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Abstract

This article considers algorithmic and statistical aspects of linear regression when
the correspondence between the covariates and the responses is unknown. First, a
fully polynomial-time approximation scheme is given for the natural least squares
optimization problem in any constant dimension. Next, in an average-case and
noise-free setting where the responses exactly correspond to a linear function of
i.i.d. draws from a standard multivariate normal distribution, an efficient algorithm
based on lattice basis reduction is shown to exactly recover the unknown linear
function in arbitrary dimension. Finally, lower bounds on the signal-to-noise ratio
are established for approximate recovery of the unknown linear function by any
estimator.

1 Introduction

Consider the problem of recovering an unknown vector ¯

w 2 Rd from noisy linear measurements
when the correspondence between the measurement vectors and the measurements themselves is
unknown. The measurement vectors (i.e., covariates) from Rd are denoted by x

1

,x
2

, . . . ,xn; for
each i 2 [n] := {1, 2, . . . , n}, the i-th measurement (i.e., response) yi is obtained using x⇡̄(i):

yi =

¯

w

>
x⇡̄(i) + "i , i 2 [n] . (1)

Above, ⇡̄ is an unknown permutation on [n], and the "
1

, "
2

, . . . , "n are unknown measurement errors.

This problem, which has been called unlabeled sensing [22], linear regression with an unknown
permutation [18], and linear regression with shuffled labels [1], arises in many settings; see the
aforementioned references for more details. In short, sensing limitations may create ambiguity in
or even completely lose the ordering of measurements. The problem is also interesting because the
missing correspondence makes an otherwise well-understood problem into one with very different
computational and statistical properties.

Prior works. Unnikrishnan et al. [22] study conditions on the measurement vectors that permit
recovery of any target vector ¯

w under noiseless measurements. They show that when the entries of
the xi are drawn i.i.d. from a continuous distribution, and n � 2d, then almost surely, every vector
¯

w 2 Rd is uniquely determined by noiseless correspondence-free measurements as in (1). (Under
noisy measurements, it is shown that ¯

w can be recovered when an appropriate signal-to-noise ratio
tends to infinity.) It is also shown that n � 2d is necessary for such a guarantee that holds for all
vectors ¯

w 2 Rd.

Pananjady et al. [18] study statistical and computational limits on recovering the unknown permutation
⇡̄. On the statistical front, they consider necessary and sufficient conditions on the signal-to-noise ratio
SNR :

=k ¯wk2
2

/�2 when the measurement errors ("i)ni=1

are i.i.d. draws from the normal distribution
N(0,�2

) and the measurement vectors (xi)
n
i=1

are i.i.d. draws from the standard multivariate normal
distribution N(0, Id). Roughly speaking, exact recovery of ⇡̄ is possible via maximum likelihood
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when SNR � nc for some absolute constant c > 0, and approximate recovery is impossible for any
method when SNR  nc0 for some other absolute constant c0 > 0. On the computational front, they
show that the least squares problem (which is equivalent to maximum likelihood problem)

min

w,⇡

n
X

i=1

⇣

w

>
x⇡(i) � yi

⌘

2

(2)

given arbitrary x

1

,x
2

, . . . ,xn 2 Rd and y
1

, y
2

, . . . , yn 2 R is NP-hard when d = ⌦(n)1, but admits
a polynomial-time algorithm (in fact, an O(n log n)-time algorithm based on sorting) when d = 1.

Abid et al. [1] observe that the maximum likelihood estimator can be inconsistent for estimating ¯

w in
certain settings (including the normal setting of Pananjady et al. [18], with SNR fixed but n ! 1).
One of the alternative estimators they suggest is consistent under additional assumptions in dimension
d = 1. Elhami et al. [8] give a O(dnd+1

)-time algorithm that, in dimension d = 2, is guaranteed to
approximately recover ¯

w when the measurement vectors are chosen in a very particular way from the
unit circle and the measurement errors are uniformly bounded.

Contributions. We make progress on both computational and statistical aspects of the problem.

1. We give an approximation algorithm for the least squares problem from (2) that, any given
(xi)

n
i=1

, (yi)ni=1

, and ✏ 2 (0, 1), returns a solution with objective value at most 1 + ✏ times that
of the minimum in time (n/✏)O(d). This a fully polynomial-time approximation scheme for any
constant dimension.

2. We give an algorithm that exactly recovers ¯

w in the measurement model from (1), under the
assumption that there are no measurement errors and the covariates (xi)

n
i=1

are i.i.d. draws
from N(0, Id). The algorithm, which is based on a reduction to a lattice problem and employs
the lattice basis reduction algorithm of Lenstra et al. [16], runs in poly(n, d) time when the
covariate vectors (xi)

n
i=1

and target vector ¯

w are appropriately quantized. This result may
also be regarded as for each-type guarantee for exactly recovering a fixed vector ¯

w, which
complements the for all-type results of Unnikrishnan et al. [22] concerning the number of
measurement vectors needed for recovering all possible vectors.

3. We show that in the measurement model from (1) where the measurement errors are i.i.d. draws
from N(0,�2

) and the covariate vectors are i.i.d. draws from N(0, Id), then no algorithm can
approximately recover ¯

w unless SNR � Cmin {1, d/ log log(n)} for some absolute constant
C > 0. We also show that when the covariate vectors are i.i.d. draws from the uniform
distribution on [�1/2, 1/2]d, then approximate recovery is impossible unless SNR � C 0 for
some other absolute constant C 0 > 0.

Our algorithms are not meant for practical deployment, but instead are intended to shed light on the
computational difficulty of the least squares problem and the average-case recovery problem. Indeed,
note that a naïve brute-force search over permutations requires time ⌦(n!) = n⌦(n), and the only
other previous algorithms (already discussed above) were restricted to d = 1 [18] or only had some
form of approximation guarantee when d = 2 [8]. We are not aware of previous algorithms for the
average-case problem in general dimension d.2

Our lower bounds on SNR stand in contrast to what is achievable in the classical linear regression
model (where the covariate/response correspondence is known): in that model, the SNR requirement
for approximately recovering ¯

w scales as d/n, and hence the problem becomes easier with n. The
lack of correspondence thus drastically changes the difficulty of the problem.

2 Approximation algorithm for the least squares problem

In this section, we consider the least squares problem from Equation (2). The inputs are an arbitrary
matrix X = [x

1

|x
2

| · · · |xn]
> 2 Rn⇥d and an arbitrary vector y = (y

1

, y
2

, . . . , yn)
> 2 Rn, and the

1Pananjady et al. [18] prove that PARTITION reduces to the problem of deciding if the optimal value of (2) is
zero or non-zero. Note that PARTITION is weakly, but not strongly, NP-hard: it admits a pseudo-polynomial-time
algorithm [10, Section 4.2]. In Appendix A, we prove that the least squares problem is strongly NP-hard by
reduction from 3-PARTITION (which is strongly NP-complete [10, Section 4.2.2]).

2A recent algorithm of Pananjady et al. [19] exploits a similar average-case setting but only for a somewhat
easier variant of the problem where more information about the unknown correspondence is provided.
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Algorithm 1 Approximation algorithm for least squares problem
input Covariate matrix X = [x

1

|x
2

| · · · |xn]
> 2 Rn⇥k; response vector y = (y

1

, y
2

, . . . , yn)
> 2

Rn; approximation parameter ✏ 2 (0, 1).
assume X

>
X = Ik.

output Weight vector ˆ

w 2 Rk and permutation matrix ˆ⇧ 2 Pn.
1: Run “Row Sampling” algorithm with input matrix X to obtain a matrix S 2 Rr⇥n with r = 4k.
2: Let B be the set of vectors b = (b

1

, b
2

, . . . , bn)
> 2 Rn satisfying the following: for each i 2 [n],

• if the i-th column of S is all zeros, then bi = 0;
• otherwise, bi 2 {y

1

, y
2

, . . . , yn}.
3: Let c := 1 + 4(1 +

p

n/(4k))2.
4: for each b 2 B do
5: Compute ˜

wb 2 argminw2Rk kS(Xw � b)k2
2

, and let rb :

= min⇧2Pn kX ˜

wb �⇧>
yk2

2

.
6: Construct a

p

✏rb/c-net Nb for the Euclidean ball of radius
p
crb around ˜

wb, so that for each
v 2 Rk with kv � ˜

wbk
2

 p
crb, there exists v0 2 Nb such that kv � v

0k
2


p

✏rb/c.
7: end for
8: return ˆ

w 2 argmin

w2
S

b2B Nb

min

⇧2Pn

kXw �⇧>
yk2

2

and ˆ⇧ 2 argmin

⇧2Pn

kX ˆ

w �⇧>
yk2

2

.

goal is to find a vector w 2 Rd and permutation matrix ⇧ 2 Pn (where Pn denotes the space of n⇥n

permutation matrices3) to minimize kXw �⇧>
yk2

2

. This problem is NP-hard in the case where
d = ⌦(n) [18] (see also Appendix A). We give an approximation scheme that, for any ✏ 2 (0, 1),
returns a (1+ ✏)-approximation in time (n/✏)O(k)

+poly(n, d), where k :

= rank(X)  min{n, d}.

We assume without loss of generality that X 2 Rn⇥k and X

>
X = Ik. This is because we can

always replace X with its matrix of left singular vectors U 2 Rn⇥k, obtained via singular value
decomposition X = U⌃V

>, where U

>
U = V

>
V = Ik and ⌃ � 0 is diagonal. A solution

(w,⇧) for (U ,y) has the same cost as the solution (V ⌃

�1

w,⇧) for (X,y), and a solution (w,⇧)

for (X,y) has the same cost as the solution (⌃V

>
w,⇧) for (U ,y).

2.1 Algorithm

Our approximation algorithm, shown as Algorithm 1, uses a careful enumeration to beat the naïve
brute-force running time of ⌦(|Pn|) = ⌦(n!). It uses as a subroutine a “Row Sampling” algorithm
of Boutsidis et al. [5] (described in Appendix B), which has the following property.
Theorem 1 (Specialization of Theorem 12 in [5]). There is an algorithm (“Row Sampling”) that,
given any matrix A 2 Rn⇥k with n � k, returns in poly(n, k) time a matrix S 2 Rr⇥n with r = 4k
such that the following hold.

1. Every row of S has at most one non-zero entry.

2. For every b 2 Rn, every w

0 2 argminw2Rk kS(Aw � b)k2
2

satisfies kAw

0 � bk2
2

 c ·
minw2Rk kAw � bk2

2

for c = 1 + 4(1 +

p

n/(4k))2 = O(n/k).

The matrix S returned by Row Sampling determines a (weighted) subset of O(k) rows of A such
that solving a (ordinary) least squares problem (with any right-hand side b) on this subset of rows and
corresponding right-hand side entries yields a O(n/k)-approximation to the least squares problem
over all rows and right-hand side entries. Row Sampling does not directly apply to our problem
because (1) it does not minimize over permutations of the right-hand side, and (2) the approximation
factor is too large. However, we are able to use it to narrow the search space in our problem.

An alternative to Row Sampling is to simply enumerate all subsets of k rows of X . This is justified
by a recent result of Dereziński and Warmuth [7], which shows that for any right-hand side b 2 Rn,
using “volume sampling” [3] to choose a matrix S 2 {0, 1}k⇥k (where each row has one non-zero
entry) gives a similar guarantee as that of Row Sampling, except with the O(n/k) factor replaced by
k + 1 in expectation.

3Each permutation matrix ⇧ 2 Pn corresponds to a permutation ⇡ on [n]; the (i, j)-th entry of ⇧ is one if
⇡(i) = j and is zero otherwise.
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2.2 Analysis

The approximation guarantee of Algorithm 1 is given in the following theorem.

Theorem 2. Algorithm 1 returns ˆ

w 2 Rk and ˆ⇧ 2 Pn satisfying
�

�

�

X

ˆ

w � ˆ⇧
>
y

�

�

�

2

2

 (1 + ✏) min

w2Rk,⇧2Pn

�

�

Xw �⇧>
y

�

�

2

2

.

Proof. Let opt := minw,⇧ kXw �⇧>
yk2

2

be the optimal cost, and let (w?,⇧?) denote a solution
achieving this cost. The optimality implies that w? satisfies the normal equations X

>
Xw? =

X

>⇧>
? y. Observe that there exists a vector b? 2 B satisfying Sb? = S⇧>

? y. By Theorem 1 and
the normal equations, the vector ˜

wb? and cost value rb? satisfy

opt  rb? 
�

�

X

˜

wb? �⇧>
? y
�

�

2

2

=

�

�

X(

˜

wb? �w?)
�

�

2

2

+ opt  c · opt .

Moreover, since X

>
X = Ik, we have that k ˜wb? �w?k

2


p

(c� 1) opt  p
crb? . By construc-

tion of Nb? , there exists w 2 Nb? satisfying kw �w?k2
2

= kX(w �w?)k2
2

 ✏rb?/c  ✏ opt. For
this w, the normal equations imply

min

⇧2Pn

kXw �⇧>
yk2

2

 kXw �⇧>
? yk

2

2

= kX(w �w?)k2
2

+ opt  (1 + ✏) opt .

Therefore, the solution returned by Algorithm 1 has cost no more than (1 + ✏) opt.

By the results of Pananjady et al. [18] for maximum likelihood estimation, our algorithm enjoys recov-
ery guarantees for ¯

w and ⇡̄ when the data come from the Gaussian measurement model (1). However,
the approximation guarantee also holds for worst-case inputs without generative assumptions.

Running time. We now consider the running time of Algorithm 1. There is the initial cost for
singular value decomposition (as discussed at the beginning of the section), and also for “Row
Sampling”; both of these take poly(n, d) time. For the rest of the algorithm, we need to consider the
size of B and the size of the net Nb for each b 2 B. First, we have |B|  nr

= nO(k), since S has
only 4k rows and each row has at most a single non-zero entry. Next, for each b 2 B, we construct the
�-net Nb (for � :

=

p

✏rb/c) by constructing a �/
p
k-net for the `1-ball of radius

p
crb centered at

˜

wb (using an appropriate axis-aligned grid). This has size |Nb|  (4c2k/✏)k/2 = (n/✏)O(k). Finally,
each argminw2Rk computation takes O(nk2) time, and each (arg)min⇧2Pn takes O(nk+n log n)

time [18] (also see Appendix B). So, the overall running time is (n/✏)O(k)
+ poly(n, d).

3 Exact recovery algorithm in noiseless Gaussian setting

To counter the intractability of the least squares problem in (2) confronted in Section 2, it is natural
to explore distributional assumptions that may lead to faster algorithms. In this section, we consider
the noiseless measurement model where the (xi)

n
i=1

are i.i.d. draws from N(0, Id) (as in [18]). We
give an algorithm that exactly recovers ¯

w with high probability when n � d+ 1. The algorithm runs
in poly(n, d)-time when (xi)

n
i=1

and ¯

w are appropriately quantized.

It will be notationally simpler to consider n+ 1 covariate vectors and responses

yi =

¯

w

>
x⇡̄(i) , i = 0, 1, . . . , n . (3)

Here, (xi)
n
i=0

are n+1 i.i.d. draws from N(0, Id), the unknown permutation ⇡̄ is over {0, 1, . . . , n},
and the requirement of at least d+ 1 measurements is expressed as n � d.

In fact, we shall consider a variant of the problem in which we are given one of the values of the
unknown permutation ⇡̄. Without loss of generality, assume we are given that ⇡̄(0) = 0. Solving this
variant of the problem suffices because there are only n+ 1 possible values of ⇡̄(0): we can try them
all, incurring just a factor n + 1 in the computation time. So henceforth, we just consider ⇡̄ as an
unknown permutation on [n].
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Algorithm 2 Find permutation
input Covariate vectors x

0

,x
1

,x
2

, . . . ,xn in Rd; response values y
0

, y
1

, y
2

, . . . , yn in R; confi-
dence parameter � 2 (0, 1); lattice parameter � > 0.

assume there exists ¯

w 2 Rd and permutation ⇡̄ on [n] such that yi = ¯

w

>
x⇡̄(i) for each i 2 [n], and

that y
0

=

¯

w

>
x

0

.
output Permutation ⇡̂ on [n] or failure.

1: Let X = [x

1

|x
2

| · · · |xn]
> 2 Rn⇥d, and its pseudoinverse be X

†
= [

˜

x

1

|˜x
2

| · · · |˜xn].
2: Create Subset Sum instance with n2 source numbers ci,j := yi˜x

>
j x0

for (i, j) 2 [n]⇥ [n] and
target sum y

0

.
3: Run Algorithm 3 with Subset Sum instance and lattice parameter �.
4: if Algorithm 3 returns a solution S ✓ [n]⇥ [n] then
5: return any permutation ⇡̂ on [n] such that ⇡̂(i) = j implies (i, j) 2 S .
6: else
7: return failure.
8: end if

Algorithm 3 Lagarias and Odlyzko [12] subset sum algorithm
input Source numbers {ci}i2I ⇢ R; target sum t 2 R; lattice parameter � > 0.
output Subset ˆS ✓ I or failure.

1: Construct lattice basis B 2 R(|I|+2)⇥(|I|+1) where

B

:

=

"

I|I|+1

�t ��ci : i 2 I

#

2 R(|I|+2)⇥(|I|+1) .

2: Run basis reduction [e.g., 16] to find non-zero lattice vector v of length at most 2|I|/2 · �
1

(B).
3: if v = z(1,�>

ˆS , 0)
>, with z 2 Z and �

ˆS 2 {0, 1}I is characteristic vector for some ˆS ✓ I then
4: return ˆS .
5: else
6: return failure.
7: end if

3.1 Algorithm

Our algorithm, shown as Algorithm 2, is based on a reduction to the Subset Sum problem. An
instance of Subset Sum is specified by an unordered collection of source numbers {ci}i2I ⇢ R, and
a target sum t 2 R. The goal is to find a subset S ✓ I such that

P

i2S ci = t. Although Subset Sum
is NP-hard in the worst case, it is tractable for certain structured instances [12, 9]. We prove that
Algorithm 2 constructs such an instance with high probability. A similar algorithm based on such a
reduction was recently used by Andoni et al. [2] for a different but related problem.

Algorithm 2 proceeds by (i) solving a Subset Sum instance based on the covariate vectors and
response values (using Algorithm 3), and (ii) constructing a permutation ⇡̂ on [n] based on the
solution to the Subset Sum instance. With the permutation ⇡̂ in hand, we (try to) find a solution
w 2 Rd to the system of linear equations yi = w

>
x⇡̂(i) for i 2 [n]. If ⇡̂ = ⇡̄, then there is a unique

such solution almost surely.

3.2 Analysis

The following theorem is the main recovery guarantee for Algorithm 2.
Theorem 3. Pick any � 2 (0, 1). Suppose (xi)

n
i=0

are i.i.d. draws from N(0, Id), and (y
0

)

n
i=1

follow the noiseless measurement model from (3) for some ¯

w 2 Rd and permutation ⇡̄ on [n] (and
⇡̄(0) = 0), and that n � d. Furthermore, suppose Algorithm 2 is run with inputs (xi)

n
i=0

, (yi)ni=0

, �,
and �, and also that � � 2

n2

/" where " is defined in Equation (8). With probability at least 1� �,
Algorithm 2 returns ⇡̂ = ⇡̄.
Remark 1. The value of " from Equation (8) is directly proportional tok ¯wk

2

, and Algorithm 2
requires a lower bound on " (in the setting of the lattice parameter �). Hence, it suffices to determine
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a lower bound onk ¯wk
2

. Such a bound can be obtained from the measurement values: a standard
tail bound (Lemma 6 in Appendix C) shows that with high probability,

p

Pn
i=1

y2i /(2n) is a lower
bound on k ¯wk

2

, and is within a constant factor of it as well.
Remark 2. Algorithm 2 strongly exploits the assumption of noiseless measurements, which is
expected given the SNR lower bounds of Pananjady et al. [18] for recovering ⇡̄. The algorithm,
however, is also very brittle and very likely fails in the presence of noise.
Remark 3. The recovery result does not contradict the results of Unnikrishnan et al. [22], which
show that a collection of 2d measurement vectors are necessary for recovering all ¯

w, even in the
noiseless measurement model of (3). Indeed, our result shows that for a fixed ¯

w 2 Rd, with high
probability d+ 1 measurements in the model of (3) suffice to permit exactly recovery of ¯

w, but this
same set of measurement vectors (when d+ 1 < 2d) will fail for some other ¯

w

0.

The proof of Theorem 3 is based on the following theorem—essentially due to Lagarias and Odlyzko
[12] and Frieze [9]—concerning certain structured instances of Subset Sum that can be solved using
the lattice basis reduction algorithm of Lenstra et al. [16]. Given a basis B = [b

1

|b
2

| · · · |bk] 2 Rm⇥k

for a lattice

L(B)

:

=

8

<

:

k
X

i=1

zibi : z1, z2, . . . , zk 2 Z

9

=

;

⇢ Rm ,

this algorithm can be used to find a non-zero vector v 2 L(B)\{0} whose length is at most 2(k�1)/2

times that of the shortest non-zero vector in the lattice
�
1

(B)

:

= min

v2L(B)\{0}
kvk

2

.

Theorem 4 ([12, 9]). Suppose the Subset Sum instance specified by source numbers {ci}i2I ⇢ R
and target sum t 2 R satisfy the following properties.

1. There is a subset S? ✓ I such that
P

i2S? ci = t.

2. Define R :

= 2

|I|/2
p

|S?|+ 1 and ZR :

= {(z
0

, z) 2 Z⇥ ZI
:

0 < z2
0

+

P

i2I z2i  R2}.
There exists " > 0 such that |z

0

· t�
P

i2I zi · ci| � " for each (z
0

, z) 2 ZR that is not
an integer multiple of (1,�?

), where �

? 2 {0, 1}I is the characteristic vector for S?.

Let B be the lattice basis B constructed by Algorithm 3, and assume � � 2

|I|/2/". Then every
non-zero vector in the lattice ⇤(B) with length at most 2|I|/2 times the length of the shortest non-zero
vector in ⇤(B) is an integer multiple of the vector (1,�S? , 0), and the basis reduction algorithm
of Lenstra et al. [16] returns such a non-zero vector.

The Subset Sum instance constructed in Algorithm 2 has n2 source numbers {ci,j : (i, j) 2 [n]⇥ [n]}
and target sum y

0

. We need to show that it satisfies the two conditions of Theorem 4.

Let S⇡̄ :

= {(i, j) : ⇡̄(i) = j} ⇢ [n]⇥ [n], and let ¯⇧ = (

¯

⇧i,j)
(i,j)2[n]⇥[n] 2 Pn be the permutation

matrix with ¯

⇧i,j := 1{⇡̄(i) = j} for all (i, j) 2 [n]⇥ [n]. Note that ¯⇧ is the “characteristic vector”
for S⇡̄ . Define R :

= 2

n2/2
p
n+ 1 and

ZR :

=

(

(z
0

,Z) 2 Z⇥ Zn⇥n
:

0 < z2
0

+

X

1i,jn

Z2

i,j  R2

)

.

A crude bound shows that |ZR|  2

O(n4
).

The following lemma establishes the first required property in Theorem 4.
Lemma 1. The random matrix X has rank d almost surely, and the subset S⇡̄ satisfies y

0

=

P

(i,j)2S⇡̄
ci,j .

Proof. That X has rank d almost surely follows from the fact that the probability density of X is
supported on all of Rn⇥d. This implies that X†

X =

Pn
j=1

˜

xjx
>
j = Id, and

y
0

=

n
X

j=1

x

>
0

˜

xjx
>
j ¯

w =

X

1i,jn

x

>
0

˜

xj · yi · 1{⇡̄(i) = j} =

X

1i,jn

ci,j · 1{⇡̄(i) = j} .

6



The next lemma establishes the second required property in Theorem 4. Here, we use the fact that
the Frobenius norm

�

�z
0

¯⇧�Z

�

�

F
is at least one whenever (z

0

,Z) 2 Z ⇥ Zn⇥n is not an integer
multiple of (1, ¯⇧).
Lemma 2. Pick any ⌘, ⌘0 > 0 such that 3|ZR| ⌘+ ⌘0 < 1. With probability at least 1� 3|ZR| ⌘� ⌘0,
every (z

0

,Z) 2 ZR with Z = (Zi,j)
(i,j)2[n]⇥[n] satisfies

�

�

�

�

�

z
0

· y
0

�
X

i,j

Zi,j · ci,j

�

�

�

�

�

� (⇡/4) ·
p

(d� 1)/n · ⌘2+
1

d�1

⇣p
n+

p
d+

p

2 ln(1/⌘0)
⌘

2

·
�

�z
0

¯⇧�Z

�

�

F
·k ¯wk

2

.

Proof. By Lemma 1, the matrix ¯⇧ satisfies y
0

=

P

i,j
¯

⇧i,j · ci,j . Fix any (z
0

,Z) 2 ZR with
Z = (Zi,j)

(i,j)2[n]⇥[n]. Then

z
0

· y
0

�
X

i,j

Zi,j · ci,j =

X

i,j

(z
0

· ¯⇧i,j � Zi,j) · x>
0

˜

xj · ¯w>
x⇡̄(i) .

Using matrix and vector notations, this can be written compactly as the inner product x>
0

(X

†
(z

0

¯⇧�
Z)

>
¯⇧X

¯

w). Since x

0

⇠ N(0, Id) and is independent of X , the distribution of the inner product is
normal with mean zero and standard deviation equal to kX†

(z
0

¯⇧�Z)

>
¯⇧X

¯

wk
2

. By Lemma 7 (in
Appendix C), with probability at least 1� ⌘,

�

�

x

>
0

�

X

†
(z

0

¯⇧�Z)

>
¯⇧X

¯

w

�

�

� � kX†
(z

0

¯⇧�Z)

>
¯⇧X

¯

wk
2

·
r

⇡

2

· ⌘ . (4)

Observe that X†
= (X

>
X)

�1

X

> since X has rank d by Lemma 1, so

kX†
(z

0

¯⇧�Z)

>
¯⇧X

¯

wk
2

�
kX>

(z
0

¯⇧�Z)

>
¯⇧X

¯

wk
2

kXk2
2

. (5)

By Lemma 4 (in Appendix C), with probability at least 1� ⌘0,

kXk2
2


⇣p

n+

p
d+

p

2 ln(1/⌘0)
⌘

2

. (6)

And by Lemma 9 (in Appendix C), with probability at least 1� 2⌘,

kX>
(z

0

¯⇧�Z)

>
¯⇧X

¯

wk
2

�
�

�

(z
0

¯⇧�Z)

>
¯⇧
�

�

F
·k ¯wk

2

·
r

(d� 1)⇡

8n
· ⌘1+1/(d�1) . (7)

Since ¯⇧ is orthogonal, we have that k(z
0

¯⇧�Z)

>
¯⇧kF = kz

0

¯⇧�ZkF . Combining this with (4),
(5), (6), and (7), and union bounds over all (z

0

,Z) 2 ZR proves the claim.

Proof of Theorem 3. Lemma 1 and Lemma 2 (with ⌘0 := �/2 and ⌘ :

= �/(6|ZR|)) together imply
that with probability at least 1� �, the source numbers {ci,j : (i, j) 2 [n]⇥ [n]} and target sum y

0

satisfy the conditions of Theorem 4 with

S?
:

= {(i, j) 2 [n]⇥ [n] : ⇡̄(i) = j} ,

" :

=

(⇡/4) ·
p

(d� 1)/n · (�/(6|ZR|))2+
1

d�1

⇣p
n+

p
d+

p

2 ln(2/�)
⌘

2

·k ¯wk
2

� 2

� poly(n, log(1/�)) ·k ¯wk
2

. (8)

Thus, in this event, Algorithm 3 (with � satisfying � � 2

n2/2/") returns ˆS = S?, which uniquely
determines the permutation ⇡̂ = ⇡̄ returned by Algorithm 2.

Running time. The basis reduction algorithm of Lenstra et al. [16] is iterative, with each iteration
primarily consisting of Gram-Schmidt orthogonalization and another efficient linear algebraic process
called “size reduction”. The total number of iterations required is

O

0

@

k(k + 1)

2

log

 

p
k ·

maxi2[k]kbik
2

�
1

(B)

!

1

A .

7



In our case, k = n2 and �
1

(B) =

p
n+ 1; and by Lemma 10 (in Appendix C), each of the basis

vectors constructed has squared length at most 1 + �2 · poly(d, log(n), 1/�) ·k ¯wk2
2

. Using the tight
setting of � required in Theorem 3, this gives a poly(n, d, log(1/�)) bound on the total number of
iterations as well as on the total running time.

However, the basis reduction algorithm requires both arithmetic and rounding operations, which are
typically only available for finite precision rational inputs. Therefore, a formal running time analysis
would require the idealized real-valued covariate vectors (xi)

n
i=0

and unknown target vector ¯

w to be
quantized to finite precision values. This is doable, and is similar to using a discretized Gaussian
distribution for the distribution of the covariate vectors (and assuming ¯

w is a vector of finite precision
values), but leads to a messier analysis incomparable to the setup of previous works. Nevertheless, it
would be desirable to find a different algorithm that avoids lattice basis reduction that still works with
just d+ 1 measurements.

4 Lower bounds on signal-to-noise for approximate recovery

In this section, we consider the measurement model from (1) where (xi)
n
i=1

are i.i.d. draws from either
N(0, Id) or the uniform distribution on [�1/2, 1/2]d, and ("i)

n
i=1

are i.i.d. draws from N(0,�2

). We
establish lower bounds on the signal-to-noise ratio (SNR),

SNR =

k ¯wk2
2

�2

,

required by any estimator ˆ

w =

ˆ

w((xi)
n
i=1

, (yi)
n
i=1

) for ¯

w to approximately recover ¯

w in expectation.
The estimators may have a priori knowledge of the values ofk ¯wk

2

and �2.

Theorem 5. Assume ("i)
n
i=1

are i.i.d. draws from N(0,�2

).

1. There is an absolute constant C > 0 such that the following holds. If n � 3, d � 22, (xi)
n
i=1

are i.i.d. draws from N(0, Id), (yi)ni=1

follow the measurement model from (1), and

SNR  C ·min

⇢

d

log log(n)
, 1

�

,

then for any estimator ˆ

w, there exists some ¯

w 2 Rd such that

E
⇥

k ˆw � ¯

wk
2

⇤

� 1

24

k ¯wk
2

.

2. If (xi)
n
i=1

are i.i.d. draws from the uniform distribution on [�1/2, 1/2]d, and (yi)
n
i=1

follow the
measurement model from (1), and

SNR  2 ,

then for any estimator ˆ

w, there exists some ¯

w 2 Rd such that

E
⇥

k ˆw � ¯

wk
2

⇤

� 1

2

✓

1� 1p
2

◆

k ¯wk
2

.

Note that in the classical linear regression model where yi = ¯

w

>
xi + "i for i 2 [n], the maximum

likelihood estimator ˆ

wmle satisfies Ek ˆwmle � ¯

wk
2

 C�
p

d/n, where C > 0 is an absolute constant.
Therefore, the SNR requirement to approximately recover ¯

w up to (say) Euclidean distancek ¯wk
2

/24
is SNR � 24

2Cd/n. Compared to this setting, Theorem 5 implies that with the measurement model
of (1), the SNR requirement (as a function of n) is at substantially higher (d/ log log(n) in the normal
covariate case, or a constant not even decreasing with n in the uniform covariate case).

For the normal covariate case, Pananjady et al. [18] show that if n > d, ✏ <
p
n, and

SNR � nc· n
n�d+✏ ,

then the maximum likelihood estimator ( ˆwmle, ⇡̂mle) (i.e., any minimizer of (2)) satisfies ⇡̂mle = ⇡̄
with probability at least 1 � c0n�2✏. (Here, c > 0 and c0 > 0 are absolute constants.) It is
straightforward to see that, on the same event, we havek ˆwmle � ¯

wk
2

 C�
p

d/n for some absolute

8



constant C > 0. Therefore, the necessary and sufficient conditions on SNR for approximate recovery
of ¯

w lie between C 0d/ log log(n) and nC00
(for absolute constants C 0, C 00 > 0). Narrowing this

range remains an interesting open problem.

A sketch of the proof in the normal covariate case is as follows. Without loss of generality, we restrict
attention to the case where ¯

w is a unit vector. We construct a 1/
p
2-packing of the unit sphere in

Rd; the target ¯

w will be chosen from from this set. Observe that for any distinct u,u0 2 U , each
of (x>

i u)
n
i=1

and (x

>
i u

0
)

n
i=1

is an i.i.d. sample from N(0, 1) of size n; we prove that they therefore
determine empirical distributions that are close to each other in Wasserstein-2 distance with high
probability. We then prove that conditional on this event, the resulting distributions of (yi)ni=1

under
¯

x = u and ¯

x = u

0 (for any pair u,u0 2 U ) are close in Kullback-Leibler divergence. Hence, by (a
generalization of) Fano’s inequality [see, e.g., 11], no estimator can determine the correct u 2 U
with high probability.

The proof for the uniform case is similar, using U = {e
1

,�e

1

} where e

1

= (1, 0, . . . , 0)>. The full
proof of Theorem 5 is given in Appendix D.
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