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Abstract

We consider the problem of recovering a signal x∗ ∈ Rn, from magnitude-only
measurements, yi = |〈ai,x∗〉| for i = {1, 2, . . . ,m}. Also known as the phase
retrieval problem, it is a fundamental challenge in nano-, bio- and astronomical
imaging systems, and speech processing. The problem is ill-posed, and therefore
additional assumptions on the signal and/or the measurements are necessary.
In this paper, we first study the case where the underlying signal x∗ is s-sparse.
We develop a novel recovery algorithm that we call Compressive Phase Retrieval
with Alternating Minimization, or CoPRAM. Our algorithm is simple and can
be obtained via a natural combination of the classical alternating minimization
approach for phase retrieval, with the CoSaMP algorithm for sparse recovery.
Despite its simplicity, we prove that our algorithm achieves a sample complexity
of O

(
s2 log n

)
with Gaussian samples, which matches the best known existing

results. It also demonstrates linear convergence in theory and practice and requires
no extra tuning parameters other than the signal sparsity level s.
We then consider the case where the underlying signal x∗ arises from structured
sparsity models. We specifically examine the case of block-sparse signals with
uniform block size of b and block sparsity k = s/b. For this problem, we design
a recovery algorithm that we call Block CoPRAM that further reduces the sample
complexity to O (ks log n). For sufficiently large block lengths of b = Θ(s), this
bound equates to O (s log n). To our knowledge, this constitutes the first end-to-
end linearly convergent family of algorithms for phase retrieval where the Gaussian
sample complexity has a sub-quadratic dependence on the sparsity level of the
signal.

1 Introduction

1.1 Motivation

In this paper, we consider the problem of recovering a signal x∗ ∈ Rn from (possibly noisy)
magnitude-only linear measurements. That is, for sampling vector ai ∈ Rn, if

yi = |〈ai,x∗〉| , for i = 1, . . . ,m, (1)

then the task is to recover x∗ using the measurements y and the sampling matrix A = [a1 . . . am]>.

Problems of this kind arise in numerous scenarios in machine learning, imaging, and statistics.
For example, the classical problem of phase retrieval is encountered in imaging systems such as
diffraction imaging, X-ray crystallography, ptychography, and astronomy [1, 2, 3, 4, 5]. For such
imaging systems, the optical sensors used for light acquisition can only record the intensity of the
light waves but not their phase. In terms of our setup, the vector x∗ corresponds to an image (with
a resolution of n pixels) and the measurements correspond to the magnitudes of its 2D Fourier
coefficients. The goal is to stably recover the image x∗ using as few observations m as possible.
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Despite the prevalence of several heuristic approaches [6, 7, 8, 9], it is generally accepted that (1) is a
challenging nonlinear, ill-posed inverse problem in theory and practice. For generic ai and x∗, one
can show that (1) is NP-hard by reduction from well-known combinatorial problems [10]. Therefore,
additional assumptions on the signal x∗ and/or the measurement vectors ai are necessary.

A recent line of breakthrough results [11, 12] have provided efficient algorithms for the case where the
measurement vectors arise from certain multi-variate probability distributions. The seminal paper by
Netrapalli et al. [13] provides the first rigorous justification of classical heuristics for phase retrieval
based on alternating minimization. However, all these newer results require an “overcomplete" set
of observations, i.e., the number of observations m exceeds the problem dimension n (m = O (n)
being the tightest evaluation of this bound [14]). This requirement can pose severe limitations on
computation and storage, particularly when m and n are very large.

One way to mitigate the dimensionality issue is to use the fact that in practical applications, x∗ often
obeys certain low-dimensional structural assumptions. For example, in imaging applications x∗ is
s-sparse in some known basis, such as identity or wavelet. For transparency, we assume the canonical
basis for sparsity throughout this paper. Similar structural assumptions form the core of sparse
recovery, and streaming algorithms [15, 16, 17], and it has been established that only O

(
s log n

s

)
samples are necessary for stable recovery of x∗, which is information-theoretically optimal [18].

Several approaches for solving the sparsity-constrained version of (1) have been proposed, including
alternating minimization [13], methods based on convex relaxation [19, 20, 21], and iterative thresh-
olding [22, 23]. Curiously, all of the above techniques incur a sample complexity of Ω(s2 log n) for
stable recovery, which is quadratically worse than the information-theoretic limit [18] ofO

(
s log n

s

)
1.

Moreover, most of these algorithms have quadratic (or worse) running time [19, 22], stringent as-
sumptions on the nonzero signal coefficients [13, 23], and require several tuning parameters [22, 23].

Finally, for specific applications, more refined structural assumptions on x∗ are applicable. For
example, point sources in astronomical images often produce clusters of nonzero pixels in a given
image, while wavelet coefficients of natural images often can be organized as connected sub-trees.
Algorithms that leverage such structured sparsity assumptions have been shown to achieve con-
siderably improved sample-complexity in statistical learning and sparse recovery problems using
block-sparsity [30, 31, 32, 33], tree sparsity [34, 30, 35, 36], clusters [37, 31, 38], and graph mod-
els [39, 38, 40]. However, these models have not been understood in the context of phase retrieval.

1.2 Our contributions

The contributions in this paper are two-fold. First, we provide a new, flexible algorithm for sparse
phase retrieval that matches state of the art methods both from a statistical as well as computational
viewpoint. Next, we show that it is possible to extend this algorithm to the case where the signal
is block-sparse, thereby further lowering the sample complexity of stable recovery. Our work can
be viewed as a first step towards a general framework for phase retrieval of structured signals from
Gaussian samples.

Sparse phase retrieval. We first study the case where the underlying signal x∗ is s-sparse. We
develop a novel recovery algorithm that we call Compressive Phase Retrieval with Alternating
Minimization, or CoPRAM2. Our algorithm is simple and can be obtained via a natural combination
of the classical alternating minimization approach for phase retrieval with the CoSaMP [41] algorithm
for sparse recovery (CoSAMP also naturally extends to several sparsity models [30]). We prove that
our algorithm achieves a sample complexity of O

(
s2 log n

)
with Gaussian measurement vectors ai

in order to achieve linear convergence, matching the best among all existing results. An appealing
feature of our algorithm is that it requires no extra a priori information other than the signal sparsity
level s, and no assumptions on the nonzero signal coefficients. To our knowledge, this is the first
algorithm for sparse phase retrieval that simultaneously achieves all of the above properties. We use
CoPRAM as the basis to formulate a block-sparse extension (Block CoPRAM).

Block-sparse phase retrieval. We consider the case where the underlying signal x∗ arises from
structured sparsity models, specifically block-sparse signals with uniform block size b (i.e., s non-
zeros equally grouped into k = s/b blocks). For this problem, we design a recovery algorithm that we

1Exceptions to this rule are [24, 25, 26, 27, 28, 29] where very carefully crafted measurements ai are used.
2We use the terms sparse phase retrieval and compressive phase retrieval interchangeably.
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Table 1: Comparison of (Gaussian sample) sparse phase retrieval algorithms. Here, n, s, k = s/b
denote signal length, sparsity, and block-sparsity. Oε (·) hides polylogarithmic dependence on 1

ε .

Algorithm Sample complexity Running time Assumptions Parameters
AltMinSparse Oε

(
s2 log n+ s2 log3 s

)
Oε
(
s2n log n

)
x∗min ≈ c√

s
‖x∗‖2 none

`1-PhaseLift O
(
s2 log n

)
O
(
n3

ε2

)
none none

Thresholded WF O
(
s2 log n

)
Oε
(
n2 log n

)
none step µ, thresholds α, β

SPARTA O
(
s2 log n

)
Oε
(
s2n log n

)
x∗min ≈ c√

s
‖x∗‖2 step µ, threshold γ

CoPRAM O
(
s2 log n

)
Oε
(
s2n log n

)
none none

Block CoPRAM O (ks log n) Oε (ksn log n) none none

call Block CoPRAM. We analyze this algorithm and show that leveraging block-structure reduces the
sample complexity for stable recovery to O (ks log n). For sufficiently large block lengths b = Θ(s),
this bound equates toO (s log n). To our knowledge, this constitutes the first phase retrieval algorithm
where the Gaussian sample complexity has a sub-quadratic dependence on the sparsity s of the signal.

A comparative description of the performance of our algorithms is presented in Table 1.

1.3 Techniques

Sparse phase retrieval. Our proposed algorithm, CoPRAM, is conceptually very simple. It integrates
existing approaches in stable sparse recovery (specifically, the CoSaMP algorithm [41]) with the
alternating minimization approach for phase retrieval proposed in [13].

A similar integration of sparse recovery with alternating minimization was also introduced in [13];
however, their approach only succeeds when the true support of the underlying signal is accurately
identified during initialization, which can be unrealistic. Instead, CoPRAM permits the support of the
estimate to evolve across iterations, and therefore can iteratively “correct" for any errors made during
the initialization. Moreover, their analysis requires using fresh samples for every new update of the
estimate, while ours succeeds in the (more practical) setting of using all the available samples.

Our first challenge is to identify a good initial guess of the signal. As is the case with most non-
convex techniques, CoPRAM requires an initial estimate x0 that is close to the true signal x∗. The
basic idea is to identify “important" co-ordinates by constructing suitable biased estimators of each
signal coefficient, followed by a specific eigendecomposition. The initialization in CoPRAM is far
simpler than the approaches in [22, 23]; requiring no pre-processing of the measurements and or
tuning parameters other than the sparsity level s. A drawback of the theoretical results of [23] is
that they impose a requirement on signal coefficients: minj∈S |x∗j | = C ‖x∗‖2 /

√
s. However, this

assumption disobeys the power-law decay observed in real world signals. Our approach also differs
from [22], where they estimate an initial support based on a parameter-dependent threshold value.
Our analysis removes these requirements; we show that a coarse estimate of the support, coupled
with the spectral technique in [22, 23] gives us a suitable initialization. A sample complexity of
O
(
s2 log n

)
is incurred for achieving this estimate, matching the best available previous methods.

Our next challenge is to show that given a good initial guess, alternatingly estimating the phases and
non-zero coefficients (using CoSaMP) gives a rapid convergence to the desired solution. To this end,
we use the analysis of CoSaMP [41] and leverage a recent result by [42], to show per step decrease in
the signal estimation error using the generic chaining technique of [43, 44]. In particular, we show
that any “phase errors" made in the initialization, can be suitably controlled across different estimates.

Block-sparse phase retrieval. We use CoPRAM to establish its extension Block CoPRAM, which is
a novel phase retrieval strategy for block sparse signals from Gaussian measurements. Again, the
algorithm is based on a suitable initialization followed by an alternating minimization procedure,
mirroring the steps in CoPRAM. To our knowledge, this is the first result for phase retrieval under
more refined structured sparsity assumptions on the signal.

As above, the first stage consists of identifying a good initial guess of the solution. We proceed as in
CoPRAM, isolating blocks of nonzero coordinates, by constructing a biased estimator for the “mass"
of each block. We prove that a good initialization can be achieved using this procedure using only
O (ks log n) measurements. When the block-size is large enough (b = Θ(s)), the sample complexity
of the initialization is sub-quadratic in the sparsity level s and only a logarithmic factor above the

3



information-theoretic limit O (s) [30]. In the second stage, we demonstrate a rapid descent to the
desired solution. To this end, we replace the CoSaMP sub-routine in CoPRAM with the model-based
CoSaMP algorithm of [30], specialized to block-sparse recovery. The analysis proceeds analogously
as above. To our knowledge, this constitutes the first end-to-end algorithm for phase retrieval (from
Gaussian samples) that demonstrates a sub-quadratic dependence on the sparsity level of the signal.

1.4 Prior work

The phase retrieval problem has received significant attention in the past few years. Convex methodolo-
gies to solve the problem in the lifted framework include PhaseLift and its variations [11, 45, 46, 47].
Most of these approaches suffer severely in terms of computational complexity. PhaseMax, produces
a convex relaxation of the phase retrieval problem similar to basis pursuit [48]; however it is not em-
perically competitive. Non-convex algorithms typically rely on finding a good initial point, followed
by minimizing a quadratic (Wirtinger Flow [12, 14, 49]) or moduli ( [50, 51]) measurement loss
function. Arbitrary initializations have been studied in a polynomial-time trust-region setting in [52].

Some of the convex approaches in sparse phase retrieval include [19, 53], which uses a combination
of trace-norm and `-norm relaxation.Constrained sensing vectors have been used [25] at optimal
sample complexity O

(
s log n

s

)
. Fourier measurements have been studied extensively in the convex

[54] and non-convex [55] settings. More non-convex approaches for sparse phase retrieval include
[13, 23, 22] which achieve Gaussian sample complexities of O

(
s2 log n

)
.

Structured sparsity models such as groups, blocks, clusters, and trees can be used to model real-world
signals.Applications of such models have been developed for sparse recovery [30, 33, 39, 38, 40, 56,
34, 35, 36] as well as in high-dimensional optimization and statistical learning [32, 31]. However, to
the best of our knowledge, there have been no rigorous results that explore the impact of structured
sparsity models for the phase retrieval problem.

2 Paper organization and notation

The remainder of the paper is organized as follows. In Sections 3 and 4, we introduce the CoPRAM
and Block CoPRAM algorithms respectively, and provide a theoretical analysis of their statistical
performance. In Section 5 we present numerical experiments for our algorithms.

Standard notation for matrices (capital, bold: A,P, etc.), vectors (small, bold: x,y, etc.) and scalars
( α, c etc.) hold. Matrix and vector transposes are represented using > (eg. x> and A>) respectively.
The diagonal matrix form of a column vector y ∈ Rm is represented as diag(y) ∈ Rm×m. Operator
card(S) represents cardinality of S. Elements of a are distributed according to the zero-mean
standard normal distribution N (0, 1). The phase is denoted using sign (y) ≡ y/|y| for y ∈ Rm, and
dist (x1,x2) ≡ min(‖x1 − x2‖2, ‖x1 + x2‖2) for every x1,x2 ∈ Rn is used to denote “distance",
upto a global phase factor (both x = x∗,−x∗ satisfy y = |Ax|). The projection of vector x ∈ Rn
onto a set of coordinates S is represented as xS ∈ Rn, xSj = xj for j ∈ S, and 0 elsewhere.
Projection of matrix M ∈ Rn×n onto S is MS ∈ Rn×n, MSij = Mij for i, j ∈ S, and 0 elsewhere.
For faster algorithmic implementations, MS can be assumed to be a truncated matrix MS ∈ Rs×s,
discarding all row and column elements corresponding to Sc. The element-wise inner product of
two vectors y1 and y2 ∈ Rm is represented as y1 ◦ y2. Unspecified large and small constants are
represented by C and δ respectively. The abbreviation w.h.p. denotes “with high probability".

3 Compressive phase retrieval

In this section, we propose a new algorithm for solving the sparse phase retrieval problem and
analyze its performance. Later, we will show how to extend this algorithm to the case of more refined
structural assumptions about the underlying sparse signal.

We first provide a brief outline of our proposed algorithm. It is clear that the sparse recovery version
of (1) is highly non-convex, and possibly has multiple local minima[22]. Therefore, as is typical
in modern non-convex methods [13, 23, 57] we use an spectral technique to obtain a good initial
estimate. Our technique is a modification of the initialization stages in [22, 23], but requires no tuning
parameters or assumptions on signal coefficients, except for the sparsity s. Once an appropriate initial
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Algorithm 1 CoPRAM: Initialization.

input A,y, s.
Compute signal power: φ2 = 1

m

∑m
i=1 y

2
i .

Compute signal marginals: Mjj = 1
m

∑m
i=1 y

2
i a

2
ij ∀j.

Set Ŝ ← j’s corresponding to top-s Mjj’s.
Set v1 ← top singular vector of MŜ = 1

m

∑m
i=1 y

2
i aiŜai

>
Ŝ
∈ Rs×s.

Compute x0 ← φv, where v← v1 for Ŝ and 0 ∈ Rn−s for Ŝc.
output x0.

Algorithm 2 CoPRAM: Descent.

input A,y,x0, s, t0.
Initialize x0 according to Algorithm 1.
for t = 0, · · · , t0 − 1 do

Pt+1 ← diag (sign (Axt)),
xt+1← COSAMP( 1√

m
A, 1√

m
Pt+1y,s,xt).

end for
output z← xt0 .

estimate is chosen, we then show that a simple alternating-minimization algorithm, based on the
algorithm in [13] will converge rapidly to the underlying true signal. We call our overall algorithm
Compressive Phase Retrieval with Alternating Minimization (CoPRAM) which is divided into two
stages: Initialization (Algorithm 1) and Descent (Algorithm 2).

3.1 Initialization

The high level idea of the first stage of CoPRAM is as follows; we use measurements yi to construct
a biased estimator, marginal Mjj corresponding to the jth signal coefficient and given by:

Mjj =
1

m

m∑
i=1

y2
i a

2
ij , for j ∈ {1, . . . n}. (2)

The marginals themselves do not directly produce signal coefficients, but the “weight" of each
marginal identifies the true signal support. Then, a spectral technique based on [13, 23, 22] constructs
an initial estimate x0. To accurately estimate support, earlier works [13, 23] assume that the
magnitudes of the nonzero signal coefficients are all sufficiently large, i.e., Ω (‖x∗‖2 /

√
s), which

can be unrealistic, violating the power-decay law. Our analysis resolves this issue by relaxing the
requirement of accurately identifying the support, without any tuning parameters, unlike [22]. We
claim that a coarse estimate of the support is good enough, since the errors would correspond to small
coefficients. Such “noise" in the signal estimate can be controlled with a sufficient number of samples.
Instead, we show that a simple pruning step that rejects the smallest n − k coordinates, followed
by the spectral procedure of [23], gives us the initialization that we need. Concretely, if elements
of A are distributed as per standard normal distribution N (0, 1), a weighted correlation matrix
M = 1

m

∑m
i=1 y

2
i aia

>
i , can be constructed, having diagonal elements Mjj . Then, the diagonal

elements of this expectation matrix E [M] are given by:

E [Mjj ] = ‖x∗‖2 + 2x∗2j (3)

exhibiting a clear separation when analyzed for j ∈ S and j ∈ Sc. We can hence claim, that signal
marginals at locations on the diagonal of M corresponding to j ∈ S are larger, on an average, than
those for j ∈ Sc. Based on this, we evaluate the diagonal elements Mjj and reject n− k coordinates
corresponding to the smallest marginals obtain a crude approximation of signal support Ŝ. Using a
spectral technique, we find an initial vector in the reduced space, which is close to the true signal, if
m = O

(
s2 log n

)
.

Theorem 3.1. The initial estimate x0, which is the output of Algorithm 1, is a small constant distance
δ0 away from the true s-sparse signal x∗, i.e.,

dist
(
x0,x∗

)
≤ δ0 ‖x∗‖2 ,
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where 0 < δ0 < 1, as long as the number of (Gaussian) measurements satisfy, m ≥ Cs2 logmn,
with probability greater than 1− 8

m .

This theorem is proved via Lemmas C.1 through C.4 (Appendix C), and the argument proceeds as
follows. We evaluate the marginals of the signal Mjj , in broadly two cases: j ∈ S and j ∈ Sc.
The key idea is to establish one of the following: (1) If the signal coefficients obey minj∈S |x∗j | =
C ‖x∗‖2 /

√
s, then, w.h.p. there exists a clear separation between the marginals Mjj for j ∈ S

and j ∈ Sc. Then Algorithm 1 picks up the correct support (i.e. Ŝ = S); (2) if there is no
such restriction, even then the support picked up in Algorithm 1, Ŝ, contains a bulk of the correct
support S. The incorrect elements of Ŝ induce negligible error in estimating the intial vector. These
approaches are illustrated in Figures 4 and 5 in Appendix C. The marginals Mjj < Θ, w.h.p.,
for j ∈ Sc and Mjj > Θ, j ∈ S+, where S+ is a big chunk of the picked support S+ ⊆ Ŝ,
S+ = {j ∈ S : x∗j

2 ≥ 15
√

(logmn)/m ‖x∗‖2} are separated by threshold Θ (Lemmas C.1 and
C.2). The identification of the support Ŝ (which provably contains a significant chunk S+ of the true
support S) is used to construct the truncated correlation matrix MŜ . The top singular vector of this
matrix MŜ , gives us a good initial estimate x0.

The final step of Algorithm 1 requires a scaling of the normalized vector v1 by a factor φ, which
conserves the power in the signal (Lemma F.1 in Appendix F), whp, where φ2 which is defined as

φ2 =
1

m

m∑
i=1

y2
i . (4)

3.2 Descent to optimal solution

After obtaining an initial estimate x0, we construct a method to accurately recover x∗. For this, we
adapt the alternating minimization approach from [13]. The observation model (1) can be restated as:

sign (〈ai,x∗〉) ◦ yi = 〈ai,x∗〉 for i = {1, 2, . . .m}.
We introduce the phase vector p ∈ Rm containing (unknown) signs of measurements, i.e., pi =
sign (〈ai,x〉) , ∀i and phase matrix P = diag (p). Then our measurement model gets modified as
P∗y = Ax∗, where P∗ is the true phase matrix. We then minimize the loss function composed of
variables x and P,

min
‖x‖0≤s,P∈P

‖Ax−Py‖2 . (5)

Here P is a set of all diagonal matrices ∈ Rm×m with diagonal entries constrained to be in {−1, 1}.
Hence the problem stated above is not convex. Instead, we alternate between estimating P and x
as follows: (1) if we fix the signal estimate x, then the minimizer P is given in closed form as
P = diag (sign (Ax)); we call this the phase estimation step; (2) if we fix the phase matrix P, the
sparse vector x can be obtained by solving the signal estimation step:

min
x,‖x‖0≤s

‖Ax−Py‖2. (6)

We employ the CoSaMP [41] algorithm to (approximately) solve the non-convex problem (6). We do
not need to explicitly obtain the minimizer for (6) but only show a sufficient descent criterion, which
we achieve by performing a careful analysis of the CoSaMP algorithm. For analysis reasons, we
require that the entries of the input sensing matrix are distributed according to N (0, 1/

√
m). This

can be achieved by scaling down the inputs to CoSaMP: At,Pt+1y by a factor of
√
m (see x-update

step of Algorithm 2). Another distinction is that we use a “warm start" CoSaMP routine for each
iteration where the initial guess of the solution to (6) is given by the current signal estimate.

We now analyze our proposed descent scheme. We obtain the following theoretical result:
Theorem 3.2. Given an initialization x0 satisfying Algorithm 1, if we have number of (Gaussian)
measurements m ≥ Cs log n

s , then the iterates of Algorithm 2 satisfy:

dist
(
xt+1,x∗

)
≤ ρ0dist

(
xt,x∗

)
. (7)

where 0 < ρ0 < 1 is a constant, with probability greater than 1− e−γm, for positive constant γ.

The proof of this theorem can be found in Appendix E.
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4 Block-sparse phase retrieval

The analysis of the proofs mentioned so far, as well as experimental results suggest that we can reduce
sample complexity for successful sparse phase retrieval by exploiting further structural information
about the signal. Block-sparse signals x∗, can be said to be following a sparsity modelMs,b, where
Ms,b describes the set of all block-sparse signals with s non-zeros being grouped into uniform pre-
determined blocks of size b, such that block-sparsity k = s

b . We use the index set jb = {1, 2 . . . k},
to denote block-indices. We introduce the concept of block marginals, a block-analogue to signal
marginals, which can be analyzed to crudely estimate the block support of the signal in consideration.
We use this formulation, along with the alternating minimization approach that uses model-based
CoSaMP [30] to descend to the optimal solution.

4.1 Initialization

Analogous to the concept of marginals defined above, we introduce block marginals Mjbjb , where
Mjj is defined as in (2). For block index jb, we define:

Mjbjb =

√∑
j∈jb

M2
jj , (8)

to develop the initialization stage of our Block CoPRAM algorithm. Similar to the proof approach
of CoPRAM, we evaluate the block marginals, and use the top-k such marginals to obtain a crude
approximation Ŝb of the true block support Sb. This support can be used to construct the truncated
correlation matrix MŜb

. The top singular vector of this matrix MŜb
gives a good initial estimate x0

(Algorithm 3, Appendix A) for the Block CoPRAM algorithm (Algorithm 4, Appendix A). Through
the evaluation of block marginals, we proceed to prove that the sample complexity required for a
good initial estimate (and subsequently, successful signal recovery of block sparse signals) is given
by O (ks log n). This essentially reduces the sample complexity of signal recovery by a factor equal
to the block-length b over the sample complexity required for standard sparse phase retrieval.
Theorem 4.1. The initial vector x0, which is the output of Algorithm 3, is a small constant distance
δb away from the true signal x∗ ∈Ms,b, i.e.,

dist
(
x0,x∗

)
≤ δb ‖x∗‖2 ,

where 0 < δb < 1, as long as the number of (Gaussian) measurements satisfy m ≥ C s2

b logmn with
probability greater than 1− 8

m .

The proof can be found in Appendix D, and carries forward intuitively from the proof of the
compressive phase-retrieval framework.

4.2 Descent to optimal solution

For the descent of Block CoPRAM to optimal solution, the phase-estimation step is the same as that
in CoPRAM. For the signal estimation step, we attempt to solve the same minimization as in (6),
except with the additional constraint that the signal x∗ is block sparse,

min
x∈Ms,b

‖Ax−Py‖2, (9)

whereMs,b describes the block sparsity model. In order to approximate the solution to (9), we use
the model-based CoSaMP approach of [30]. This is a straightforward specialization of the CoSaMP
algorithm and has been shown to achieve improved sample complexity over existing approaches for
standard sparse recovery.

Similar to Theorem 3.2 above, we obtain the following result (the proof can be found in Appendix E):

Theorem 4.2. Given an initialization x0 satisfying Algorithm 3, if we have number of (Gaussian)
measurements m ≥ C

(
s+ s

b log n
s

)
, then the iterates of Algorithm 4 satisfy:

dist
(
xt+1,x∗

)
≤ ρbdist

(
xt,x∗

)
. (10)

where 0 < ρb < 1 is a constant, with probability greater than 1− e−γm, for positive constant γ.

The analysis so far has been made for uniform blocks of size b. However the same algorithm can be
extended to the case of sparse signals with non-uniform blocks or clusters (refer Appendix A).
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Figure 1: Phase transitions for signal of length n = 3, 000, sparsity s and block length b (a) s = 20,
b = 5, (b) s = 30, b = 5, and (c) s = 20, b = 20, 10, 5, 2, 1 (Block CoPRAM only).

5 Experiments

We explore the performance of the CoPRAM and Block CoPRAM on synthetic data. All numerical
experiments were conducted using MATLAB 2016a on a computer with an Intel Xeon CPU at
3.3GHz and 8GB RAM. The nonzero elements of the unit norm vector x∗ ∈ R3000 are generated
from N (0, 1). We repeated each of the experiments (fixed n, s, b,m) in Figure 1 (a) and (b), for
50 and Figure 1 (c) for 200 independent Monte Carlo trials. For our simulations, we compared our
algorithms CoPRAM and Block CoPRAM with Thresholded Wirtinger flow (Thresholded WF or
ThWF) [22] and SPARTA [23]. The parameters for these algorithms were carefully chosen as per the
description in their respective papers.

For the first experiment, we generated phase transition plots by evaluating the probability of empirical
successful recovery, i.e. number of trials out of 50. The recovery probability for the four algorithms is
displayed in Figure 1. It can be noted that increasing the sparsity of signal shifts the phase transitions
to the right. However, the phase transition for Block CoPRAM has a less apparent shift (suggesting
that sample complexity of m has sub-quadratic dependence on s). We see that Block CoPRAM
exhibits lowest sample complexity for the phase transitions in both cases (a) and (b) of Figure 1.

For the second experiment, we study the variation of phase transition with block length, for Block
CoPRAM (Figure 1(c)). For this experiment we fixed a signal of length n = 3, 000, sparsities
s = 20, k = 1 for a block length of b = 20. We observe that the phase transitions improve with
increase in block length. At block sparsity s

b = 20
10 = 2 (for large b, b→ s), we observe a saturation

effect and the regime of the experiment is very close to the information theoretic limit.

Several additional phase transition diagrams can be found in Figure 2 in Appendix B. The running
time of our algorithms compare favorably with Thresholded WF and SPARTA (see Table 2 in
Appendix B). We also show that Block CoPRAM is more robust to noisy Gaussian measurements, in
comparison to CoPRAM and SPARTA (see Figure 3 in Appendix B).
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A Appendix - Block CoPRAM algorithm and extension

A.1 Block CoPRAM algorithm

Algorithm 3 Block CoPRAM: Initialization.

input A,y, b, k.
Compute signal power φ2 = 1

m

∑m
i=1 y

2
i .

Compute block marginals Mjbjb =
√∑

j∈jb M
2
jj ∀jb, where Mjj is as in (2).

Select Ŝb ← jb’s corresponding to top-k Mjbjb ’s, Ŝ is signal support corresponding to blocks Ŝb.
Compute v1 ← top singular vector of MŜb

= 1
m

∑m
i=1 y

2
i aiŜai

>
Ŝ
∈ Rs×s.

Compute x0 ← φv where v← v1 for Ŝ, and 0 ∈ Rn−s for Ŝc.
output x0.

Algorithm 4 Block CoPRAM: Descent.

input A,y,x0, b, k, t0.
Initialize x0 according to Algorithm 3.
for t = 0, · · · , t0 − 1 do
Pt+1 ← diag (sign (Axt)).
xt+1 ← BlockCoSaMP( 1√

m
A, 1√

m
Pt+1y,b,k,xt).

end for
output z← xt0 .

A.2 Extension to blocks of non-uniform sizes

The analysis so far has been made for uniform blocks of size b. However the same algorithm can be
extended to the case of sparse signals with non-uniform blocks. Such a model is particularly useful
for time-series signals where the nonzeros occur in “bursts" of variable lengths and start times.

Formally, consider the clustered sparsity model for 1D signals in Rn, comprising signals with s
non-zeros that occur in no more than k non-overlapping blocks (clusters), each of which exhibit
potentially unknown sizes and locations. The above analysis does not immediately apply to this
case; however, by the analysis approach of [37], we can show that any such clustered-sparse signal
with parameters (s, k) can be simulated using a uniform block-sparse signal with parameters (s, 3k).
Therefore, the only price to be paid is a tripling of the block sparsity parameter k. Provided we are
willing to tolerate this increase, we can use exactly the same Block CoPRAM algorithm (including
both the initialization as well as the descent stages) as described above, with only a constant factor
increase in the sample complexity.

We note that this argument is only applicable to block-sparse 1D signals (such as time-domain
signals); extending this argument to general clustered-sparse images and higher-dimensional data is
much more involved, and we will not pursue this direction in this paper.

B Appendix - Additional experiments

We demonstrate the benefits of our algorithms CoPRAM and Block CoPRAM through an additional
set of experiments and describe our previous experiments in further detail.

For Thresholded Wirtinger flow, we set parameters which were optimized based on a number of
trial cases and were kept constant throughout all experiments, with values α = 1.5, µ = 0.23 and
β = 0.3. Similarly, for SPARTA, we set the parameters to be γ = 0.7, µ = 1 and card(Io) = dm6 e
as mentioned in their paper. For our set of generated signals, the AltMinSparse method mentioned
in [13] does not recover the signal in most cases (if the initialization stage fails to pick the correct
support, the subsequent AltMinPhase procedure can never give a good solution). We therefore do
not include this algorithm for comparisons. Figure 2 represents phase transition diagrams, where
number of measurements m is spanned from m = 200 to m = 2000 in steps of 200. Similarly
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(a) Thresholded WF (b) SPARTA (c) CoPRAM (d) Block CoPRAM

Figure 2: Phase transition plots for different algorithms, with signal length n = 3000, with uniform
block length of b = 5.

Table 2: Mean running time of different algorithms at s = 25.
Algorithm CoPRAM Block CoPRAM SPARTA Thresholded WF

m at phase transition (suc freq = 1) 1,600 1,400 1,800 2,000
mean running time (s) 0.4000 0.3258 0.3080 0.5808

signal sparsity s is swept from s = 5 to s = 50 in steps of 5. The block lengths considered for all
experiments in Figure 2 is b = 5. It can be noted that CoPRAM (1 (c)) and SPARTA (1 (b)) perform
comparably, while Block CoPRAM (1 (d)) performs the best among all four algorithms, in terms of
sample complexity. The mean running time of the algorithms for different algorithms is tabulated in
Table 2. It can be noted that the running times of our algorithms CoPRAM and Block CoPRAM are
at par with SPARTA and Thresholded WF.

Effect of noise: For our third experiment, we study the effect of noise on the measurements of
the form yi = |〈ai,x∗〉+ ei|, for i ∈ {1, 2 . . .m}. The noise vector e ∈ Rm is sampled from a
zero-mean Gaussian distribution N (0, σ2), where σ2 is determined using the input noise-signal-ratio
(NSR). We compared CoPRAM, Block CoPRAM and SPARTA to analyze robustness to noisy
measurements for amplitude only measurements (ThWF is excluded because they use quadratic
measurements). We vary the input NSR = σ2/ ‖x∗‖22, from 0.1 to 1 in steps of 0.1. We fix signal
parameters n = 3, 000, s = 20, b = 5, k = 4 and number of measurements to m = 1, 600. This
experiment was run for 50 independent Monte Carlo trials. The variation of mean relative error
‖z− x∗‖2 / ‖x∗‖2 (here z = xt0 ) can be seen in Figure 3. Block CoPRAM outperforms CoPRAM
and SPARTA in all cases considered.

0.5 1
0

0.5

1
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Figure 3: Variation of mean relative error in signal recovered v/s input NSR at s = 20 and b = 5,k = 4
for a signal of length n = 3, 000, and number of measurements m = 1, 600.

C Appendix - CoPRAM initialization

In this section we state the proofs related to the initialization in Algorithm 1, for compressive phase
retrieval. This includes the proofs of Lemmas C.1 - C.4 which complete the proof of Theorem 3.1.
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The outline of the proof is sketched out as follows. Using Lemma C.1, we can find an upper bound
on marginals Mjj for j ∈ S. Consequently,

max
j∈Sc

Mjj ≤

(
1 + 11

√
logmn

m

)
‖x∗‖22 = Θ1 (11)

with probability greater than 1− 5
m . Marginals Mjj for j ∈ S can be evaluated in two ways:

1. Assuming a bound on the minimum element of x∗: x∗2min ≡ minj∈S x
∗2
j = C

s ‖x
∗‖22. The

proof then carries forward from the work in [23], where they arrive at the lower bound on
the minimum marginal for j ∈ S, with probability greater than 1− 1

m ,

min
j∈S

Mjj ≥ ‖x∗‖22 + x∗2min =

(
1 +

C

s

)
‖x∗‖22 = Θ2,

given that m ≥ C0s
2 log(mn). This proof is similar to that mentioned in Lemma C.2.

Piecing these two together,

min
j∈S

Mjj ≥
(

1 +
C

s

)
‖x∗‖2 >

(
1 + 11

√
logmn

m

)
‖x∗‖22 ≥ max

j∈Sc
Mjj . (12)

which implies that the support picked up using the top s-marginals Mjj is the true support
with probability greater than 1− 6

m , given m ≥ C0s
2 log(mn), as long as there is a clear

separation between Θ1 and Θ2 (i.e. Θ1 < Θ2). They proceed to show that with a high
probability, ‖x0 − x∗‖2 ≤ δ0 ‖x∗‖2, using Proposition 1 of [50], completing the proof of
Theorem 3.1.

2. If there is no such assumption on the minimum entry x∗2min, we proceed with a longer proof,
as stated below using Lemmas C.2-C.4. The idea is to show that x∗ ≈ x∗

Ŝ
and subsequently

x∗
Ŝ
≈ x0, effectively implying that x0 ≈ x∗.

This idea and the partition of support sets used in the proof have been illustrated in Figures 4 and 5.

|Sc| = n− s |S| = s

low Mjj high MjjΘ2Θ1

bottom (n− s) marginals top s marginals

Figure 4: Partition of supports considered for analysis of proof approach 1: assumption on x∗min.

|Sc − S2| = n− s− s2 |S2| = s2

|S− − S1| = s− s0 − s1 |S1| = s1

|S+| = s0

low Mjj high MjjΘ

bottom (n− s) marginals top s marginals

Figure 5: Partition of supports considered for analysis of proof approach 2.
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Lemma C.1. For all j ∈ Sc, with probability greater than 1− 5
m , the corresponding marginals are

upper-bounded as:

Mjj ≤

(
1 + 11

√
logmn

m

)
‖x∗‖22 = Θ. (13)

Proof. Evaluating the marginals:

Mjj − φ2 =
1

m

m∑
i=1

y2
i

(
a2
ij − 1

)
,

where yi is independent of aij for all j ∈ Sc. Evaluating the tail bound in terms of a series of tail
bounds for independent random variables yi and aij , one can use Lemma 4.1 of [58] for the χ2

1

variables a2
ij with weights y2

i (here p ≡ n− s):

P

 m∑
i=1

y2
i

(
a2
ij − 1

)
> 2
√
t

(
m∑
i=1

y4
i

) 1
2

+ 2
(

max
i
y2
i

)
t

 ≤ exp(−t) =
1

mp
.

Further, using the Chebyshev’s inequality for y4
i :

P

[
m∑
i=1

y4
i

‖x∗‖42
> 3m+

√
96mt

]
≤ 1

t2
=

1

mp
.

Using the Gaussian tail bound for y2
i followed by union bound:

P

[
max
i

y2
i

‖x∗‖22
> t

]
≤ 2m exp

(
−t
2

)
=

2

mp2
≤ 2

mp
.

With probability at most 4
mp , for each j ∈ Sc, using a union bound on these three tail bounds,

1

m

m∑
i=1

y2
i (a2

ij − 1) > 2

√
3 +

√
96p ‖x∗‖22

√
logmp

m
+ 8 ‖x∗‖22

(logmp)
2

m

> 2

√
3 +
√

96 ‖x∗‖22

√
logmp

m
+ 8 ‖x∗‖22

(logmp)
2

m
.

Using a union bound for all j ∈ Sc (p such), with probability at least 1− 4
m ,

1

m

m∑
i=1

y2
i (a2

ij − 1) ≤ 2

√
3 +
√

96 ‖x∗‖22

√
logmp

m
+ 8 ‖x∗‖22

(logmp)
2

m
≤ 8

√
logmp

m
‖x∗‖22 .

(14)

Using Lemma F.1, for m > C, and using the fact that p ≤ n:

Mjj =
1

m

m∑
i=1

y2
i a

2
ij ≤ 8

√
logmn

m
‖x∗‖22 + φ2

Mjj ≤

(
1 + 11

√
logmn

m

)
‖x∗‖22 = Θ, (15)

which establishes the upper bound on marginals associated with the zero-locations j ∈ Sc, with
probability greater than 1− 5

m .

Lemma C.2. For j ∈ S+ ⊆ S, with probability greater than 1− 2
m , the corresponding marginals

are lower-bounded as:

Mjj ≥

(
1 + 11

√
logmn

m

)
‖x∗‖22 = Θ, (16)
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where S+ is defined as:

S+ =

{
j ∈ S | x∗2j > 15

√
logmn

m
‖x∗‖22

}
. (17)

Subsequently, we can define S− as:

S− =

{
j ∈ S | x∗2j ≤ 15

√
logmn

m
‖x∗‖22

}
, (18)

with S+ and S− forming a partition of S and the corresponding energy in the elements xj , j ∈ S− is
lower-bounded as: ∥∥∥x∗S−∥∥∥2

2
≤ 15

√
s2 logmn

m
‖x∗‖22 . (19)

Proof. Evaluating the marginals:

Mjj − φ2 =
1

m

m∑
i=1

y2
i

(
a2
ij − 1

)
. (20)

For j ∈ S, yi and aij are dependent random variables. The marginal Mjj can be evaluated through a
concentration bounds on the two terms that compose the RHS of (20): 1

m

∑m
i=1 y

2
i a

2
ij and 1

m

∑m
i=1 y

2
i .

This can be done by evaluating the expectation values:

E
[
y2
i

]
= ‖x∗‖22

E
[
y2
i a

2
ij

]
= ‖x∗‖22 + 2x∗j

2,

E
[
y4
i a

4
ij

]
= 105x∗j

4 + 90x2
j

(
‖x∗‖22 − x

∗
j

2
)

+ 9
(
‖x∗‖22 − x

∗
j

2
)2

.

Constructing variable Xi = ‖x∗‖22 + 2x∗j
2 − y2

i a
2
ij which is upper bounded, with zero mean and

bounded variance, we can use Lemma F.3 to establish a concentration bound with parameters:

Xi ≤ ‖x∗‖22 + 2x∗j
2 ≤ 3 ‖x∗‖22 ,

E [Xi] = 0,

E
[
X2
i

]
= 20x∗j

4 + 68 ‖x∗‖22 x
∗
j

2 + 8 ‖x∗‖42 ≤ 96 ‖x∗‖42 .
Using Lemma F.3, for each j ∈ S,

P

[
m∑
i=1

−Xi ≤ −t

]
= P

[
m∑
i=1

y2
i a

2
ij −m

(
‖x∗‖22 + 2x∗j

2
)
≤ −t

]

≤ exp

(
− t2

192 ‖x∗‖42m

)
≤ 1

mk
(21)

This requires t =
√

192 ‖x∗‖22
√
m logmk ≈ 13.86 ‖x∗‖22

√
m logmk ≤ 13.86 ‖x∗‖22

√
m logmn.

This establishes the bound on the first term 1
m

∑m
i=1 y

2
i a

2
ij . Similarly, we can establish a bound on the

second term 1
m

∑m
i=1 y

2
i , which requires Lemma 4.1 of [58], with probability greater than 1− 1

mk ,
for each j ∈ S:

1

m

m∑
i=1

y2
i − ‖x∗‖

2
2 ≤

(
2

√
logmk

m
+

2 logmk

m

)
‖x∗‖22 (22)

≤ 3 ‖x∗‖22

√
logmk

m
≤ 3 ‖x∗‖22

√
logmn

m
(23)

for m > C. Combining these two concentration bounds (21), (22), taking a union bound for all
j ∈ S+ and substituting in (20):

Mjj − φ2 ≥ 2x∗j
2 − 17

√
logmn

m
‖x∗‖22 , (24)
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which holds with probability at least 1− 2
m .

If the set S+, is constructed as in (17), then evaluating the bound in (24), we get:

Mjj − φ2 ≥ 2x∗j
2 − 17

√
logmn

m
‖x∗‖22

Mjj ≥

(
1 + 2x∗j

2 − 19

√
logmn

m

)
‖x∗‖22 ≥

(
1 + 11

√
logmn

m

)
‖x∗‖22 ,

holds for all elements j ∈ S+, with probability greater than 1− 2
m , yielding the bound in (16).

Lemma C.3. If Ŝ is chosen as in Algorithm 1, with probability greater than 1− 2
m ,∥∥x∗ − x∗

Ŝ

∥∥
2
≤ δ1 ‖x∗‖2 , (25)

as long as the number of measurements m follow the following bound

m ≥ Cs2 logmn. (26)

Proof. If Ŝ is chosen such that it corresponds to the top-s marginals Mjj , then it will pick up S+

corresponding to large marginals Mjj > Θ, S1 = S− ∩ Ŝ and S2 = Sc ∩ Ŝ corresponding to small
marginals Mjj < Θ (S+, S1, S2 form a partition of Ŝ and card(Ŝ) = s, refer Figure 5 for illustration
of the sets):

x∗
Ŝ

= x∗S+
+ x∗S1

+ x∗S2
. (27)

By definition xSc = 0 and therefore xS2
= 0. If we can prove that x∗ ≈ x∗

Ŝ
and x∗

Ŝ
≈ x0, then we

can claim that x0 ≈ x∗. First, we prove that
∥∥∥x∗ − x∗

Ŝ

∥∥∥
2
≤ δ1 ‖x∗‖2:

∥∥x∗ − x∗
Ŝ

∥∥2

2
=
∥∥∥x∗ − x∗S+

− x∗S1

∥∥∥2

2
≤
∥∥∥x∗ − x∗S+

∥∥∥2

2
+
∥∥x∗S1

∥∥2

2
≤
∥∥∥x∗ − x∗S+

∥∥∥2

2
+
∥∥∥x∗S−∥∥∥2

2
.

By construction, S− and S+ form a partion of S:

x∗ = x∗S− + x∗S+
,

=⇒
∥∥x∗ − x∗

Ŝ

∥∥2

2
≤ 2

∥∥∥x∗S−∥∥∥2

2
.

Using (19), we compute the bound,∥∥x∗ − x∗
Ŝ

∥∥2

2
≤ 30

√
s2 logmn

m
‖x∗‖22 ≤ δ

2
1 ‖x∗‖

2
2 .

which is the required condition (25). This requires sample complexity m to satisfy:

30

√
s2 logmn

m
≤ δ2

1 ,

=⇒ m ≥ 900

δ2
1

s2 logmn = C(δ1)s2 logmn. (28)

We have proved that x∗ ≈ x∗
Ŝ

. Now we need to prove that x∗
Ŝ
≈ x0, which we do using Lemma C.4.

Lemma C.4. With probability greater than 1− 8
m

dist
(
x0,x∗

Ŝ

)
≡ min

(∥∥x0 − x∗
Ŝ

∥∥
2
,
∥∥x0 + x∗

Ŝ

∥∥
2

)
≤ δ2 ‖x∗‖2 , (29)

as long as the number of measurements m follow the following bound

m ≥ Cs log n. (30)
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Proof. The top singular vector of E [M] is equal to true x∗:

E [M] = E

 1

m

m∑
j=1

y2
jaiai

>

 =

(
In×n + 2

x∗

‖x∗‖2
x∗>

‖x∗‖2

)
‖x∗‖22,

similarly, E [MS ] = E

[
1

m

m∑
i=1

y2
i aiSaiS

>

]
=

(
(In×n)S + 2

x∗

‖x∗‖2
x∗>

‖x∗‖2

)
‖x∗‖22 = E [M] .

We then define MŜ = 1
m

∑m
i=1 y

2
i aiŜai

>
Ŝ

and x0 is the top singular vector of MŜ .

Defining S3 ≡ (S ∪ S2) ⊂ (S ∪ Ŝ), where S2 = Ŝ ∩ Sc, then, card(S3) ≤ 2s, and,

E [MS3 ] = E

[
1

m

m∑
i=1

y2
i aiS3

ai
>
S3

]
=

(
(In×n)S3 + 2

x∗

‖x∗‖2
x∗>

‖x∗‖2

)
‖x∗‖22.

At this stage, we can invoke the proof idea from [22], as stated in Lemma F.2 from Appendix F, to
give the following bound,

‖MS3
− E [MS3

]‖2 ≤ δ ‖x
∗‖22

with probability at least 1− 1
m , as long as m ≥ Cs log n. Now we can use the fact that Ŝ ⊂ S3, so

that, ∥∥MŜ − E
[
MŜ

]∥∥
2
≤ ‖MS3 − E [MS3 ]‖2 ≤ δ ‖x

∗‖22 .

Since MŜ can be seen as a perturbation of E
[
MŜ

]
, where the top two singular values of E

[
MŜ

]
are spaced 2

∥∥∥x∗
Ŝ

∥∥∥2

2
apart, we can use the Sin-Theta theorem [59] to bound the difference between

the normalized top-singular vectors x0 of MŜ and xŜ of E
[
MŜ

]
as,

dist
(
x0,x∗

Ŝ

)
≤
δ ‖x∗‖22
2 ‖x∗‖22

=
δ

2

=⇒ min
(
‖x0 − x∗

Ŝ
‖2,
∥∥x0 + x∗

Ŝ

∥∥
2

)
≤

√√√√√2

1−

√
1− δ

4

2

 ≤ δ2
Hence, with probability greater than 1− 8

m , Lemma C.4 holds.

Combining Lemmas C.3 and C.4, we have the final result:

dist
(
x0,x∗

)
= min

(∥∥x0 − x∗
∥∥

2
,
∥∥x0 + x∗

∥∥
2

)
≤ δ0 ‖x∗‖2

as long as the number of measurements m follow the bound in (26). Hence the initial vector x0 is
upto a constant factor away from the true vector x∗. The constant δ0 ≤ δ1 + δ2 can be decreased by
increasing the number of samples (see equation (28)). This completes the proof of Theorem 3.1.

D Appendix - Block CoPRAM initialization

In this section we state the proofs related to the initialization for Block CoPRAM in Algorithm 3, for
block sparse signals.

We prove theorem 4.1 for the initialization stage of Block CoPRAM as follows.
Theorem 4.1. The initial vector x0, which is the output of Algorithm 3, is a small constant distance
δb away from the true signal x∗ ∈Ms,b, i.e.,

dist
(
x0,x∗

)
≤ δb ‖x∗‖2 ,

where 0 < δb < 1, as long as the number of (Gaussian) measurements satisfy m ≥ C s2

b logmn with
probability greater than 1− 8

m .
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Proof. Evaluating the marginals Mjbjb , for all jb ∈ Scb , from (11), with probability greater than
1− 5

m , we have:

Mjbjb ≤

(
1 + 11

√
logmn

m

)
√
b ‖x∗‖22 . (31)

Evaluating the block marginals Mjbjb , for jb ∈ Sb, we use a modification of (21), with probability

less than exp
(
− mt2

192‖x∗‖42

)
≤ 1

mn ,

1

m

m∑
i=1

−Xi ≤ −t

1

m

m∑
i=1

y2
i a

2
ij −

(
‖x∗‖22 + 2x∗2j

)
≤ −t

Rearranging the terms,∑
j∈jb

M2
jj ≤

∑
j∈jb

[(
‖x∗‖22 − t

)
+ 2x∗2j

]2
,

≤ b
(
‖x∗‖22 − t

)2

+ 4
∥∥x∗jb∥∥4

2
+ 4
√
b
∥∥x∗jb∥∥2

2

(
‖x∗‖22 − t

)
,

=⇒ Mjbjb ≤
√
b
(
‖x∗‖22 − t

)
+ 2

∥∥x∗jb∥∥2

2
.

where the final expression holds with probability less than b
mn . Here, we have used he shorthand∥∥x∗jb∥∥2

2
≡
∑
j∈jb x

∗2
j . Finally, taking a minimum over all such block marginals jb ∈ Sb, with

probability greater than 1− 1
m ,

Mjbjb ≥
√
b
(
‖x∗‖22 − t

)
+ 2

∥∥x∗jb∥∥2

2
,

≥
√
b ‖x∗‖22 +

∥∥x∗bmin

∥∥2

2
,

if
√
bt =

∥∥x∗bmin

∥∥2

2
≡ minjb∈Sb

∥∥x∗jb∥∥2

2
. Assuming that

∥∥xb∗min

∥∥2

2
= C

k ‖x
∗‖22, the following holds

min
jb∈Sb

Mjbjb ≥
(

1 +
C√
bk

)√
b ‖x∗‖22 . (32)

Equating the expression for probability,

m ≥ 192
‖x∗‖42
t2

logmn,

≥ Cbk2 logmn = C
s2

b
logmn,

which puts a bound on the block marginals for jb ∈ Sb.

Hence, as long as m ≥ C s2

b log n, there is a clear separation in the marginals, using (32) and (31),

min
jb∈Sb

Mjbjb ≥
(

1 +
C√
bk

)√
b ‖x∗‖22 ,

>

(
1 + 11

√
logmn

m

)
√
b ‖x∗‖22 ,

≥ max
jb∈Sc

b

Mjbjb ,

where C is large enough. Given that there is a clear separation in the marginals, the block support Ŝb
as picked up as in Algorithm 3, is exactly the true block support Sb.
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It is then straightforward to show that the top singular vector of the truncated covariance matrix MŜb

is actually close to the true block sparse vector x∗, which holds with probability greater than 1− 1
m .

Thus far, the proof requires an assumption on
∥∥x∗bmin

∥∥
2
. We do away with this assumption as follows:

For evaluating block marginals Mjbjb for jb ∈ Scb , we can use the result of Lemma C.1, to obtain the
same bound as in (31), with probability greater than 1− 5

m ,

Mjbjb ≤

(
1 + 11

√
logmn

m

)
√
b ‖x∗‖22 .

For evaluating block marginals Mjbjb for jb ∈ Sb we can use equations (17) and (18), and extend
this model of signal supports to block supports defined as:

Sb− =

jb ∈ Sb | ∥∥x∗jb∥∥2

2
≡
∑
j∈jb

x∗2j ≤ 15

√
b logmn

m
‖x∗‖22

 ,

Sb+ =

jb ∈ Sb | ∥∥x∗jb∥∥2

2
≡
∑
j∈jb

x∗2j > 15

√
b logmn

m
‖x∗‖22

 .

Using equation (24), and LHS of (38),

Mjj ≥ 2x∗j
2 − 17

√
logmn

m
‖x∗‖22 + φ2,

≥ 2x∗j
2 +

(
1− 19

√
logmn

m

)
‖x∗‖22 .

Constructing block marginals as Mjbjb ≡
√∑

j∈jb M
2
jj ,

Mjbjb ≥
√
b

(
1− 19

√
logmn

m

)
‖x∗‖22 + 2

∥∥x∗jb∥∥2

2
,

=⇒ Mjbjb ≥

(
1 + 11

√
b logmn

m

)
‖x∗‖22 .

We can then extend the proof of Lemma C.3 to give the partitions,

x∗
Ŝb

= x∗Sb+
+ x∗S1

+ x∗S2
,

x∗ = x∗Sb−
+ x∗Sb+

.

and the inequalities: ∥∥∥x∗ − x∗
Ŝb

∥∥∥2

2
≤ 2

∥∥∥x∗Sb−

∥∥∥2

2
,

= 2
∑

jb∈Sb−

∥∥x∗jb∥∥2

2
,

≤ 15k

√
b logmn

m
‖x∗‖22 ≤ δ ‖x

∗‖22 .

This inequality gives us a bound on the number of measurements m, similar to (28),

m ≥ 152

δ2
k2b logmn = C(δ)

s2

b
logmn,

with probability greater than 1 − 7
m . This gives us the evaluation of block-marginals for jb ∈ Sb

and Scb , respectively. It is then straightforward to show that the top singular vector of the truncated
covariance matrix MŜb

, given Ŝb is actually close to the true block sparse vector x∗ with probability
greater than 1− 1

m .
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E Appendix - CoPRAM and Block CoPRAM descent

In this section we state the proofs related to the descent to optimal solution in Algorithm 2 (CoPRAM),
for sparse signals and Algorithm 4 (Block CoPRAM), for block sparse signals. This includes the
proof of Theorem 3.2 and Theorem 4.2. We prove theorem 3.2 to show descent of the CoPRAM
algorithm, as follows.

Note: For evaluation of the distance measure dist (·, ·), we only consider dist (xt,x∗) = ‖xt−x∗‖2,
assuming that dist

(
x0,x∗

)
= ‖x0 − x∗‖2 at the end of initialization stage. We claim that wlog, the

same results would hold, if dist
(
x0,x∗

)
=
∥∥x0 + x∗

∥∥
2
.

Theorem 3.2. Given an initialization x0 satisfying Algorithm 1, if we have number of (Gaussian)
measurements m ≥ Cs log n

s , then the iterates of Algorithm 2 satisfy:

dist
(
xt+1,x∗

)
≤ ρ0dist

(
xt,x∗

)
. (7)

where 0 < ρ0 < 1 is a constant, with probability greater than 1− e−γm, for positive constant γ.

Algorithm 5 CoSaMP

input Φ = A√
m
,u = Pty√

m
, s,xt.

1: Initialize

xt+1,0 ← xt initialize to best possible estimate
r← u residue
l← 0 CoSaMP internal counter

2: while halting condition not true, do
3:

l← l + 1

v← Φ>r signal proxy
Ω← supp(v2s)

Γ← Ω ∪ supp(xt+1,l−1)

w← Φ†Γu corresponding to Γ, 0 elsewhere

xt+1,l ← Truncate to top s values of w, call this support Γs

r← u− Φxt+1,l

4: end while
5: xt+1,L ← Φ†Γs

u.
output xt+1 ← xt+1,L

To show the descent of our alternating minimization algorithm using CoSaMP, we need to analyze
the reduction in error, per step of CoSaMP, (refer Algorithm 5) first:∥∥xt+1,l+1 − x∗

∥∥
2

=
∥∥xt+1,l+1 −w + w − x∗

∥∥
2
,

≤ 2 ‖x∗ −w‖2 (33)

where w corresponds to the `’th run of CoSaMP for the (t+1)th update of x. Using RIP of Φ = A√
m

,

∥∥xt+1,l+1 − x∗
∥∥

2
≤ 2√

1− δs
‖Φx∗ − Φw‖2 , (34)
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with high probability, where δs is the RIP constant. Now, analyzing the inputs to CoSaMP, in the
x-update step of Algorithm 2,

u =
Pty√
m
,

= sign
(
Axt

)
◦ |Ax∗|√

m
,

= sign
(
Φxt

)
◦ {(Φx∗) ◦ sign (Φx∗)} ,

= Φx∗ +
(
sign

(
Φxt

)
sign (Φx∗)− 1

)
◦ Φx∗,

=⇒ u− Φx∗ =
(
sign

(
Φxt

)
sign (Φx∗)− 1

)
◦ Φx∗, (35)

= Eph,

where Eph ≡ (sign (Φxt) sign (Φx∗)− 1) ◦ Φx∗, is error due to failure in estimating the correct
phase.

Using equation (35) and substituting into equation (34), the per-step reduction in error for each run
of CoSaMP is:∥∥xt+1,l+1 − x∗

∥∥
2
≤ 2√

1− δs
‖u− Eph − Φw‖2

≤ 2√
1− δs

‖u− Φw‖2 +
2√

1− δs
‖Eph‖2

≤ 2√
1− δs

‖u− ΦΓwΓ‖2 +
2√

1− δs
‖Eph‖2

≤ 2√
1− δs

‖u− ΦΓx
∗
Γ‖2 +

2√
1− δs

‖Eph‖2

≤ 2√
1− δs

‖Φx∗ + Eph − ΦΓx
∗
Γ‖2 +

2√
1− δs

‖Eph‖2

≤ 2√
1− δs

‖Φx∗ − ΦΓx
∗
Γ‖2 +

4√
1− δs

‖Eph‖2

≤ 2√
1− δs

‖ΦΓcx∗Γc‖2 +
4√

1− δs
‖Eph‖2

≤ 2

√
1 + δs
1− δs

∥∥(x∗ − xt+1,l
)

Γc

∥∥
2

+
4√

1− δs
‖Eph‖2

= ρ1

∥∥(x∗ − xt+1,l
)

Γc

∥∥
2

+ ρ2 ‖Eph‖2 ,

where the first step is from using triangle inequality, the second step is from using the fact that w is
exactly 3s-sparse with support Γ. The third step is using the fact that truncation of w in Γ,∈ R3s ,
is the minimizer of the LS problem argminx∈R3s ‖ΦΓx− u‖2, the fourth step uses (35) again, the
final step uses RIP again (which holds with probability greater than 1 − e−γ1m, with γ1 being a
positive constant).

Finally, the first term in the previous inequality can be bounded using (Lemma 4.2 of CoSaMP [41],
refer Lemma F.4), to yeild,∥∥xt+1,l+1 − x∗

∥∥
2
≤ ρ1ρ3

∥∥x∗ − xt+1,l
∥∥

2
+ (ρ1ρ4 + ρ2) ‖Eph‖2 ,

where ρ3, ρ4 are as stated in Lemma F.4. Assuming that CoSaMP is let to run a maximum of L
iterations,∥∥xt+1 − x∗

∥∥
2
≤ (ρ1ρ3)L

∥∥x∗ − xt
∥∥

2
+ (ρ1ρ4 + ρ2)

(
1 + ρ1ρ3 + (ρ1ρ3)2 . . . (ρ1ρ3)L−1

)
‖Eph‖2 ,

≤ (ρ1ρ3)L
∥∥x∗ − xt

∥∥
2

+
(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
‖Eph‖2 . (36)
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The second part of this proof requires a bound on the phase error term ‖Eph‖2:

Eph = ±
(
sign

(
Φxt

)
− sign (Φx∗)

)
◦ Φx∗.

We proceed to finish this proof by invoking Lemma E.1.
Lemma E.1. As long as the initial estimate is a small distance away from the true signal x∗,

dist
(
x0,x∗

)
≤ δ0 ‖x∗‖2 ,

and subsequently,

dist
(
xt,x∗

)
≤ δ0 ‖x∗‖2 ,

then the following bound holds,

2

m

m∑
i=1

∣∣ai>x∗∣∣2 1{(ai
>xt)(ai

>x∗)≤0} ≤
2

(1− δ0)2

(
δ +

√
21

20
δ0

)∥∥xt − x∗
∥∥2

2
.

with probability greater than 1− e−γ2m, where γ2 is a positive constant, as long as m > Cs log n
s .

We can use this to bound the phase error as,

‖Eph‖2 ≤ ρ5

∥∥xt − x∗
∥∥

2
,

where ρ5 =
√

2
(1−δ0)

√
δ +

√
21
20δ0, δ ≈ 0.001.

This proof has been adapted from Lemma 7.19 of [42] and uses the generic chaining techniques
of [43, 44]. Using this in addition to equation (36), we have our final per-step error reduction for a
single run of CoPRAM (Algorithm 2), as:∥∥xt+1 − x∗

∥∥
2
≤
(

(ρ1ρ3)L + ρ5
(ρ1ρ4 + ρ2)

(1− ρ1ρ3)

)∥∥xt − x∗
∥∥

2
,

≤ ρ0

∥∥xt − x∗
∥∥

2
, (37)

where ρ0 < 1.

Evaluating convergence parameter ρ0:. To obtain per-step reduction in error, we require ρ0 < 1.
For sake of numerical analysis, δs, δ2s, δ4s ≤ 0.0001, then ρ1 ≈ 1, ρ3 ≈ 0.0002. Let δ0 = 0.012,
then ρ5 ≈ 0.16. Similarly, ρ2 ≈ 4 and ρ4 ≈ 2. Suppose CoSaMP is allowed to run for L = 5
iterations then, ρ0 ≈ 0.96 < 1.

The inequalities used for CoSaMP, particularly (33) can be made tighter, which would give less tight
restrictions on the factor δ0, that controls how close the intial estimate is to the true signal x∗.

We now restate theorem 4.2 for Block CoPRAM as follows.
Theorem 4.2. Given an initialization x0 satisfying Algorithm 3, if we have number of (Gaussian)
measurements m ≥ C

(
s+ s

b log n
s

)
, then the iterates of Algorithm 4 satisfy:

dist
(
xt+1,x∗

)
≤ ρbdist

(
xt,x∗

)
. (10)

where 0 < ρb < 1 is a constant, with probability greater than 1− e−γm, for positive constant γ.

The proof for this is a natural extention to the one we have proved in Theorem 3.2, and would use
the results from the paper on model-based compressive sensing [30], wherever Block CoSaMP is
invoked.
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F Supplementary appendix

In this section we state some of the lemmas with or without proofs, used in Appendices C and E.

Lemma F.1. With probability of at least 1− 1
m ,(

1− 2

√
logm

m

)
‖x∗‖22 ≤ φ

2 ≤

(
1 + 3

√
logm

m

)
‖x∗‖22. (38)

Proof. Rotational invariance property of Gaussian distributions imply that y2
i ≡ (

∑n
j=1 aijx

∗
j )

2 has
the same distrubution as a2

ij ‖x∗‖
2
2. Using Lemma 4.1 of [58] on a2

ij , we can obtain the upper bound,

P

[
1

m

m∑
i=1

a2
ij − 1 ≥ 2

√
m logm

m
+ 2

logm

m

]
≤ exp (− logm) =

1

m
.

Similarly, we can obtain the lower bound,

P

[
1

m

m∑
i=1

a2
ij − 1 ≤ −2

√
m logm

m

]
≤ exp (− logm) =

1

m
.

The signal power φ2 is then bounded as(
1− 2

√
logm

m

)
‖x∗‖22 ≤ φ

2

≤

(
1 + 2

√
logm

m
+ 2

logm

m

)
‖x∗‖22

<

(
1 + 3

√
logm

m

)
‖x∗‖22 ,

with probability at least 1− 1
m , for m > C, large enough. If m ≈ 1000, then the bounds are,

(1− δ) ‖x∗‖22 ≤ φ
2 ≤ (1 + δ) ‖x∗‖22 ,

where δ = 0.0207.

Lemma F.2. With probability at least 1− 1
m , the following holds,∥∥∥∥∥ 1

m

m∑
i=1

∣∣ai>S3
x∗
∣∣2 aiS3

ai
>
S3
−
(
‖x∗‖22 (In×n)S3 + 2x∗x∗>

)∥∥∥∥∥
2

≤ δ ‖x∗‖22

where card(S3) ≤ 2s, provided m > C(δ)(2s) log(2s).

This proof has been adapted from Lemma A.6 of [22].
Lemma F.3. Suppose X1 . . . Xm are i.i.d. centered, bounded real-valued random variables obeying

Xi ≤ b,
E [Xi] = 0,

E
[
X2
i

]
= v2,

σ2 = max
{
b2, v2

}
,

with cumulative distribution function of the standard normal distribution being denoted as

Φ(x) =

∫ x

−∞
φ(t)dt,

φ(t) =
1√
2π

exp

(
− t

2

2

)
,
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then

P

[
m∑
i=1

Xi ≥ t

]
≤ min

{
exp

(
− t2

2σ2

)
, 25

(
1− Φ

(
t

σ

))}
.

This establishes the tail probability of martingale with differences bounded from one side [60].

Lemma F.4. The 2s-sparse residual error
∥∥(x∗ − xt+1,l)Γc

∥∥
2

can be upper bounded as,∥∥(x∗ − xt+1,l)Γc

∥∥
2
≤
∥∥(x∗ − xt+1,l)Ωc

∥∥
2
≤ ρ3

∥∥(x∗ − xt+1,l)
∥∥

2
+ ρ4 ‖Eph‖2

where ρ3 = δ2s+δ4s
1−δ2s and ρ4 = 2

√
1+δ2s

1−δ2s .

This lemma has been adapted from Lemmas 4.2 and 4.3 of [41].
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