
Position-based Multiple-play Bandit Problem with
Unknown Position Bias

Junpei Komiyama
The University of Tokyo
junpei@komiyama.info

Junya Honda
The University of Tokyo / RIKEN
honda@stat.t.u-tokyo.ac.jp

Akiko Takeda
The Institute of Statistical Mathematics / RIKEN

atakeda@ism.ac.jp

Abstract

Motivated by online advertising, we study a multiple-play multi-armed bandit
problem with position bias that involves several slots and the latter slots yield
fewer rewards. We characterize the hardness of the problem by deriving an asymp-
totic regret bound. We propose the Permutation Minimum Empirical Divergence
(PMED) algorithm and derive its asymptotically optimal regret bound. Because
of the uncertainty of the position bias, the optimal algorithm for such a problem
requires non-convex optimizations that are different from usual partial monitor-
ing and semi-bandit problems. We propose a cutting-plane method and related
bi-convex relaxation for these optimizations by using auxiliary variables.

1 Introduction

One of the most important industries related to computer science is online advertising. In the United
States, 72.5 billion dollars was spent on online advertising [19] in 2016. Most online advertising is
viewed on web pages during Internet browsing. A web-site owner has a set of possible advertisements
(ads): some of them are more attractive than others, and the owner would like to maximize the
attention of visiting users. One of the observable metrics of the user attention is the number of
clicks on the ads. By considering each ad (resp. click) to be an arm (resp. reward) and assuming
only one slot is available for advertisements, the maximization of clicks boils down to the so-called
multi-armed bandit problem, where the arm with the largest expected reward is sought.

When two or more ad slots are available on the web page, the problem boils down to a multiple-play
multi-armed bandit problem. Several variants of the multiple play bandit problem and its extension
called semi-bandit problem have been considered in the literature. Arguably, the simplest is one
assuming that an ad receives equal clicks regardless of its position [2, 24]. In practice, ads receive
less clicks when they are placed at bottom slots; this is so-called position bias.

A well-known model that explains position bias is the cascade model [23], which assumes that the
users’ attention goes from top to bottom until they lose interest. While this model explains position
bias in early positions well [10], a drawback to the cascade model when it is applied to the bandit
setting [26] is that the order of the allocated ads does not affect the reward, which is not very natural.
To resolve this issue, Combes et al. [8] introduced a weight for each slot that corresponds to the
reward obtained by clicking on that slot. However, no principled way of defining the weight has been
described.

An extension of the cascade model, called the dependent click model (DCM) [14], addresses these
issues by admitting multiple clicks of a user. In DCM, each slot is associated with a probability that
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the user loses interest in the following ads if the current ad is interesting. While the algorithm in
Katariya et al. [21] cleverly exploits this structure, it still depends on the cascade assumption, and
as a result it discards some of the feedback on the latter slots, which reduces the efficiency of the
algorithm. Moreover, the reward in DCM does not exactly correspond to the number of clicks.

Lagrée et al. [27] has studied a position-based model (PBM) where each slot has its own discount
factor on the number of clicks. PBM takes the order of the shown ads into consideration. However,
the algorithms proposed in Lagrée et al. [27] are “half-online” in the sense that the value of an ad is
adaptively estimated, whereas the values of the slots are estimated by using an off-line dataset. Such
an off-line computation is not very handy since the click trend varies depending on the day and hour
[1]. Moreover, a significant portion of online advertisements is sold via ad networks [34]. As a result,
advertisers have to deal with thousands of web pages to show their ads. Taking these aspects into
consideration, pre-computing position bias for each web page limits the use of these algorithms.

To address this issue, we provide a way to allocate advertisements in a fully online manner by
considering “PBM under Uncertainty of position bias” (PBMU). One of the challenges when the
uncertainty of a position-based factor is taken into account is that, when some ad appears to have a
small click through rate (CTR, the probability of click) in some slot, we cannot directly attribute it to
either the arm or the slot. In this sense, several combinations of ads and slots need to be examined to
estimate both the ad-based and position-based model parameters.

Note also that an extension of the non-stochastic bandit approach [3] to multiple-play, such as
the ordered slate model [20], is general enough to deal with PBMU. However, algorithms based
on the non-stochastic approach do not always perform well in compensation for its generality.
Another extension of multi-armed bandit problems is the partial monitoring problem [31, 4] that
admits the case in which the parameters are not directly observable. However, partial monitoring is
inefficient at solving bandit problems: a K-armed bandit problem with binary rewards corresponds to
a partial monitoring problem with 2K possible outcomes. As a result, the existing partial monitoring
algorithms, such as the ones in [33, 25], are not practical even for a moderate number of arms.
Besides, the computation of a feasible solution in PBMU requires non-convex optimizations as we
will see in Section 5. This implies that PBMU cannot directly be converted into the partial monitoring
where such a non-convex optimization does not appear [25].

The contributions of this paper are as follows: First, we study the position-based bandit model with
uncertainty (PBMU) and derive a regret lower bound (Section 3). Second, we propose an algorithm
that efficiently utilizes feedback (Section 4). One of the challenges in the multiple-play bandit
problem is that there is an exponentially large number of possible sequences of arms to allocate at
each round. We reduce the number of candidates by using a bipartite matching algorithm that runs in
a polynomial time to the number of arms. The performance of the proposed algorithm is verified in
Section 6. Third, a slightly modified version of the algorithm is analyzed in Section 7. This algorithm
has a regret upper bound that matches the lower bound. Finally, we reveal that the lower bound is
related to a linear optimization problem with an infinite number of constraints. Such an optimization
problem appears in many versions of the bandit problem [9, 25, 12]. We propose an optimization
method that reduces it to a finite-constraint linear optimization based on a version of the cutting-plane
method (Section 5). Related non-convex optimizations that are characteristic to PBMU are solved by
using bi-convex relaxation. Such optimization methods are of interest in solving even larger classes
of bandit problems.

2 Problem Setup

Let K be the number of arms (ads) and L < K be the number of slots. Each arm i ∈ [K] =
{1, 2, . . . ,K} is associated with a distinct parameter θ∗i ∈ (0, 1), and each slot l ∈ [L] is associated
with a parameter κ∗l ∈ (0, 1]. At each round t = 1, 2, . . . , T , the system selects L arms I(t) =
(I1(t), . . . , IL(t)) and receives a corresponding binary reward (click or non-click) for each slot. The
reward of the l-th slot is i.i.d. drawn from a Bernoulli distribution Ber(µ∗Il(t),l), where µ∗i,l = θ∗i κ

∗
l .

Although the slot-based parameters are unknown, it is natural that the ads receives more clicks when
they are placed at early slots: we assume κ∗1 > κ∗2 > · · · > κ∗L > 0 and this order is known.

Note that this model is redundant: a model with µ∗i,l = θ∗i κ
∗
l is equivalent to the model with

µ∗i,l = (θ∗i /κ1)(κ∗l κ1). Therefore, without loss of generality, we assume κ1 = 1. In summary,
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this model involves K + L parameters {θ∗i }i∈[K] and {κ∗l }l∈[L], and the number of rounds T . The
parameters except for κ1 = 1 are unknown to the system. Let Ni,l(t) be the number of rounds before
t-th round at which arm i was in slot l (i.e., Ni,l(t) =

∑t−1
t′=1 1{i = Il(t

′)}, where 1{E} is 1 if E
holds and 0 otherwise). In the following, we abbreviate arm i in slot l to “pair (i, l)”. Let µ̂i,l(t) be
the empirical mean of the reward of pair (i, l) after the first t− 1 rounds.

The goal of the system is to maximize the cumulative rewards by using some sophisticated algorithm.
Without loss of generality, we can assume θ∗1 > θ∗2 > θ∗3 > · · · > θ∗K . The algorithm cannot exploit
this ordering. In this model, allocating arms of larger expected rewards on earlier slots increases
expected rewards: As a result, allocating arms 1, 2, . . . , L to slots 1, 2, . . . , L maximizes the expected
reward. A quantity called (pseudo) regret is defined as: Reg(T ) =

∑T
t=1

(∑
i∈[L](θ

∗
i − θ∗Ii(t))κ

∗
i

)
,

and E[Reg(T )] is used for evaluating the performance of an algorithm. Let ∆i,l = θ∗l κ
∗
l − θ∗i κ∗l . Re-

gret can be alternatively represented as Reg(T ) =
∑

(i,l)∈[K]×[L] ∆i,lNi,l(T ). The regret increases
unless I(t) = (1, 2, . . . , L).

3 Regret Lower Bound

Here, we derive an asymptotic regret lower bound when T →∞. In the context of the standard multi-
armed bandit problem, Lai and Robbins [28] derived a regret lower bound for strongly consistent
algorithms, and it is followed by many extensions, such as the one for multi-parameter distributions
[6] and the ones for Markov decision processes [13, 7]. Intuitively, a strongly consistent algorithm is
“uniformly good” in the sense that it works well with any set of model parameters. Their result was
extended to the multiple-play [2] and PBM [27] cases. We further extend it to the case of PBMU.

Let Tall = {(θ′1, . . . , θ′K) ∈ (0, 1)K} andKall = {(κ′1, . . . , κ′L) : 1 = κ′1 > κ′2 > · · · > κ′L > 0} be
the sets of all possible values on the parameters of the arms and slots, respectively. Let (1), . . . , (K)
be a permutation of 1, . . . ,K and T(1),...,(L) be the subset of Tall such that the i-th best arm is (i).
Namely,

T(1),...,(L) =
{

(θ′1, . . . , θ
′
K) ∈ (0, 1)K : θ′(1) > θ′(2) > · · · > θ′(L),∀i/∈{(1),...,(L)}(θ

′
i < θ′(L))

}
,

and T c(1),...,(L) = Tall \ T(1),...,(L). An algorithm is strongly consistent if E[Reg(T )] = o(T a) for any
a > 0 given any instance of the bandit problem with its parameters {θ′i}i∈[K] ∈ Tall, {κ′l} ∈ Kall.
The following lemma, whose proof is in Appendix F, lower-bounds the number of draws on the pairs
of arms and slots.

Lemma 1. (Lower bound on the number of draws) The following inequality holds for Ni,l(T ) of the
strongly consistent algorithm:

∀{θ′i}∈T c1,...,L,{κ′l}∈Kall

∑
(i,l)∈[K]×[L]

E[Ni,l(T )]dKL(θ∗i κ
∗
l , θ
′
iκ
′
l) ≥ log T − o(log T ),

where dKL(p, q) = p log(p/q) + (1 − p) log((1 − p)/(1 − q)) is the KL divergence between two
Bernoulli distributions.

Such a divergence-based bound appears in many stochastic bandit problems. However, unlike other
bandit problems, the argument inside the KL divergence is a product of parameters θ′iκ

′
l: While

dKL(·, θ′iκ′l) is convex to θ′iκ
′
l, it is not convex to the parameter space {θ′i}, {κ′l}. Therefore, finding

a set of parameters that minimizes
∑
i,l dKL(µi,l, θ

′
iκ
′
l) is non-convex, which makes PBMU difficult.

Furthermore, we can formalize the regret lower bound in what follows. Let

Q =

{qi,l} ∈ [0,∞)[K]×[K] : ∀i∈[K−1]

∑
l∈[K]

qi,l =
∑
l∈[K]

qi+1,l,∀l∈[K−1]

∑
i∈[K]

qi,l =
∑
i∈[K]

qi,l+1

 .

Intuitively, {qi,l} for l ≤ L corresponds to the draw of arm i in slot l, and {qi,l} for l > L corresponds
to the non-draw of arm i, as we will see later. The following quantities characterizes the minimum
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amount of exploration for consistency:

R(1),...,(L)({µi,l}, {θi}, {κl}) =

{
{qi,l} ∈ Q : inf

{θ′i}∈T c(1),...,(L)
,{κ′l}∈Kall:∀i∈[L]θ

′
iκ
′
i=θiκi∑

(i,l)∈[K]×[L]:i6=(l)

qi,ldKL (µi,l, θ
′
iκ
′
l) ≥ 1

}
. (1)

Equality (1) states that drawing each pair (i, l) for Ni,l = qi,l log T times suffices to reduce the risk
that the true parameter is {θ′i}, {κ′l} for any parameters {θ′i}, {κ′l} such that θ′i ∈ T c(1),...,(L) and
θ′iκ
′
l = θiκi for any i ∈ [L]. Note that the constraint θ′iκ

′
i = θiκi corresponds to the fact that drawing

an optimal list of arms does not increase the regret: Intuitively, this corresponds to the fact that the
true parameter of the best arm is obtained for free in the regret lower bound of the standard bandit
problem1. Moreover, let

C∗(1),...,(L)({µi,l}, {θi}, {κl}) = inf
{qi,l}∈R(1),...,(L)({µi,l},{θi},{κl})

∑
(i,l)∈[K]×[L]

∆i,lqi,l ,

the set of optimal solutions of which is denoted by

R∗(1),...,(L)({µi,l}, {θi}, {κl}) =

{
{qi,l} ∈ R(1),...,(L)({µi,l}, {θi}, {κl}) :∑
(i,l)∈[K]×[L]

∆i,lqi,l = C∗(1),...,(L)({µi,l}, {θi}, {κl})
}
. (2)

The value C∗1,...,L log T is the possible minimum regret such that the minimum divergence of
{θ∗i }, {κ∗l } from any {θ′i}, {κ′l} is larger than log T . Using Lemma 1 yields the following regret
lower bound, whose proof is also in the Appendix F.

Theorem 2. The regret of a strongly consistent algorithm is lower bounded as follows:

E[Reg(T )] ≥ C∗1,...,L({µ∗i,l}, {θ∗i }, {κ∗l }) log T − o(log T ).

Remark 3. Ni,l = (log T )/dKL(θ∗i κ
∗
i , θ
∗
jκ
∗
i ) for j = min(i − 1, L) satisfies the conditions in

Lemma 1, which means that regret lower bound in Theorem 2 is O(K log T/∆) = O(K log T ),
where ∆ = mini6=j,l 6=m |θ∗i − θ∗j ||κ∗l − κ∗m|.

4 Algorithm

Our algorithm, called Permutation Minimum Empirical Divergence (PMED), is closely related to the
optimization we discussed in Section 3.

4.1 PMED Algorithm

We denote a list of L arms that are drawn at each round as L-allocation. For example, (3, 2, 1, 5)
is a 4-allocation, which corresponds to allocating arms 3, 2, 1, 5 to slots 1, 2, 3, 4, respectively.
Like the Deterministic Minimum Empirical Divergence (DMED) algorithm [17] for the single-play
multi-armed bandit problem, Algorithm 1 selects arms by using a loop. LC = LC(t) is the set of
L-allocations in the current loop, and LN = LN (t) is the set of L-allocations that are to be drawn in
the next loop. Note that, |LN | ≥ 1 always holds at the end of each loop so that at least one element is

1The infimum should take parameters θ′iκ
′
i 6= θiκi into consideration. However, such parameters can

be removed without increasing regret, and thus the infimum over θ′iκ
′
i = θiκi suffices. This can be under-

stood because the regret bound of the standard K-armed bandit problem with expectation of each arm µi
is
∑K
i=2(log T )/dKL(µi, µ1): Arm 1 is drawn without increasing regret, and thus estimation of µ1 can be

arbitrary accurate. In our case placing arms 1, ..., L into slots 1, ..., L does not increase the regret, and thus the
estimation of the product parameter θiκi for each i ∈ [L] is very accurate.
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Algorithm 1 PMED and PMED-Hinge Algorithms
1: Input: α > 0, β > 0 (for PMED-Hinge), f(n) = γ/

√
n with γ > 0 (for PMED-Hinge).

2: LN ← ∅. LC ← {vmod
1 , . . . , vmod

K }.
3: while t ≤ T do
4: for each vmod

m : m ∈ [K] do
5: If there exists some pair (i, l) ∈ vmod

m such that Ni,l(t) < α
√

log t, then put vmod
m into LN .

6: end for
7: Compute the MLE {θ̂i(t)}Ki=1, {κ̂l(t)}Ll=1

=

{
min{θi,κl}

∑
(i,l)∈[K]×[L]Ni,l(t)dKL(µ̂i,l(t), θiκl) (PMED)

min{θi,κl}
∑

(i,l)∈[K]×[L]Ni,l(t) (dKL(µ̂i,l(t), θiκl)− f(Ni,l(t)))+ . (PMED-Hinge)

8: if Algorithm is PMED-Hinge then
9: If |θ̂i(t) − θ̂j(t)| < β/(log log t) for some i 6= j or |κ̂l(t) − κ̂m(t)| < β/(log log t) for

some l 6= m, then put all of vmod
1 , . . . , vmod

K to LN .
10: If

⋃
(i,l)∈[K]×[L]{dKL(µ̂i,l(t), θ̂i(t)κ̂l(t)) > f(Ni,l(t))} holds, then put all of

vmod
1 , . . . , vmod

K into LN .
11: end if

12: Compute {qi,l}∈

R
∗
1̂(t),...,L̂(t)

({µ̂i,l(t)}, {θ̂i(t)}, {κ̂l(t)}) (PMED)

R∗,H
1̂(t),...,L̂(t)

({µ̂i,l(t)}, {θ̂i(t)}, {κ̂l(t)}, {f(Ni,l(t))}). (PMED-Hinge)

13: Ñi,l ← qi,l log t for each (i, l) ∈ [K]× [K].
14: Decompose Ñi,l =

∑
v c

req
v ev where ev for each v is a permutation matrix and creq

v > 0 by
using Algorithm 2.

15: ri,l ← Ni,l(t).
16: for each permutation matrix ev do
17: caff

v ← min
(
creq
v ,maxc

{
c > 0 : min(i,l)∈[K]×[L](ri,l − c ev,i,l) ≥ 0

})
.

18: Let (v1, . . . , vL) be the L-allocation corresponding to ev. If caff
v < creq

v and there exists a
pair (vl, l) that is in none of the L-allocations in LN , then put (v1, . . . , vL) into LN .

19: ri,l ← ri,l − caff
v ev,i,l.

20: end for
21: Select I(t) ∈ LC in an arbitrary fixed order. LC → LC \ {I(t)}.
22: Put (1̂(t), . . . , L̂(t)) into LN .
23: If LC = ∅ then LC ← LN , LN ← ∅.
24: end while

put into LC . There are three lines where L-allocations are put into LN without duplication: Lines 5,
18, and 22. We explain each of these lines below.

Line 5 is a uniform exploration over all pairs (i, l). For m ∈ [K], let vmod
m be an L-allocation

(1 + modK(m), 1 + modK(1 +m), . . . , 1 + modK(L+m− 1)), where modK(x) is the minimum
non-negative integer among {x−cK : c ∈ N}. From the definition of vmod

m , any pair (i, l) ∈ [K]×[L]
belongs to exactly one of vmod

1 , . . . , vmod
K . If some pair (i, l) is not allocated α

√
log t times, a

corresponding L-allocation is put into LN . This exploration stabilizes the estimators.

Line 18 and related routines are based on the optimal amount of explorations. {Ñi,l}i∈[K],l∈[K] is
calculated by plugging in the maximum likelihood estimator (MLE) ({θ̂i}i∈[K], {κ̂l}l∈[L]) into the
optimization problem of Inequality (2). As {Ñi,l} is a set of K ×K variables2, the algorithm needs
to convert it into a set of L-allocations to put them into LN . This is done by decomposing it into a set
of permutation matrices, which we will explain in Section 4.2.

Line 22 is for exploitation: If no pair is put to LN by Line 5 or Line 18 and LC is empty, then Line
22 puts arms (1̂(t), . . . , L̂(t)) of the top-L largest {θ̂i(t)} (with ties broken arbitrarily) into LN .

2K ×K is not a typo of K × L: {qi,l} and {Ñi,l} are sets of K2 variables.
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Algorithm 2 Permutation Matrix Decomposition
1: Input: Ni,l.
2: N̄i,l ← Ni,l.
3: while N̄i,l > 0 for some (i, l) ∈ [K]× [K] do
4: Find a permutation matrix ev such that, for any i, l such that ev,i,l = 1⇒ N̄i,l > 0.
5: Let creq

v = maxc
{
c > 0 : min(i,l)∈[K]×[K](N̄i,l − cev,i,l) ≥ 0

}
.

6: N̄i,l ← N̄i,l − creq
v ev,i,l for each (i, l) ∈ [K]× [K].

7: end while
8: Output {creq

v , ev}

1

1

1

1

0

0

0

00

0 0

0

0 0 0

0

1

1

0

00

0

0

0

Figure 1: A permutation matrix with K = 4, where (i, l) = 1 for (i, l) ∈ (1, 1), (2, 3), (3, 2), (4, 4).
If L = 2, this matrix corresponds to allocating arm 1 in slot 1 and arm 3 in slot 2.

4.2 Permutation Matrix and Allocation Strategy

In this section, we discuss the way to convert {Ñi,l} = {qi,l log t}, the estimated optimal amount of
exploration, into L-allocations. A permutation matrix is a square matrix that has exactly one entry of
1 at each row and each column and 0s elsewhere (Figure 1, left). There are K! permutation matrices
since they corresponds to ordering K elements. Therefore, even though {qi,l} can be obviously
decomposed into a linear combination of permutation matrices, it is not clear how to compute them
without computing the set of all permutation matrices that are exponentially large in K. Algorithm
2 solves this problem: Let N̄i,l be a temporal variable that is initialized by Ñi,l at the beginning.
In each iteration, it subtracts a scalar multiplication of a permutation matrix ev whose (i, l) entry
ev,i,l of value 1 corresponds to N̄i,l > 0. (Line 6 in Algorithm 2). This boils down to finding a
perfect matching in a bipartite graph where the left (resp. right) nodes correspond to rows (resp.
columns) and edges between nodes i and l are spanned if N̄i,l > 0. Although a naive greedy fails
in such a matching problem (c.f., Appendix A), a maximal matching in a bipartite graph can be
computed by the Hopcroft–Karp algorithm [18] in O(K2.5) times, and Theorem 4 below ensures
that the maximum matching is always perfect:

Theorem 4. (Existence of a perfect matching) For any {N̄i,l ∈ [K]× [K] : N̄i,l ≥ 0,∃(i,l)N̄i,l > 0}
such that the sums of each row and column are equal, there exists a permutation matrix ev such that
∀(i,l)∈[K]×[K]:ev,i,l=1N̄i,l > 0.

The proof of Theorem 4 is in Appendix E. Each subtraction increases the number of 0 entries in
N̄i,l (Line 5 in Algorithm 2); Algorithm 2 runs in O(K4.5) times by computing at most O(K2)

perfect matching sub-problems, and as a result it decomposes Ñi,l into a positive linear combination
of permutation matrices. The main algorithm checks whether each the entries of the permutation
matrices are sufficiently explored (Line 18 in Algorithm 1), and draws an L-allocation corresponding
to a permutation matrix (Figure 1, right) if under-explored.

5 Optimizations

This section discusses two optimizations that appear in Algorithm 1, namely, the MLE computation
(Line 7), and the computation of the optimal solution (Line 12).

MLE (Line 7) is the solution of a bi-convex optimization: the optimization of {θi} (resp. {κl}) is
convex when we view {κl} (resp. {θi}) as a constant. Therefore, off-the-shelf tools for optimizing
convex functions (e.g., Newton’s method) are applicable to alternately optimizing {θi} and {κl}.
Assuming that each convex optimization yields an optimal value, such an alternate optimization
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Algorithm 3 Cutting-plane method for obtaining {qi,l} on Line 12 of Algorithm 1

1: Input: the number of iterations S, nominal constraint {θ(0)
i } ∈ T c1̂(t),...,L̂(t)

.
2: for s = 1, 2, . . . , S do
3: Find q(s)

i,l ← min{qi,l}∈Q
∑

(i,l)∈[K]×[L] ∆i,lqi,l such that

∑
(i,l)∈[K]×[L]:i6=l̂(t)

qi,ldKL

(
µ̂i,l(t), θ

′
i

θ̂l(t)κ̂l(t)

θ′l

)
≥ 1

for all {θ′i} ∈ {θ
(0)
i }, {θ

(1)
i }, . . . , {θ

(s−1)
i }.

4: Find {θ(s)
i } ← min{θ′i}

∑
(i,l)∈[K]×[L] q

(s)
i,l dKL(µ̂i,l(t), θ

′
i
θ̂l(t)κ̂l(t)

θ′l
).

5: end for

monotonically decreases the objective function and thus converges. Note that a local minimum
obtained by bi-convex optimizations is not always a global minimum due to its non-convex nature.

Although the computation of the optimal solution (Line 12) involves {θ′i} and {κ′l}, the constraint
eliminates latter variables as κ′i = θ̂i(t)κ̂i(t)/θ

′
i. This optimization is a linear semi-infinite pro-

gramming (LSIP) on {qi,l}, which is a linear programming (LP) with an infinite set of linear
constraints parameterized by {θ′i}. Algorithm 3 is the cutting-plane method with pessimistic oracle
[29] that boils the LSIP down to finite constraint LPs. At each iteration s, it adds a new constraint
{θ(s)
i } ∈ T c1̂(t),...,L̂(t)

that is “hardest” in a sense that it minimizes the sum of divergences (Line 4 in
Algorithm 3). The following theorem guarantees the convergence of the algorithm when the exactly
hardest constraint is found.
Theorem 5. (Convergence of the cutting-plane method, Mutapcic and Boyd [29, Sec-
tion 5.2]) Assume that there exists a constant C and that the constraint f({θ′i}) =∑

(i,l)∈[K]×[L] q
(s)
i,l dKL(µ̂i,l(t), θ

′
i
θ̂l(t)κ̂l(t)

θ′l
) is Lipchitz continuous as |f({θ(1)

i }) − f({θ(2)
i })| ≤

C||{θ(1)
i }−{θ

(2)
i }||, where the norm || · || is any Lp norm. Then, Algorithm 3 converges to its optimal

solution as S →∞.

Although the Lipchitz continuity assumption does not hold as dKL(p, q) approaches infinity when q
is close to 0 or 1, by restricting q to some region [ε, 1− ε], Lipchitz continuity can be guaranteed for
some C = C(ε). Theorem 5 assumes the availability of an exact solution to the hardest constraint,
which is generally hard since this objective is non-convex in its nature. Still, we can obtain a fair
solution with the following reasons: First, although the space T c

1̂(t),...,L̂(t)
is not convex, it suf-

fices to consider each of the convex subspaces
{
{θ′i} ∈ (0, 1)K : θ′

1̂(t)
≥ · · · ≥ θ′

L̂(t)
, θ′
X̂(t)

= θ′
l̂(t)

}
where X = min(L, l − 1), for each l ∈ [K] \ {1} separately because the hardest constraint
is always in one of these subspaces (which follows from the convexity of the objective func-
tion). Second, the following bi-convex relaxation can be used: Let η′1, . . . , η

′
L be auxiliary

variables that correspond to 1/θ′1, . . . , 1/θ
′
L. Namely, we optimize a relaxed objective function∑

(i,l)∈[K]×[L]

(
q

(s)
i,l dKL(µ̂i,l(t), θ

′
iη
′
lθ̂l(t)κ̂l(t))

)
+ φ

∑
i∈[L](θ

′
iη
′
i − 1)2, where φ > 0 is a penalty

parameter. Convexity of KL divergence implies that this objective is a bi-convex function of {θ′i} and
{η′l}, and thus an alternate optimization is effective. Setting φ→∞ induces a solution in which η′i is
equal to 1/θ′i ([30, Theorem 17.1]). Our algorithm starts with a small value of φ; then it gradually
increases φ.

6 Experiment

To evaluate the empirical performance of the proposed algorithms, we conducted computer simula-
tions with synthetic and real-world datasets. The compared algorithms are MP-TS [24], dcmKL-UCB
[21], PBM-PIE [27], and PMED (proposed in this paper). MP-TS is an algorithm based on Thompson
sampling [32] that ignores position bias: it draws the top-L arms on the basis of posterior sampling,
and the posterior is calculated without considering position bias. DcmKL-UCB is a KL-UCB [11]

7



(a) Synthetic (b) Real-world (Tencent)

Figure 2: Regret-round log-log plots of algorithms.

based algorithm that works under the DCM assumption. PBM-PIE is an algorithm that allocates
top-(L− 1) slots greedily and allocates L-th arm based on the KL-UCB bound. Note that PBM-PIE
requires an estimation of {κ∗l }; here, a bi-convex optimization is used to estimate it3. We did not test
PBM-TS [27], which is another algorithm for PBM, mainly because that its regret bound has not
been derived yet. However, its regret appears to be asymptotically optimal when {κ∗l } are known
(Figure 1(a) in Lagrée et al.[27]), and thus it does not explore sufficiently when there is uncertainty in
the position bias. We set α = 10 for PMED. We used the Gurobi LP solver4 for solving the LPs. To
speed up the computation, we skipped the bi-convex and LP optimizations in most rounds with large
t and used the result of the last computation. We used the Newton’s method (resp. a gradient method)
for computing the MLE (resp. the hardest constraint) in Algorithm 3.

Synthetic data: This simulation was designed to check the consistency of the algorithms, and it
involved 5 arms with (θ1, . . . , θ5) = (0.95, 0.8, 0.65, 0.5, 0.35), and 2 slots with (κ1, κ2) = (1, 0.6).
The experimental results are shown on the left of Figure 2. The results are averaged over 100 runs. LB
is the simulated value of the regret lower bound in Section 3. While the regret of PMED converges,
the other algorithms suffer a 100 times or larger regret than LB at T = 107, which implies that these
algorithms are not consistent under our model.

Real-world data: Following the existing work [24, 27], we used the KDD Cup 2012 track 2 dataset
[22] that involves session logs of soso.com, a search engine owned by Tencent. Each of the 150M
lines from the log contains the user ID, the query, an ad, and a slot in {1, 2, 3} at which the ad was
displayed and a binary reward indicated (click/no-click). Following Lagrée et al. [27], we obtained
major 8 queries. Using the click logs of the queries, the CTRs and position bias were estimated in
order to maximize the likelihood by using bi-convex optimization in Section 4. Note that, the number
of arms and parameters are slightly different from the ones reported previously [27]. For the sake
of completeness, we show the parameters in Appendix C. We conducted 100 runs for each queries,
and the right figure in Figure 2 shows the averaged regret over 8 queries. Although the gap between
PMED and existing algorithms are not drastic compared with synthetic parameters, the existing
algorithms suffer larger regret than PMED.

7 Analysis

Although the authors conjecture that PMED is optimal, it is hard to analyze it directly. The technically
hardest part arises from the case in which the divergence of each action is small but not yet fully
converged. To circumvent these difficulty, we devised a modified algorithm called PMED-Hinge
(Algorithm 1) that involves extra exploration. In particular, we modify the optimization problem as

3The bi-convex optimization is identical to the one used for obtaining the MLE in PMED.
4http://www.gurobi.com
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follows: Let

RH
(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) =

{
{qi,l} ∈ Q : inf

{θ′i}∈T c(1),...,(L)
,{κ′l}∈Kall:∀l∈[L]dKL(µ(l),l,θ

′
(l)
κ′l)≤δi,l∑

(i,l)∈[K]×[L]:i 6=(l)

qi,l (dKL(µi,l, θ
′
iκ
′
l)− δi,l)+ ≥ 1

}
,

where (x)+ = max(x, 0). Moreover, let

C∗,H(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) = inf
{qi,l}∈RH

(1),...,(L)
({µi,l},{θi},{κl},{δi,l})

∑
(i,l)∈[K]×[L]

∆i,lqi,l ,

the optimal solution of which is

R∗,H(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) =

{
{qi,l} ∈ RH

(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) :∑
(i,l)∈[K]×[L]

∆i,lqi,l = C∗,H(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l})
}
.

The necessity of additional terms in PMED-Hinge are discussed in Appendix B. The following
theorem, whose proof is in Appendix G, derives a regret upper bound that matches the lower bound
in Theorem 2.
Theorem 6. (Asymptotic optimality of PMED-Hinge) Let the solution of the optimal exploration
R∗,H1,...,L({µi,l}, {θi}, {κl}, {δi,l}) restricted to l ≤ L is unique at ({µ∗i,l}, {θ∗i }, {κ∗l }, {0}). For any
α > 0, β > 0, and γ > 0, the regret of PMED-Hinge is bounded as:

E[Reg(T )] ≤ C∗1,...,L({µ∗i,l}, {θ∗i }, {κ∗l }) log T + o(log T ) .

Note that, the assumption on the uniqueness of the solution in Theorem 6 is required to achieve
an optimal coefficient on the log T factor. It is not very difficult to derive an O(log T ) regret even
though the uniqueness condition is not satisfied. Although our regret bound is not finite-time, the
only asymptotic analysis comes from the optimal constant on the top of log T term (Lemma 11 in
Appendix) and it is not very hard to derive an O(log T ) finite-time regret bound.

8 Conclusion

By providing a regret lower bound and an algorithm with a matching regret bound, we gave the first
complete characterization of a position-based multiple-play multi-armed bandit problem where the
quality of the arms and the discount factor of the slots are unknown. We provided a way to compute
the optimization problems related to the algorithm, which is of its own interest and is potentially
applicable to other bandit problems.
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Figure 3: A Ñ matrix with K = 4. Greedily choosing (1, 1), (2, 2), and (3, 3) (of value 2 each)
entries fails to find a maximal matching.

A Case in which Greedy Matching Fails

Figure 3 shows a case in which a naive greedy algorithm fails to find a maximal (perfect) matching.
Consider the naive greedy algorithm that chooses the largest Ñi,l among all entries and tries to create
a matching iteratively. Such an algorithm tries to focus on the first three diagonal elements of value 2,
after that it stucks, not to yield a perfect matching.

B Discussions on Hyperparameters

The hinged version of the algorithm involves three hyperparameters: α, β, and γ. While α is
necessary for assuring the quality of the estimators, we conjecture that the terms β and γ are just
theoretical artifacts and unnecessary: β is for stopping the solution {qi,l} from diverging (Lemma
22 in the Appendix), which is unlikely to occur for a long time. γ is for avoiding a large value
of dKL(µ̂i,l(t), θ̂i(t)κ̂l(t)): large deviation principle states that dKL(µ̂i,l(t), θ

∗
i κ
∗
l ) ∼ Θ(1/Ni,l(t)),

and thus MLE ({θ∗i }, {κ∗l }) is unlikely to behave badly with a moderate value of Ni,l(t).

C Parameters from KDD Cup 2012 Dataset

Table 1 shows the parameters estimated from the KDD cup 2012 dataset.

D Facts

The following facts are frequently used in this paper. Fact 7 is a concentration inequality that bounds
the tail probability on the empirical means. Fact 8 is used to bound the KL divergence from below.

Fact 7. (The Chernoff bound)
Let X1, . . . , Xn be i.i.d. binary random variables. Let X̂ = 1

n

∑n
i=1Xi and µ = E[X̂]. Then, for

Table 1: Values of {θ∗i } and {κ∗l } estimated from the KDD cup 2012 dataset.

K L {θ∗i } {κ∗l }
5 3 {0.0463, 0.0135, 0.0127, 0.0106, 0.00629} {1, 0.49, 0.375}
5 3 {0.0435, 0.0418, 0.0132, 0.00684, 0.00572} {1, 0.377, 0.187}
6 3 {0.0315, 0.0208, 0.0193, 0.0182, 0.0179, 0.0177} {1, 0.534, 0.457}
7 3 {0.0405, 0.038, 0.0265, 0.0261, 0.0256, 0.0164, 0.0112} {1, 0.521, 0.46}
10 3 {0.0774, 0.0709, 0.0669, 0.0631, 0.043, {1, 0.442, 0.285}

0.0393, 0.0296, 0.0217, 0.00797, 0.00219}
5 3 {0.0654, 0.0496, 0.0395, 0.0247, 0.0231} {1, 0.359, 0.25}
8 3 {0.037, 0.0275, 0.0266, 0.0266, 0.0231, 0.0192, 0.0143, 0.0107} {1, 0.542, 0.393}
5 3 {0.147, 0.0343, 0.0272, 0.0222, 0.0166, 0.0162, 0.00966} {1, 0.624, 0.482}
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any ε > 0,
P(X̂ ≥ µ+ ε) ≤ exp (−dKL(µ+ ε, µ)n)

and
P(X̂ ≤ µ− ε) ≤ exp (−dKL(µ− ε, µ)n).

Fact 8. (The Pinsker’s inequality)
For p, q ∈ (0, 1), the KL divergence between two Bernoulli distributions is bounded as:

dKL(p, q) ≥ 2(p− q)2.

E Proof of Theorem 4

Proof of Theorem 4. Consider the bipartite graph that we described in Section 4.2. By assumption,
the sums of every row and column are identical, and let rsum be that value. Let I and L be the left
and right nodes, respectively. From Hall’s marriage theorem [15], a bipartite graph has a perfect
matching iff

|Isub| ≤ |NG(Isub)| (3)
for every subset Isub of I , where NG(x) is the neighbors of x. We prove inequality (3) by contradic-
tion. Assume that there exist an Isub such that |Isub| > |NG(Isub)|. Then,

1

NG(Isub)

∑
l∈NG(Isub)

∑
i∈[K]

ri,l ≥
1

NG(Isub)

∑
i∈Isub

∑
l∈[K]

ri,l =
|Isub|

|NG(Isub)|
rsum > rsum.

and thus at least one of the columns has a sum larger than rsum, which contradicts the fact that the
sum of every row and column is rsum.

F Proofs of Regret Lower Bound

In this section, we prove Lemma 1 and Theorem 2. In the following, we frequently denote {A,B}
instead of {A ∩ B} for two events A and B.

Proof of Lemma 1. The technique here is inspired from Theorem 1 in Lai and Robbins [28]. Let
{θ′i}, {κ′l} be another set of parameters such that θ∗i κ

∗
i = θ′iκ

′
i and there exists i 6= j, i ∈ [L], j ∈ [K]

such that (θ∗i − θ∗j )(θ′i − θ′j) < 0. Let µ∗i,l = θ∗i κ
∗
l and µ′i,l = θ′iκ

′
l. Let (i)′ ∈ [K] be the index of

i-th best parameters among {θ′i}. With these parameters, there exists i ∈ [L] such that (i)′ 6= i (i.e.,
the list of top-L arms is different from the ones of the true parameters). We consider a modified
bandit problem with this parameters.

Let xmi,l ∈ {0, 1} is the reward of the m-th observation of arm i in slot l. Let

K̂Li,l(n) =

n∑
m=1

log

(
xmi,lµ

∗
i,l + (1− xmi,l)(1− µ∗i,l)

xmi,lµ
′
i,l + (1− xmi,l)(1− µ′i,l)

)
,

and K̂L =
∑

(i,l)∈[K]×[L] K̂Li,l(Ni,l(t)). Let P′ and E′ be the probability and the expectation with
respect to the modified game, respectively. Then, for any event E ,

P′[E ] = E
[
1[E ] exp

(
−K̂L

)]
(4)

holds. Now, let us define the following events:

D1 =

 ∑
(i,l)∈[K]×[L]

Ni,l(t)dKL(µ∗i,l, µ
′
i,l) < (1− ε) log T,

⋂
i∈[L]:i6=(i)′

N(i)′,i(t) <
√
T

 ,

D2 =
{

K̂L ≤
(

1− ε

2

)
log T

}
,

D12 = D1 ∩ D2,

D1\2 = D1 ∩ Dc2.
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Firstly, we show P[D12] = o(1). From (4),

P′[D12] ≥ E
[
1[D12] exp

(
−
(

1− ε

2

)
log T

)]
= T−(1−ε/2)P[D12].

By using this we have

P[D12] ≤ T (1−ε/2)P′[D12]

≤ T (1−ε/2)P′
 ⋂
i∈[L]:i 6=(i)′

{N(i)′,i(t) <
√
T}


≤ T (1−ε/2)

∑
i∈[L]:i 6=(i)′

P′
[
T −N(i)′,i(t) > T −

√
T
]

≤ T (1−ε/2)
∑

i∈[L]:i 6=(i)′

E′[T −N(i)′,i(t)]

T −
√
T

(by the Markov inequality). (5)

Since this algorithm is strongly consistent, E′[T −N(i)′,i(t)]→ o(T a) for any a > 0. Therefore, the
RHS of the last line of (5) is o(T a−ε/2), which, by choosing sufficiently small a, converges to zero
as T →∞. In summary, P[D12] = o(1).

Secondly, we show P[D1\2] = o(1). We have

P[D1\2] = P

[ ∑
(i,l)∈[K]×[L]

Ni,l(t)dKL(µi,l, µ
′
i,l) < (1− ε) log T,

⋂
i∈[L]:i 6=(i)′

N(i)′,i(t) <
√
T ,

∑
(i,l)∈[K]×[L]

K̂Li(Ni,l(t)) >
(

1− ε

2

)
log T

]
.

Note that

max
1≤n≤N

K̂Li,l(n)

is the maximum of the sum of positive-mean random variables, and thus converges to is average (c.f.,
Bubeck [5, Lemma 10.5]). Namely,

lim
N→∞

max
1≤n≤N

K̂Li,l(n)

N
= dKL(µ∗i,l, µ

′
i,l)

almost surely. Therefore,

lim
T→∞

max{Ni,l(t)}∈NN ,
∑

(i,l)∈[K]×[L] Ni,l(t)dKL(µ∗i,l,µ
′
i,l)<(1−ε) log T

∑
(i,l)∈[K]×[L] K̂Li(Ni,l(t))

log T
= 1−ε

almost surely. By using this fact and 1− ε/2 > 1− ε, we have

P

 max
{Ni,l(t)}∈NKL,

∑
(i,l)∈[K]×[L] Ni,l(t)dKL(µ∗i,l,µ

′
i,l)<(1−ε) log T

∑
(i,l)∈[K]×[L]

K̂Li(Ni,l(t)) >
(

1− ε

2

)
log T

 = o(1).

In summary, we obtain P
[
D1\2

]
= o(1).

We here have

D1 =

 ∑
(i,l)∈[K]×[L]

Ni,l(t)dKL(µ∗i,l, µ
′
i,l) < (1− ε) log T

 ∩
 ⋂
i∈[L]:i 6=(i)′

N(i)′,i(t) <
√
T


⊇

 ∑
(i,l)∈[K]×[L]

Ni,l(t)dKL(µi,l, µ
′
i,l) +

∑
i∈[L]:i 6=(i)′

(1− ε) log T√
T

N(i)′,i(t) < (1− ε) log T

 ,

14



where we used the fact that {A < C} ∩ {B < C} ⊇ {A + B < C} for A,B > 0 in the last line.
Note that, by using the result of the previous steps, P[D1] = P[D12] + P[D1\2] = o(1). By using the
complementary of this fact,

P

 ∑
(i,l)∈[K]×[L]

Ni,l(t)dKL(µ∗i,l, µ
′
i,l) +

∑
i∈[L]:i 6=(i)′

(1− ε) log T√
T

N(i)′,i(t) ≥ (1− ε) log T


≥ P[Dc1] = 1− o(1).

Using the Markov inequality yields

E

 ∑
(i,l)∈[K]×[L]

Ni,l(t)dKL(µ∗i,l, µ
′
i,l) +

(1− ε) log T√
T

∑
i∈[L]:i 6=(i)′

N(i)′,i(t)

 ≥ (1−ε)(1−o(1)) log T.

(6)
Because E[N(i)′,i(t)] is subpolynomial as a function of T due to the consistency, the second term in
LHS of (6) is o(1) and thus negligible. Lemma 1 follows from the fact that (6) holds for sufficiently
small ε and arbitrary {θ′i, κ′l}.

Proof of Theorem 2. Assume that there exists δ > 0 and a sequence T1 < T2 < T3 < · · · such that
for all s

E[Reg(Ts)] < (1− δ)C∗1,...,L({µ∗i,l}, {θ∗i }, {κ∗l }) log Ts ,

that is, ∑
(i,l)∈[K]×[L]

∆i,l
E[Ni,l(Ts)]

(1− δ) log Ts
< C∗1,...,L({µ∗i,l}, {θ∗i }, {κ∗l }) .

From the definition of C∗1,...,L, there exists {θsi } ∈ T c1,...,L such that

∑
(i,l)∈[K]×[L]

dKL

(
θ∗i κ
∗
l , θ

s
i

θ∗l κ
∗
l

θsl

)
E[Ni,l(Ts)]

(1− δ) log Ts
< 1

Since T c1,...,L is compact, there exists a subsequence s0 < s1 < · · · such that limu→∞{θsui } = {θi}
for some {θi} ∈ T c1,...,L. Therefore from the lower semicontinuity of the divergence we obtain

1 ≥
∑

(i,l)∈[K]×[L]

lim inf
u→∞

E[Ni(Tsu)]

(1− δ) log Tsu
dKL

(
θ∗i κ
∗
l , θ

su
i

θ∗l κ
∗
l

θsul

)

≥
∑

(i,l)∈[K]×[L]

lim inf
s→∞

E[Ni(Ts)]

(1− δ) log Ts
dKL

(
θ∗i κ
∗
l , θi

θ∗l κ
∗
l

θl

)
,

which contradicts Lemma 1.

G Main Regret Bound: Proof of Theorem 6

In this section, we prove the asymptotic optimality of PMED-Hinge. First, we define the following
events that are important in bounding regret. Let î(t) be the i-th largest arm based on θ̂i(t) (ties are
broken arbitrarily).

W(t) =
⋃
i∈[L]

{
î(t) 6= i

}
Henceforth, we abbreviate the event that some L-allocation that includes (i, l) ∈ [K] × [L] is put
into LN to “pair (i, l) is put into LN”. Let Ji,l(t) be the event that pair (i, l) is put into LN at round

15



t. Let X (t) is the event that at least one arm is put into LN before Line 18 in Algorithm 1. Namely,

X (t) =

{ ⋃
(i,l)∈[K]×[L]

{Ni,l(t) < α
√

log t} ∪
⋃

(i 6=j)∈[K]×[K]

{|θ̂i(t)− θ̂j(t)| < β/(log log t)}

∪
⋃

(l 6=m)∈[K]×[K]

{|κ̂l(t)−κ̂m(t)| < β/(log log t)}∪
⋃

(i,l)∈[K]×[L]

{
dKL(µ̂i,l(t), θ̂i(t)κ̂l(t)) ≥ f(Ni,l(t))

}}
.

Let Yi,l(t) be the event that pair (i, l) is put into LN in Line 18 of Algorithm 1. Moreover, let

Zδ(t) =
⋂
i∈[K]

{|θ̂i(t)− θ∗i | < δ} ∩
⋂
l∈[L]

{|κ̂l(t)− κ∗l | < δ}.

That is, the estimator {θ̂i(t), κ̂l(t)} is sufficiently close to the set of true values.

By using ∆i,l ≤ 1, the regret is decomposed into the following terms:

Reg(T ) =
∑

(i,l)∈[K]×[L]

∆i,l

T∑
t=1

1[Ii(t) = l]

≤
∑

(i,l)∈[K]×[L]

∆i,l

T∑
t=1

1[Ji,l(t)] +K2

≤ K
T∑
t=1

1[X (t),Ji,l(t)] + ∆i,l

T∑
t=1

1[X c(t),Yi,l(t)] +K2

≤ K
T∑
t=1

1[X (t),Ji,l(t)] +K

T∑
t=1

1[X c(t),W(t)] +
∑

(i,l)∈[K]×[L]

∆i,l

T∑
t=1

1[Wc(t),Yi,l(t),Zδ(t)]

+
∑

(i,l)∈[K]×[L]

T∑
t=1

1[X c(t),Wc(t),Yi,l(t),Zcδ (t)] +K2 (7)

The following lemmas bound each term of (7), and combining them completes the proof.
Lemma 9. (Sublog exploration) The following inequality holds:

T∑
t=1

∑
(i,l)∈[K]×[L]

P [X (t),Ji,l(t)] = o(log T )

Lemma 10. (Misidentification) The following inequality holds:
T∑
t=1

P [X c(t),W(t)] = O(1)

Lemma 11. (Leading term) There exists a continuous function ε(δ) such that ε(δ) → 0 as δ → 0,
and the following inequality holds:

T∑
t=1

1 [Wc(t),Yi,l(t),Zδ(t)] = (1 + ε(δ))R∗i,l log T + 1.

where R∗i,l is the (i, l) entry of the optimal solutionR∗1,...,L((){µ∗i,l}, {θ∗i }, {κ∗i }).

Lemma 12. (Case in which estimation quality is low) The following inequality holds:
T∑
t=1

P [X c(t),Wc(t),Yi,l(t),Zcδ (t)] = o(log T ).

The following sections prove Lemmas 9–12. We use µ̂ni,l to denote µ̂i,l(t) when Ni,l(t) = n.
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H Proof of Lemma 9

Lemma 13. (Convergence of the hinge of MLE) Let

C(t) =
⋂

(i,l)∈[K]×[L]

{
dKL(µ̂i,l(t), θ̂i(t)κ̂l(t)) ≤ f(Ni,l(t))

}
. (8)

The following inequality holds of any (i, l) ∈ [K]× [L]:

T∑
t=1

P [Ji,l(t), Cc(t)] = O(1).

Proof of Lemma 13. Let NC(t) be the number of rounds before t such that pair (i, l) is put into LN
by Line 10 of Algorithm 1. Note that {Ji,l(t), Cc(t), NC(t) = n} occurs at most twice because if
Cc(t) occurs then (i, l) is put into LN by Line 10. By using this fact, we obtain

T∑
t=1

P [Ji,l(t), Cc(t)]

≤ 2

T∑
n=1

P

[
T⋃
t=n

{
Ji,l(t), Cc(t), NC(t) = n

}]

≤ 2

T∑
n=1

P

[
T⋃
t=n

{Ji,l(t), Cc(t), Ni,l(t) ≥ n}

]

≤ 2

T∑
n=1

∑
(i,l)∈[K]×[L]

T∑
n′=n

P
[
dKL(µ̂n

′

i,l, θ
∗
i κ
∗
l ) > f(n′)

]
≤ 2

T∑
n=1

∑
(i,l)∈[K]×[L]

T∑
n′=n

e−n
′f(n′) = O(1)

where we have used the facts that NC(t) = n ⇒
⋂

(i,l){Ni,l(t) ≥ n} and Cc(t) implies⋃
(i,l){dKL(µ̂n

′

i,l, θ
∗
i κ
∗
l ) > f(n′)}.

Lemma 14. For any i 6= j ∈ [K], the following inequality holds:

T∑
t=1

P

 ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ α
√

log t,Ji,l(t), C(t), |θ̂i(t)− θ̂j(t)| < β/(log log t)

 = O(1).

Proof of Lemma 14. Let ∆θ = |θ∗i − θ∗j | > 0. Note that{
|θ̂i(t)− θ̂j(t)| < β/(log log t), t ≥ ee

5β/∆θ
}

implies |θ̂i(t)− θ̂j(t)| ≤ ∆θ/5. Moreover,{
Ni′,l′(t) > α

√
log t, t > e

(
(52γ)2

4α∆2
θ

)2}

implies that 2(∆θ/5)2 > f(Ni′,l′(t)). Let ND(t) be the number of rounds before t such that the
arms are put into LN by Line 9. Then {Ji,l(t), ND(t) = n} occurs at most twice. By using these,
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we obtain
T∑
t=1

P

 ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) > α
√

log t, |θ̂i(t)− θ̂j(t)| < β/(log log t),Ji,l(t), C(t)


≤

T∑
n=1

P

 T⋃
t=1

 ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) > α
√

log t, |θ̂i(t)− θ̂j(t)| < β/(log log t), ND(t) = n

 ,Ji,l(t), C(t)


≤ max(e

(
(52γ)2

4α∆2
θ

)2

, ee
5β/∆θ

) +

T∑
n=1

P

[
T⋃
t=1

{
C(t), |θ̂i(t)− θ̂j(t)| < ∆θ/5, 2(∆θ/5)2 > f(Ni,l(t)), N

D(t) = n
}]

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{
dKL(µ̂i,1(t), θ̂i(t)) < 2(∆θ/5)2, dKL(µ̂j,1(t), θ̂j(t)) < 2(∆θ/5)2,

|θ̂i(t)− θ̂j(t)| < ∆θ/5, N
D(t) = n

}]

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{
(µ̂i,1(t)− θ̂i(t))2 < (∆θ/5)2, (µ̂j,1(t)− θ̂j(t))2 < (∆θ/5)2,

|θ̂i(t)− θ̂j(t)| < ∆θ/5, N
D(t) = n

}]
(by Pinsker’s inequality)

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{
|µ̂i,1(t)− θ̂i(t)| < ∆θ/5, |µ̂j,1(t)− θ̂j(t)| < ∆θ/5, |θ̂i(t)− θ̂j(t)| < ∆θ/5, N

D(t) = n
}]

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{
|µ̂i,1(t)− θ∗i | > ∆θ/5 ∪ |µ̂j,1(t)− θ∗j | > ∆θ/5

}]
(by the triangular inequality and the definition of ∆θ.)

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{|µ̂i,1(t)− θ∗i | > ∆θ/5}

]
+

T∑
n=1

P

[
T⋃
t=1

{
|µ̂j,1(t)− θ∗j | > ∆θ/5

}]
. (9)

Here,
T∑
n=1

P

[
T⋃
t=1

{
|µ̂i,1(t)− θ∗i | > ∆θ/5, N

D(t) = n
}]

≤
T∑
n=1

T∑
n′=n

P
[
|µ̂n

′

i,1 − θ∗i | > ∆θ/5
]

(by the fact that ND(t) = n implies Ni,l(t) ≥ n.)

≤
T∑
n=1

T∑
n′=n

e2n′(∆θ/5)2

= O(1),

(by Chernoff bound and Pinkser’s inequality)
(10)

and the same inequality also holds for j, which completes the proof.

Lemma 15. For any l 6= m ∈ [K], the following inequality holds:

T∑
t=1

P

 ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ α
√

log t, |κ̂l(t)− κ̂m(t)| < β/(log log t),Ji,l(t), C(t)

 = O(1).
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Proof of Lemma 15. Let ∆κ = minl 6=m θ1|κ∗l − κ∗m|. Similar to Lemma 14, we have

T∑
t=1

P

 ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ α
√

log t, |κ̂l(t)− κ̂m(t)| < β/(log log t),Ji,l(t), C(t)


≤

T∑
n=1

P

 T⋃
t=1

 ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) > α
√

log t, |κ̂l(t)− κ̂m(t)| < β/(log log t), ND(t) = n

 ,Ji,l(t), C(t)


≤ max(e

(
(52γ)2

4α∆2
κ

)2

, ee
5β/∆κ

) +

T∑
n=1

P

[
T⋃
t=1

{
C(t), |κ̂l(t)− κ̂m(t)| < ∆κ/5, 2(∆κ/5)2 > f(Ni,l(t)), N

D(t) = n
}]

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{
dKL(µ̂1,l(t), θ̂1(t)κ̂l(t)) < 2(∆κ/5)2, dKL(µ̂1,m(t), θ̂1(t)κ̂m(t)) < 2(∆κ/5)2,

|κ̂l(t)− κ̂m(t)| < ∆κ/5, N
D(t) = n

}]

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{
(µ̂1,l(t)− θ̂1(t)κ̂l(t))

2 < (∆κ/5)2, (µ̂1,m(t)− θ̂1(t)κ̂m(t))2 < (∆κ/5)2,

|κ̂l(t)− κ̂m(t)| < ∆κ/5, N
D(t) = n

}]

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{
|µ̂1,l(t)− θ̂1(t)κ̂l(t)| < ∆κ/5,

|µ̂1,m(t)− θ̂1(t)κ̂m(t)| < ∆κ/5, θ1|κ̂l(t)− κ̂m(t)| < ∆κ/5, N
D(t) = n

}]

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{
|µ̂1,l(t)− µ∗1,l| > ∆κ/5 ∪ |µ̂1,m(t)− µ∗1,m| > ∆κ/5

}]

≤ O(1) +

T∑
n=1

P

[
T⋃
t=1

{
|µ̂1,l(t)− µ∗1,l| > ∆κ/5

}]
+

T∑
n=1

P

[
T⋃
t=1

{
|µ̂1,m(t)− µ∗1,m| > ∆κ/5

}]
.

(11)

Here,

T∑
n=1

P

[
T⋃
t=1

{
|µ̂1,l(t)− µ∗1,l| > ∆κ/5, N

D(t) = n
}]

≤
T∑
n=1

T∑
n′=n

P
[
|µ̂n

′

1,l − µ∗1,l| > ∆κ/5
]

≤
T∑
n=1

T∑
n′=n

e2n′(∆κ/5)2

= O(1),

(12)

and the same inequality also holds for m, which completes the proof.

Proof of 9. The event

{Ni′,l′(t) < α
√

log t,Ji′,l′(t), Ni′,l′(t) = n}
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occurs at most twice because if it occurs then pair (i′, l′) is put into LN immediately. Taking these
into consideration,

T∑
t=1

P [X (t),Ji,l(t)]

≤ 2

T∑
n=1

P

⋃
t=n

 ⋃
(i′,l′)∈[K]×[L]

Ni′,l′(t) < α
√

log T ,Ni′,l′(t) = n


+

T∑
t=1

P [Ji,l(t), Cc(t)]

+

T∑
t=1

∑
i 6=j

P

 ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ α
√

log t, |θ̂i(t)− θ̂j(t)| < β/(log log t),Ji,l(t), C(t)


+

T∑
t=1

∑
l 6=m

P

 ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ α
√

log t, |κ̂l(t)− κ̂m(t)| < β/(log log t),Ji,l(t), C(t)


(13)

The first term of (13) is O(
√

log T ), and the second, third, and fourth terms of (13) are O(1) by
Lemma 13, 14, and 15 respectively.

I Proof of Lemma 10

Remember that 1̂(t), . . . , L̂(t) are the empirical top-L arm based on MLE. The following lemma
guarantees the convergence of µ̂l̂(t),l(t) for each l ∈ [L].

Lemma 16. (Convergence of the estimated best arm) Let

P(t) =
⋃
l∈[L]

{
dKL(µ̂l̂(t),l(t), θ

∗
l̂(t)
κ∗l )} > f(Nl̂(t),l(t))

}
.

Then, the following inequality holds:

T∑
t=1

P [P(t)] = O(1). (14)

Proof of Lemma 16. Let (1), . . . , (L) be L distinct elements among [K]. Note that,

1̂(t) = (1), . . . , L̂(t) = (L),
⋃
l∈[L]

dKL(µ̂(l),l(t), θ
∗
(l)κ
∗
l )} > f(N(l),l(t)),

⋃
l∈[L]

N(l),l(t) ≤ n


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occurs at most K2n rounds because ((1), 1), . . . , ((L), L) are put into LN by Line 22 of Algorithm
1 under this event and |LN | is at most K2. By using this, we have

E

1̂(t) = (1), . . . , L̂(t) = (L),
⋃
l∈[L]

dKL(θ̂(l)(t)κ̂l(t), θ
∗
(l)κ
∗
l )} > f(N(l),l(t))


≤
∞∑
n=2

K2nP

 T⋃
t=1

 ⋃
l∈[L]

dKL(µ̂(l),l(t), θ
∗
(l)κ
∗
l )} > f(N(l),l(t)),

⋃
l∈[L]

{N(l),l(t) ≤ n} \
⋃
l∈[L]

{N(l),l(t) ≤ n− 1}


≤
∞∑
n=1

K2nP

 T⋃
t=1

 ⋃
l∈[L]

dKL(µ̂(l),l(t), θ
∗
(l)κ
∗
l )} > f(N(l),l(t)),

⋂
l∈[L]

{N(l),l(t) ≥ n}


≤
∞∑
n=1

K2n
∑
l∈[L]

∑
nl≥n

P
[
dKL(µ̂nl(l),l, θ

∗
(l)κ
∗
l )} > f(nl)

]

≤
∞∑
n=1

2K2n
∑
l∈[L]

∑
nl≥n

e−nlf(nl)

(by Chernoff bound from both sides)
= O(1).

Taking a union bound of (1), . . . , (L) over all L distinct elements among [K] complete the proof.

Lemma 17. (Minimum divergence gap) There exists a constant Cmgap such thatNi,l(t) > α
√

log t,
⋂
i,l

(dKL(µ̂i,l(t), θ
∗
i κ
∗
l )− f(Ni,l(t)))+ = 0,Wc(t)


cannot occur for t ≥ Cmgap.

Proof of Lemma 17. EventWc(t) implies that there exists a pair i, j ∈ [K] such that

{(θ∗i − θ̂i(t))(θ∗j − θ̂j(t)) ≤ 0},

which implies max(|θ∗i − θ̂i(t)|, |θ∗j − θ̂j(t)|) > |θ∗i − θ∗j |/2. Let ∆ = |θ∗i − θ∗j |. Without loss of
generality we assume |θ∗i − θ̂i(t)| > ∆/2. Remember that κ∗1 = 1. By using the Pinsker’s inequality

max(dKL(µ̂i,1(t), θ∗i ), dKL(µ̂i,1(t), θ̂i(t))) ≥ ∆2/2 (15)

Note that, by the definition of MLE⋂
i,l

{
(dKL(µ̂i,l(t), θ

∗
i κ
∗
l )− f(Ni,l(t)))+ = 0

}
⇒
⋂
i,l

{(
dKL(µ̂i,l(t), θ̂i(t)κ̂l(t))− f(Ni,l(t))

)
+

= 0

}
.

(16)

Inequalities (15) and (16) do not hold simultaneously for f(Ni,l(t)) < ∆2/2, and thus the Lemma
holds with Cmgap = exp( 16γ4

∆8α2 ) by using the condition Ni,j(t) > α
√

log t.

Proof of Lemma 10. Let

H(t) = {(i, l) ∈ [K]× [L] : (dKL(µ̂i,l(t), θ
∗
i κ
∗
l )− f(Ni,l))+ > 0}.

Let G ∈ 2[K]×[L] \ ∅ be arbitrary. Note that, iflog t ≥
∑

(i,l)∈G

Ni,l(t) (dKL(µ̂i,l(t), θ
∗
i κ
∗
l )− f(Ni,l(t))) ,G = H(t),Pc(t)


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then∑
(i,l)∈G

Ni,l(t) (dKL(µ̂i,l(t), θ
∗
i κ
∗
l )− f(Ni,l(t)))

≥ inf
{θi}∈T c

1̂(t),...,L̂(t)
,{κl}∈Kall:∀l∈[L]dKL(µ̂l̂(t),l(t),θ

∗
l̂(t)

κ∗l )≤f(Nl̂(t),l(t))

∑
(i,l)∈[K]×[L]

(dKL(µ̂i,l(t), θiκl)− f(Ni,l(t))) ,

which implies that at least one of the pairs (i, l) in G is immediately put into LN to satisfy the
constraints at ({θ∗i }, {κ∗l }). Therefore, one of the pairs in G is drawn within K2 rounds because
|LN | is at most K2. By using this fact, we have

∑
t

1 [X c(t),Wc(t),G = H(t),Pc(t), Ni,l(t) = ni,l] ≤ exp

 ∑
(i,l)∈G

ni,l (dKL(µ̂i,l, θ
∗
i κ
∗
l )− f(Ni,l(t)))

+K2.

Let µ̂ni,l be the empirical estimate of µ∗i,l = θ∗i κ
∗
l with n draws. Let si,l = si,l(µ

∗
i,l) =

supp∈[0,1] dKL(p, µ∗i,l) <∞. Letting Pi,l(xi,l) = P[dKL(µ̂
ni,l
i,j , µ

∗
i,l) ≥ xi,l], we have

E

∑
t

1

X c(t),Wc(t),G = H(t),
⋂

(i,l)∈G

Ni,l(t) = ni,l}


≤
∫
{xi,l}∈[f(ni,l),si,l]|G|

exp

 ∑
(i,l)∈G

ni,l(xi,l − f(ni,l))

+K2

 ∏
(i,l)∈G

d(−Pi,l(xi,l))

= K2
∏

(i,l)∈G

si,lPi,l(f(ni,l)) +
∏

(i,l)∈G

∫
xi,l∈[f(ni,l),si,l]

eni,l(xi,l−f(ni,l))d(−Pi,l(xi,l))

= K2
∏

(i,l)∈G

si,lPi,l(f(ni,l))

+
∏

(i,l)∈G

([
−eni,l(xi,l−f(ni,l))Pi,l(xi,l)

]si,l
f(ni,l)

+

∫
xi,l∈[f(ni,l),si,l]

ni,le
ni,l(xi,l−f(ni,l))Pi,l(xi,l)dxi,l

)
(integration by parts)

≤ (1 +K2)
∏

(i,l)∈G

si,lPi,l(f(ni,l)) +
∏

(i,l)∈G

∫
xi,l∈[f(ni,l),si,l]

ni,le
ni,l(xi,l−f(ni,l))e−ni,lxi,ldxi,l

≤ (1 +K2)
∏

(i,l)∈G

si,le
−ni,lf(ni,l) +

∏
(i,l)∈G

∫
xi,l∈[f(ni,l),si,l]

ni,le
−ni,lf(ni,l)dxi,l

= (1 +K2)
∏

(i,l)∈G

si,le
−ni,lf(ni,l) +

∏
(i,l)∈G

si,lni,le
−ni,lf(ni,l). (17)

By summing (17) over {ni,l},
T∑
t=1

P [X c(t),Wc(t),G = H(t),Pc(t)]

≤
∑
· · ·
∑

{ni,l}∈N|G|

(1 +K2)
∏

(i,l)∈G

si,le
−ni,lf(ni,l) +

∏
(i,l)∈G

si,lni,le
−ni,lf(ni,l)


= O(1).

Taking a union bound over G 6= ∅ yields
P [X c(t),Wc(t),H(t) 6= ∅,Pc(t)] = O(1). (18)

We finally obtain
P [X c(t),Wc(t)] = P [P(t)]+P [X c(t),H(t) = ∅,Wc(t)]+P [X c(t),Wc(t),H(t) 6= ∅,Pc(t)] = O(1),

where each term is bounded by Lemma 16, Lemma 17, and inequality (18).
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J Proof of Lemma 11

Following Hogan [16], we define the continuity of a point-to-set map Ω : X → 2Y between metric
spaces X and Y as follows: Ω is open at x0 ∈ X if {xk}, xk → x0, and y0 ∈ Ω(x0) imply the
existence of an integer m and a sequence {yk} such that yk ∈ Ω(xk) for k ≥ m and yk → y0. Ω is
closed at x0 if {xk} ∈ X , xk → x0, yk → y0 imply that y0 ∈ Ω(x0). Moreover, Ω is continuous at
x0 if it is closed and open at x0.

Let QL = {{qi,l}(i,l)∈[K]×[L] ∈ [0,∞)K×L : ∃{qi,l}i∈[K],l∈[K]\[L]
, {qi,l}(i,l)∈[K]×[K] ∈ Q} be a

restriction of Q into K × L dimension. Note that the convexity of QL follows from the convexity of
Q. Let a set of feasible solutions restricted to [K]× [L] space be

RL
(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) =

{
{qi,l} ∈ QL :

inf
{θ′i}∈T c(1),...,(L)

,{κ′l}∈Kall:∀l∈[L]dKL(µ(l),l,θ
′
(l)
κ′l)≤δi,l

∑
(i,l)∈[K]×[L]:i6=(l)

qi,ldKL (µi,l, θ
′
iκ
′
l) ≥ 1

}
. (19)

The set of the optimal solutionsR∗,L(1),...,(L)(·) in K × L dimensions are defined in accordance with
RL

(1),...,(L)(·), that is,

R∗,L(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) =

{
{qi,l} ∈ QL : ∃{qi,l}i∈[K],l∈[K]\[L]:{qi,l}(i,l)∈[K]×[K]∈Q,∑

(i,l)∈[K]×[L]

∆i,lqi,l = C∗,H(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l})
}
.

Let the norms on {θi,l} and {qi,l} be |{θi,l}| =
∑
i,l |θi,l| and |{qi,l}| =

∑
i,l |qi,l|, respectively. In

the following, we show the following lemma:

Lemma 18. (The continuity of the solution function) The point-to-set map
R∗,L(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) is continuous at ({µi,l}, {θi}, {κl}, {δi,l}) =

({µ∗i,l}, {θ∗i }, {κ∗i }, {0}).

The continuity and the uniqueness of the optimal solution func-
tion R∗,L(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) implies that all solutions of

R∗,L(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) approach R∗,L(1),...,(L)({µ
∗
i,l}, {θ∗i }, {κ∗i }, {0}) when

({µi,l}, {θi}, {κl}, {δi,l}) is sufficiently close to ({µ∗i,l}, {θ∗i }, {κ∗i }, {0}). To prove Lemma
18, we first restate the following three Lemmas of Hogan [16]:

Lemma 19. (Hogan [16, Theorem 10]) Let g be a real-valued function on X ×Y , and P (x) = {y ∈
Y : g(x, y) ≤ 0} be a map of feasible solutions. If g is continuous on x0 × Y , then P is closed at x0.

Lemma 20. (Hogan [16, Theorem 13]) Let I(x) = {y ∈ Y : g(x, y) < 0} ⊂ P (x). If Y is convex
and normed, if g is continuous on x0 × P (x0) and P (x0) ⊂ cl(I(x0)), then P is open at x0, where
cl(·) is a closure operator.

Lemma 21. (Hogan [16, Corollary 8.1]) Let Ω : X → 2Y be a point-to-set map and M(x) = {y ∈
Ω(x) : supy′∈Ω(x) f(x, y′) = f(x, y)} be an optimal solution function of some real-valued function
f on X × Y . Suppose Ω is continuous at x0, f is continuous on x0 × Ω(x0), M is non-empty and
uniformly compact near x0, and M(x0) is unique. Then, M is continuous at x0.

Proof of Lemma 18. We first show the continuity of the feasible solution function RL
(1),...,(L)(·) at

({µ∗i,l}, {θ∗i }, {κ∗i }, {0}). Applying Lemma 19 for P = RL
(1)...(L), x0 = ({µ∗i,l}, {θ∗i }, {κ∗i }, {0})
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and

g
(

({µi,l}, {θi}, {κl}, {δi,l}), {qi,l}
)

= sup
{θ′i}∈T c1,...,L,{κ′l}∈Kall:∀l∈[L]dKL(µ(l),l,θ

′
(l)
κ′l)≤δi,l

1−
∑

(i,l)∈[K]×[L]:i 6=(l)

qi,ldKL(µi,l, θ
′
iκ
′
l)


yields the closedness ofRL

(1)...(L) at ({µ∗i,l}, {θ∗i }, {κ∗i }, {0}), where the continuity of g follows from
the uniform continuity of the KL divergence in the region where θ′iκ

′
l is sufficiently far from {0, 1}.

Moreover, let {µi,l}, {θi}, {κl}, {δi,l}, {qi,l} be such that 0 = g(({µi,l}, {θi}, {κl}), {qi,l}). Then
{(1 − ε)qi,l} ∈ QL and g(({µi,l}, {θi}, {κl}, {δi,l}), {(1 − ε)qi,l}) = ε for any ε ∈ [0, 1], which
implies that {qi,l} is in cl(I(({µi,l}, {θi}, {κl}, {δi,l}))). By the fact above and the continuity of g,
applying Lemma 20 to the same P, x0, g yields the openness ofRL

(1)...(L) at ({µ∗i,l}, {θ∗i }, {κ∗i }, {0}).
The continuity ofRL

(1)...(L) follows from its closedness and the openness.

Finally, by using the continuity ofRL
(1)...(L) andC∗(1),...,(L), and uniform compactness and uniqueness

ofR∗,L(1),...,(L) at ({µ∗i,l}, {θ∗i }, {κ∗i }, {0}), applying Lemma 21 to M = R∗,L(1),...,(L), Ω = RL
(1)...(L),

and f = R∗,L(1),...,(L) yields the continuity ofR∗,L(1),...,(L) at ({µ∗i,l}, {θ∗i }, {κ∗i }, {0}).

Proof of Lemma 11. By using the continuity of R∗,L1,...,L({µ∗i,l}, {θ∗i }, {κ∗i }, {0}) (Lemma 18) and
the uniqueness ofR∗,L(1),...,(L)({µ

∗
i,l}, {θ∗i }, {κ∗i }, {0}), there exists ε(δ) such that ε→ 0 as δ → +0

and

T∑
t=1

1[Yi,l(t),Zδ(t)] ≤
T∑
n=1

1

[
T⋃
t=1

{Yi,j(t),Zδ(t), Ni,l(t) = n}

]

≤
T∑
n=1

1

[
T⋃
t=1

{
n/ log t ≤ (1 + ε(δ))

(
R∗,L(1),...,(L)({µ

∗
i,l}, {θ∗i }, {κ∗i }, {0})

)
i,l

}]
≤ (1 + ε(δ))

(
R∗,L(1),...,(L)({µ

∗
i,l}, {θ∗i }, {κ∗i }, {0})

)
i,l

log T + 1,

where
(
R∗,L(1),...,(L)({µ

∗
i,l}, {θ∗i }, {κ∗i }, {0})

)
i,l

is the corresponding (i, l) entry, which completes

the proof.

K Proof of Lemma 12

Lemma 22. Let C2 > 0 be arbitrary. Assume that |θ̂i(t) − θ̂j(t)| ≥ C2 for any i, j ∈ [K] × [K]
and |κ̂l(t) − κ̂m(t)| ≥ C2 for any l 6= m ∈ [L] hold. Moreover, assume that f(Ni,l(t)) ≤ C2

2/4
holds for any (i, l) ∈ [K]× [L]. Then, for any optimal solution, the following inequality holds for
any (i, l) /∈ {(1̂(t), 1), (2̂(t), 2), . . . , (L̂(t), L)}:

(R∗,L
1̂(t),...,L̂(t)

)i,l({µ̂i,l(t)}, {θ̂i(t)}, {κ̂i(t)}, {f(Ni,l(t))}) ≤
4LK

C4
2

.

Proof of Lemma 22. If {θ′i} ∈ T c1̂(t),...,L̂(t)
, then there exists i′, j′ such that (θ′i′ − θ′j′)(θ̂i(t) −

θ̂j(t)) ≤ 0, which implies max(|θ′i′ − θ̂i′(t)|, |θ′j′ − θ̂j′(t)|) ≥ C2/2. Without loss of generality let
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|θ′i′ − θ̂i′(t)| ≥ C2/2. Then, for any {θ′i},{κ′l},∑
i,l

qi,l (dKL(µ̂i,l(t), θ
′
iκ
′
l)− f(Ni,l(t)))+

≥ qi′,1
(
dKL(θ̂i′(t), θ

′
i′)− f(Ni′,1(t))

)
+

≥ qi′,1
(

2(θ̂i′(t)− θ′i′)2 − f(Ni′,1(t))
)

+

(by Pinsker’s inequality)

≥ qi′,1
(
C2

2/2− C2
2/4
)

+

= qi′,1C
2
2/4,

which implies that{
qi,l =

4

C2
2

}
(i,l)∈[K]×[L]

∈ RL
1̂(t),...,L̂(t)

({µ̂i,l(t)}, {θ̂i(t)}, {κ̂i(t)}, {f(Ni,l(t))}).

The estimated regret on the basis of {θ̂i(t)}, {κ̂l(t)} increases at least mini 6=j minl 6=m |θ̂i(t) −
θ̂j(t)||κ̂l(t)− κ̂m(t)| ≥ C2

2 when we draw arms that are not 1̂(t), . . . L̂(t). Therefore, qi,l for i 6= l̂(t)

is bounded by 4LK
C4

2
.

Let
A(t) =

⋂
i,l

{dKL(µ̂i,l(t), θ
∗
i κ
∗
l ) ≤ f(Ni,l(t))} .

Then, the following lemma holds.
Lemma 23. For sufficiently small δ > 0, we have

T∑
t=1

P
[
Ni,l(t) > α

√
log t,Zcδ (t),A(t)

]
= O(1).

Proof of Lemma 23. Let
Bδ(t) =

⋂
i,l

{
f(Ni,l(t)) < δ2

}
.

Then,
T∑
t=1

P [X c(t),Bcδ(t)]

≤
∑

(i,l)∈[K]×[L]

T∑
t=1

P
[
Ni,j(t) ≥ α

√
log t, f(Ni,l(t)) > δ2

]

≤
∑

(i,l)∈[K]×[L]

T∑
t=1

P
[
γ

1

α1/2(log t)1/4
> δ2

]

≤ K2e

(
γ4

α2δ8

)
= O(1). (20)

Moreover, A(t) implies ⋂
i,l

{
dKL(µ̂i,l(t), θ̂i(t)κ̂l(t)) ≤ f(Ni,l(t))

}
,

and by using the Pinsker’s inequality we have

|µ̂i,l(t)− θ̂i(t)κ̂l(t)| ≤
1

2

√
f(Ni,l(t))

|µ̂i,l(t)− θ∗i κ∗l | ≤
1

2

√
f(Ni,l(t)),
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for any (i, l) ∈ [K]× [L], which implies

|θ̂i(t)κ̂l(t)− θ∗i κ∗l | ≤
√
f(Ni,l(t))

for any (i, l) ∈ [K]× [L]. Therefore,

T∑
t=1

P [X c(t),Zcδ (t),A(t)]

≤
T∑
t=1

P [X c(t),Bcδ(t)] +

T∑
t=1

P [X c(t),Bδ(t),Zcδ (t),A(t)]

≤ O(1) + P

Zcδ (t),
⋂

(i,l)∈[K]×[L]

{f(Ni,l(t)) ≤ δ2, |θ̂i(t)κ̂l(t)− θ∗i κ∗l | ≤
√
f(Ni,l(t))}


(by inequality (20))

≤ O(1) + P

Zcδ (t),
⋂

(i,l)∈[K]×[L]

{|θ̂i(t)κ̂l(t)− θ∗i κ∗l | ≤ δ}

 = O(1) + 0.

Lemma 24. The following inequality holds:

T∑
t=1

1
[
X c(t),Bc(β/(log log t))/4(t)

]
= O(1).

Proof of Lemma 24. We have

∑
(i,l)∈[K]×[L]

T∑
t=1

1
[
X c(t),Bc(β/(log log t))/4(t)

]
≤

∑
(i,l)∈[K]×[L]

T∑
t=1

1

[
γ√

α
√

log t
>

β2

4(log log t)

]

≤
∑

(i,l)∈[K]×[L]

T∑
t=1

1

[
log t

(log log t)4
<

28γ4

α2β4

]
= O(1).

(
by

log t

(log log t)8
→∞ as t→∞

)
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Proof of Lemma 12. We have

T∑
t=1

P [X c(t),Yi,l(t),Zcδ (t)]

≤
T∑
t=1

P

X c(t) ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ (log log T )1/3,Yi,l(t),Zcδ (t)


+

∑
(i′,l′)∈[K]×[L]

T∑
t=1

P[Ni′,l′(t) ≤ (log log T )1/3, Ni′,l′(t) ≥ α
√

log t]

≤
T∑
t=1

P

X c(t), ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ (log log T )1/3,Yi,l(t),Ac(t)


+

∑
(i′,l′)∈[K]×[L]

T∑
t=1

P[Ni′,l′(t) ≤ (log log T )1/3, Ni′,l′(t) ≥ α
√

log t]

+

T∑
t=1

P [X c(t),Zcδ (t),A(t)] . (21)

Here, the second term of (21) is bounded as:

∑
(i′,l′)∈[K]×[L]

T∑
t=1

P[Ni′,l′(t) ≤ (log log T )1/3, Ni′,l′(t) ≥ α
√

log t] ≤ K2eα
−2(log log T )2/3

= o(log T ).

(22)

The third term of (21) is O(1) by Lemma 23. In the following we bound the first term of (21).

T∑
t=1

P

X c(t), ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ (log log T )1/3,Yi,l(t),Ac(t)


≤

T∑
t=1

P

X c(t), ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ (log log T )1/3,Yi,l(t),Ac(t),B(β/(log log t))/4(t)

+O(1)

(by Lemma 24)

≤
T∑
n=1

P

 T⋃
t=n

X c(t), ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ (log log T )1/3,Yi,l(t),Ac(t),B(β/(log log t))/4(t), Ni,l(t) = n




+O(1)

≤
log T (4LK(log log T/β)4/2)∑

n=1

P

[
T⋃
t=1

{
Ni′,l′(t) ≥ (log log T )1/3,Ac(t), Ni,l(t) = n

}]
+O(1)

(by the fact that X c(t) combined with Lemma 22 with C2 = β/ log log t

imply that qi,l ≤ 4LK(log log T/β)4 for any (l) 6= i)

≤ e−Ω((log log T )1/3)O((log T )(log log T )4) = o(log T ), (23)
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where, in the last line we used the fact that

P

 T⋃
t=1

X c(t),Ac(t), ⋂
(i′,l′)∈[K]×[L]

Ni′,l′(t) ≥ (log log T )1/3




≤
∑

(i′,l′)∈[K]×[L]

T∑
n=(log log T )1/3

(
P[|µ̂ni′,l′ − µ∗i′,l′ | > δ] + 1{δ ≥ f(α

√
log t)}

)

≤
∑

(i′,l′)∈[K]×[L]

T∑
n=(log log T )1/3

P[|µ̂ni′,l′ − µ∗i′,l′ | > δ] +O(1)

≤
∑

(i′,l′)∈[K]×[L]

T∑
n=(log log T )1/3

2e−2nδ = e−Ω((log log T )1/3) +O(1).

Combining (21), (22), and (23) completes the proof.

L Notation

Table 2 summarizes the notation appeared in this paper.
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Table 2: List of notation that are used in more than one sections in this paper.

T Number of rounds (Sec. 2)
K Number of arms (Sec. 2)
L Number of slots (Sec. 2)
θ∗i Parameter associated with arm i ∈ [K] (Sec. 2)
κ∗l Parameter associated with slot l ∈ [L] (Sec. 2)
µ∗i,l = θ∗i κ

∗
l (Sec. 2)

∆i,l = θ∗l κ
∗
l − θ∗i κ∗l (Sec. 2)

I(t) = (I1(t), . . . , IL(t)) List of arms selected at round t (Sec. 2)
Ni,l(t) Number of rounds before t at which arm i was in slot l (Sec. 2)
µ̂i,l(t) Empirical mean of pair (i, l) at round t (Sec. 2)
(1), . . . , (K) A permutation of 1, . . . ,K (Sec. 3)
Tall Set of possible values of parameters on the arms (Sec. 3)
Kall Set of possible values of parameters on the slots (Sec. 3)
T(1),...,(L) Subset of Tall such that the i-th best arm is (i) (Sec. 3)
T c(1),...,(L) Tall \ T(1),...,(L) (Sec. 3)
dKL(p, q) p log(p/q) + (1− p) log((1− p)/(1− q)) (Sec. 3)
Q Subspace of [0,∞)[K]×[K] that corresponds to

the number of draws (Sec. 3)
R(1),...,(L)({µi,l}, {θi}, {κl}) Feasible solutions under parameters {µi,l}, {θi}, {κl}

and top-L arms (1), . . . , (L) (Sec. 3)
C∗(1),...,(L)({µi,l}, {θi}, {κl}) Coefficient of optimal regret bound (Sec. 3)
R∗(1),...,(L)({µi,l}, {θi}, {κl}) Optimal solutions (Sec. 3)
α > 0 Parameter of PMED algorithm (Sec. 4)
LC List of L-allocations that are drawn at current loop of PMED (Sec. 4)
LN List of L-allocations that are drawn at next loop of PMED (Sec. 4)
vmod
m An L-allocation (Sec. 4)
{θ̂i(t)}Ki=1, {κ̂l(t)}Ll=1 MLE. Note that µ̂i,l(t) 6= θ̂i(t)κ̂l(t). (Sec. 4)
Ñi,l K ×K variables that correspond to the estimated

amount of exploration on pair (i, l) (Sec. 4)
ev A permutation matrix (Sec. 4)
ev,i,l (i, l) entry of ev (Sec. 4)
(1̂(t), . . . , L̂(t)) Top-L arms estimated from MLE (Sec. 4)
(x)+ = max(x, 0) (Sec. 7)
β, γ > 0 Parameters of PMED-Hinge algorithm (Sec. 7)
f(n) = γ/

√
n (Sec. 7)

RH
(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) Feasible solutions of the modified objective (Sec. 7)

C∗,H(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) Coefficient of optimal regret bound of modified objective (Sec. 7)
R∗,H(1),...,(L)({µi,l}, {θi}, {κl}, {δi,l}) Optimal solutions of the modified objective (Sec. 7)
W(t) Event that top-L arms is misidentified (Sec. G)
Ji,l(t) Event that pair (i, l) is put into LN (Sec. G)
X (t) Event that at least one arm is put into LN before Line 18 (Sec. G)
Yi,l(t) Eevent that pair (i, l) is put into LN in Line 18 (Sec. G)
Zδ(t) Event that estimator {θ̂i(t), κ̂l(t)} is

δ-close to the set of true values (Sec. G)
R∗i,l (i, l) entry of the optimal solutionR∗1,...,L({µ∗i,l}, {θ∗i }, {κ∗l }) (Sec. G)
µ̂ni,l µ̂i,l(t) when Ni,l(t) = n (Sec. G)
C(t) Event that hinge of MLE is zero (Sec. H)
H(t) Subset of entries (i, l) ∈ [K]× [L] such that

hinge of true parameters is zero (Sec. I)
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