop over this
buffer continuously; this is to ensure that the predictor gives enough weight to new labels (which can
represent a shift in distribution) when the total number of labels becomes large.

In the ablation studies of Figure 5b, pretraining has 5,000 labels rather than 5,500, and the “target”
beamrider curve is averaged over 2 runs rather than 3.

B Instructions Provided to Contractors

B.1 MuJoCo

Giving feedback

Sign up for a slot in the spreadsheet. Then go to the appropriate URL’s that we give you, and you’ll
be repeatedly presented with two video clips of an AI controlling a virtual robot.

Look at the clips and select the one in which better things happen. Only decide on events you
actually witness in the clip.

Here’s a guide on what constitutes good and bad behavior in each specific domain:

• Hopper: the “center” of the robot is the joint closest to the pointy end. The first priority is
for the center of the robot to move to the right (moving to the left is worse than not moving
at all). If the two robots are roughly tied on this metric, then the tiebreaker is how high the
center is.
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• Walker: the “center” of the robot is the joint where the three limbs meet. The first priority
is for the center of the robot to move to the right. If the two robots are roughly tied on this
metric, then the tiebreaker is how high the center is.

• Swimmer: the “center” of the robot is the mark in the middle of its body. The center should
move to the right as fast as possible.

• Cheetah: the robot should move to the right as fast as possible.
• Ant: the first priority is for the robot to be standing upright, and failing that for the center of

the robot to be as high up as possible. If both robots are upright or neither is, the tie breaker
is whichever one is moving faster to the right.

• Reacher: the green dot on the robot arm should be as close as possible to the red dot. Being
near for a while and far for a while is worse than being at an intermediate distance for the
entire clip.

• Pendulum: the pendulum should be pointing approximately up. There will be a lot of ties
where the pendulum has fallen and a lot of “can’t tells” where it is off the side of the screen.
If you can see one pendulum and it hasn’t fallen down, that’s better than being unable to see
the other pendulum.

• Double-pendulum: both pendulums should be pointing approximately up (if they fall down,
the cart should try to swing them back up) and the cart should be near the center of the track.
Being high for a while and low for a while is worse than being at an intermediate distance
the entire time.

If both clips look about the same to you, then click “tie”. If you don’t understand what’s going on in
the clip or find it hard to evaluate, then click “can’t tell”.

You can speed up your feedback by using the arrow keys
left and right select clips, up is a tie, down is “can’t tell”.

FAQ

I got an error saying that we’re out of clips. What’s up? Occasionally the server may run out of
clips to give you, and you’ll see an error message. This is normal, just wait a minute and refresh the
page. If you don’t get clips for more than a couple minutes, please ping @tom on slack.

Do I need to start right at the time listed in the spreadsheet? Starting 10 minutes before or after
the listed time is fine.

B.2 Atari
In this task you’ll be trying to teach an AI to play Atari games by giving it feedback
on how well it is playing.

IMPORTANT. First play the game yourself for 5 minutes

Before providing feedback to the AI, play the game yourself for a five minutes to get a sense of how
it works. It’s often hard to tell what the game is about just by looking at short clips, especially if
you’ve never played it before.

Play the game online for 5 minutes.9 You’ll need to press F12 or click the GAME RESET button to
start the game. Then set a timer for 5 minutes and explore the game to see how it works.

Giving feedback

Sign up for a slot in the spreadsheet. Then go to the appropriate URL’s that we give you, and you’ll
be repeatedly presented with two video clips of an AI playing the game.

Look at the clips and select the one in which better things happen. For example, if the left clip
shows the AI shooting an enemy ship while the right clip shows it being shot by an enemy ship, then
better things happen in the left clip and thus the left clip is better. Only decide on actions you actually
witness in the clip.

9e.g. http://www.free80sarcade.com/2600_Beamrider.php
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Here’s a guide on what constitutes good and bad play in each specific game:

• BeamRider: shoot enemy ships (good), and don’t get shot (very bad)
• Breakout: hit the ball with the paddle, break the colored blocks, and don’t let the ball fall

off the bottom of the screen
• Enduro: pass as many cars as you can, and don’t get passed by cars
• Pong: knock the ball past the opponent’s orange paddle on the left (good), and don’t let it

go past your green paddle on the right (bad)
• Qbert: change the color of as many blocks as you can (good), but don’t jump off the side or

run into enemies (very bad)
• SpaceInvaders: shoot enemy ships (good), and don’t let your ship (the one at the bottom of

the screen) get shot (very bad)
• SeaQuest: Shoot the fish and enemy submarines (good) and pick up the scuba divers. Don’t

let your submarine run out of air or get hit by a fish or torpedo (very bad)
• Enduro (even mode): Avoid passing cars OR getting passed by them, you want to stay

even with other cars (not having any around is OK too)

Don’t worry about how the agent got into the situation it is in (for instance, it doesn’t matter if
one agent has more lives, or is now on a more advanced level); just focus on what happens in the clip
itself.

If both clips look about the same to you, then click “tie”. If you don’t understand what’s going on
in the clip or find it hard to evaluate, then click “can’t tell”. Try to minimize responding “can’t tell”
unless you truly are confused.

You can speed up your feedback by using the arrow keys
left and right select clips, up is a tie, down is “can’t tell”.

FAQ

I got an error saying that we’re out of clips. What’s up? Occasionally the server may run out of
clips to give you, and you’ll see an error message. This is normal, just wait a minute and refresh the
page. If you don’t get clips for more than a couple minutes, please ping @tom on slack.

If the agent is already dead when the clip starts, how should I compare it? If the clip is after
getting killed (but not showing the dying), then its performance during the clip is neither good nor
bad. You can treat it as purely average play. If you see it die, or it’s possible that it contains a frame
of it dying, then it’s definitely bad.

Do I need to start right at the time listed in the spreadsheet? Starting 30 minutes before or after
the listed time is fine.
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