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Abstract

We study combinatorial multi-armed bandit with probabilistically triggered arms
and semi-bandit feedback (CMAB-T). We resolve a serious issue in the prior
CMAB-T studies where the regret bounds contain a possibly exponentially large
factor of 1/p∗, where p∗ is the minimum positive probability that an arm is trig-
gered by any action. We address this issue by introducing a triggering probability
modulated (TPM) bounded smoothness condition into the general CMAB-T fra-
mework, and show that many applications such as influence maximization bandit
and combinatorial cascading bandit satisfy this TPM condition. As a result, we
completely remove the factor of 1/p∗ from the regret bounds, achieving signifi-
cantly better regret bounds for influence maximization and cascading bandits than
before. Finally, we provide lower bound results showing that the factor 1/p∗ is
unavoidable for general CMAB-T problems, suggesting that the TPM condition is
crucial in removing this factor.

1 Introduction

Stochastic multi-armed bandit (MAB) is a classical online learning framework modeled as a game
between a player and the environment with m arms. In each round, the player selects one arm and
the environment generates a reward of the arm from a distribution unknown to the player. The player
observes the reward, and use it as the feedback to the player’s algorithm (or policy) to select arms in
future rounds. The goal of the player is to cumulate as much reward as possible over time. MAB
models the classical dilemma between exploration and exploitation: whether the player should keep
exploring arms in search for a better arm, or should stick to the best arm observed so far to collect
rewards. The standard performance measure of the player’s algorithm is the (expected) regret, which
is the difference in expected cumulative reward between always playing the best arm in expectation
and playing according to the player’s algorithm.

In recent years, stochastic combinatorial multi-armed bandit (CMAB) receives many attention (e.g.
[9, 7, 6, 10, 13, 15, 14, 16, 8]), because it has wide applications in wireless networking, online
advertising and recommendation, viral marketing in social networks, etc. In the typical setting of
CMAB, the player selects a combinatorial action to play in each round, which would trigger the
play of a set of arms, and the outcomes of these triggered arms are observed as the feedback (called
semi-bandit feedback). Besides the exploration and exploitation tradeoff, CMAB also needs to deal
with the exponential explosion of the possible actions that makes exploring all actions infeasible.

One class of the above CMAB problems involves probabilistically triggered arms [7, 14, 16], in
which actions may trigger arms probabilistically. We denote it as CMAB-T in this paper. Chen et al.
[7] provide such a general model and apply it to the influence maximization bandit, which models
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stochastic influence diffusion in social networks and sequentially selecting seed sets to maximize
the cumulative influence spread over time. Kveton et al. [14, 16] study cascading bandits, in which
arms are probabilistically triggered following a sequential order selected by the player as the action.
However, in both studies, the regret bounds contain an undesirable factor of 1/p∗, where p∗ is the
minimum positive probability that any arm can be triggered by any action,1 and this factor could be
exponentially large for both influence maximization and cascading bandits.

In this paper, we adapt the general CMAB framework of [7] in a systematic way to completely remove
the factor of 1/p∗ for a large class of CMAB-T problems including both influence maximization and
combinatorial cascading bandits. The key observation is that for these problems, a harder-to-trigger
arm has less impact to the expected reward and thus we do not need to observe it as often. We turn
this key observation into a triggering probability modulated (TPM) bounded smoothness condition,
adapted from the original bounded smoothness condition in [7]. We eliminates the 1/p∗ factor
in the regret bounds for all CMAB-T problems with the TPM condition, and show that influence
maximization bandit and the conjunctive/disjunctive cascading bandits all satisfy the TPM condition.
Moreover, for general CMAB-T without the TPM condition, we show a lower bound result that 1/p∗

is unavoidable, because the hard-to-trigger arms are crucial in determining the best arm and have to
be observed enough times.

Besides removing the exponential factor, our analysis is also tighter in other regret factors or constants
comparing to the existing influence maximization bandit results [7, 25], combinatorial cascading
bandit [16], and linear bandits without probabilistically triggered arms [15]. Both the regret analysis
based on the TPM condition and the proof that influence maximization bandit satisfies the TPM
condition are technically involved and nontrivial, but due to the space constraint, we have to move
the complete proofs to the supplementary material. Instead we introduce the key techniques used in
the main text.

Related Work. Multi-armed bandit problem is originally formated by Robbins [20], and has been
extensively studied in the literature [cf. 3, 21, 4]. Our study belongs to the stochastic bandit research,
while there is another line of research on adversarial bandits [2], for which we refer to a survey
like [4] for further information. For stochastic MABs, an important approach is Upper Confidence
Bound (UCB) approach [1], on which most CMAB studies are based upon.

As already mentioned in the introduction, stochastic CMAB has received many attention in recent
years. Among the studies, we improve (a) the general framework with probabilistically triggered arms
of [7], (b) the influence maximization bandit results in [7] and [25], (c) the combinatorial cascading
bandit results in [16], and (d) the linear bandit results in [15]. We defer the technical comparison
with these studies to Section 4.3. Other CMAB studies do not deal with probabilistically triggered
arms. Among them, [9] is the first study on linear stochastic bandit, but its regret bound has since
been improved by Chen et al. [7], Kveton et al. [15]. Combes et al. [8] improve the regret bound of
[15] for linear bandits in a special case where arms are mutually independent. Most studies above
are based on the UCB-style CUCB algorithm or its minor variant, and differ on the assumptions and
regret analysis. Gopalan et al. [10] study Thompson sampling for complex actions, which is based on
the Thompson sample approach [22] and can be applied to CMAB, but their regret bound has a large
exponential constant term.

Influence maximization is first formulated as a discrete optimization problem by Kempe et al. [12],
and has been extensively studied since (cf. [5]). Variants of influence maximization bandit have also
been studied [18, 23, 24]. Lei et al. [18] use a different objective of maximizing the expected size of
the union of the influenced nodes over time. Vaswani et al. [23] discuss how to transfer node level
feedback to the edge level feedback, and then apply the result of [7]. Vaswani et al. [24] replace
the original maximization objective of influence spread with a heuristic surrogate function, avoiding
the issue of probabilistically triggered arms. But their regret is defined against a weaker benchmark
relaxed by the approximation ratio of the surrogate function, and thus their theoretical result is weaker
than ours.

1The factor of 1/f∗ used for the combinatorial disjunctive cascading bandits in [16] is essentially 1/p∗.
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2 General Framework

In this section we present the general framework of combinatorial multi-armed bandit with probabi-
listically triggered arms originally proposed in [7] with a slight adaptation, and denote it as CMAB-T.
We illustrate that the influence maximization bandit [7] and combinatorial cascading bandits [14, 16]
are example instances of CMAB-T.

CMAB-T is described as a learning game between a learning agent (or player) and the environment.
The environment consists of m random variables X1, . . . , Xm called base arms (or arms) following
a joint distribution D over [0, 1]m. Distribution D is picked by the environment from a class of
distributions D before the game starts. The player knows D but not the actual distribution D.

The learning process proceeds in discrete rounds. In round t ≥ 1, the player selects an action St from
an action space S based on the feedback history from the previous rounds, and the environment draws
from the joint distribution D an independent sample X(t) = (X

(t)
1 , . . . , X

(t)
m ). When action St is

played on the environment outcome X(t), a random subset of arms τt ⊆ [m] are triggered, and the
outcomes of X(t)

i for all i ∈ τt are observed as the feedback to the player. The player also obtains a
nonnegative reward R(St, X

(t), τt) fully determined by St, X(t), and τt. A learning algorithm aims
at properly selecting actions St’s over time based on the past feedback to cumulate as much reward
as possible. Different from [7], we allow the action space S to be infinite. In the supplementary
material, we discuss an example of continuous influence maximization [26] that uses continuous and
infinite action space while the number of base arms is still finite.

We now describe the triggered set τt in more detail, which is not explicit in [7]. In general, τt may
have additional randomness beyond the randomness of X(t). Let Dtrig(S,X) denote a distribution
of the triggered subset of [m] for a given action S and an environment outcome X . We assume that τt
is drawn independently from Dtrig(St, X

(t)). We refer Dtrig as the probabilistic triggering function.

To summarize, a CMAB-T problem instance is a tuple ([m],S,D, Dtrig, R), with elements already
described above. These elements are known to the player, and hence establishing the problem input
to the player. In contrast, the environment instance is the actual distribution D ∈ D picked by the
environment, and is unknown to the player. The problem instance and the environment instance
together form the (learning) game instance, in which the learning process would unfold. In this paper,
we fix the environment instance D, unless we need to refer to more than one environment instances.

For each arm i, let µi = EX∼D[Xi]. Let vector µ = (µ1, . . . , µm) denote the expectation vector of
arms. Note that vector µ is determined by D. Same as in [7], we assume that the expected reward
E[R(S,X, τ)], where the expectation is taken over X ∼ D and τ ∼ Dtrig(S,X), is a function of
action S and the expectation vector µ of the arms. Henceforth, we denote rS(µ) , E[R(S,X, τ)].
We remark that Chen et al. [6] relax the above assumption and consider the case where the entire
distribution D, not just the mean of D, is needed to determine the expected reward. However, they
need to assume that arm outcomes are mutually independent, and they do not consider probabilistically
triggered arms. It might be interesting to incorporate probabilistically triggered arms into their setting,
but this is out of the scope of the current paper. To allow algorithm to estimate µi directly from
samples, we assume the outcome of an arm does not depend on whether itself is triggered, i.e.
EX∼D,τ∼Dtrig(S,X)[Xi | i ∈ τ ] = EX∼D[Xi].

The performance of a learning algorithmA is measured by its (expected) regret, which is the difference
in expected cumulative reward between always playing the best action and playing actions selected
by algorithm A. Formally, let optµ = supS∈S rS(µ), where µ = EX∼D[X], and we assume
that optµ is finite. Same as in [7], we assume that the learning algorithm has access to an offline
(α, β)-approximation oracle O, which takes µ = (µ1, . . . , µm) as input and outputs an action SO
such that Pr{rµ(SO) ≥ α · optµ} ≥ β, where α is the approximation ratio and β is the success
probability. Under the (α, β)-approximation oracle, the benchmark cumulative reward should be the
αβ fraction of the optimal reward, and thus we use the following (α, β)-approximation regret:

Definition 1 ((α, β)-approximation Regret). The T -round (α, β)-approximation regret of a le-
arning algorithm A (using an (α, β)-approximation oracle) for a CMAB-T game instance
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([m],S,D, Dtrig, R,D) with µ = EX∼D[X] is

RegAµ,α,β(T ) = T ·α ·β ·optµ−E

[
T∑
i=1

R(SAt , X
(t), τt)

]
= T ·α ·β ·optµ−E

[
T∑
i=1

rSA
t

(µ)

]
,

where SAt is the action A selects in round t, and the expectation is taken over the randomness of
the environment outcomes X(1), . . . , X(T ), the triggered sets τ1, . . . , τT , as well as the possible
randomness of algorithm A itself.

We remark that because probabilistically triggered arms may strongly impact the determination of
the best action, but they may be hard to trigger and observe, the regret could be worse and the regret
analysis is in general harder than CMAB without probabilistically triggered arms.

The above framework essentially follows [7], but we decouple actions from subsets of arms, allow
action space to be infinite, and explicitly model triggered set distribution, which makes the framework
more powerful in modeling certain applications (see supplementary material for more discussions).

2.1 Examples of CMAB-T: Influence Maximization and Cascading Bandits

In social influence maximization [12], we are given a weighted directed graph G = (V,E, p), where
V and E are sets of vertices and edges respectively, and each edge (u, v) is associated with a
probability p(u, v). Starting from a seed set S ⊆ V , influence propagates in G as follows: nodes
in S are activated at time 0, and at time t ≥ 1, a node u activated in step t − 1 has one chance to
activate its inactive out-neighbor v with an independent probability p(u, v). The influence spread of
seed set S, σ(S), is the expected number of activated nodes after the propagation ends. The offline
problem of influence maximization is to find at most k seed nodes in G such that the influence spread
is maximized. Kempe et al. [12] provide a greedy algorithm with approximation ratio 1− 1/e− ε
and success probability 1− 1/|V |, for any ε > 0.

For the online influence maximization bandit [7], the edge probabilities p(u, v)’s are unknown and
need to be learned over time through repeated influence maximization tasks: in each round t, k seed
nodes St are selected, the influence propagation from St is observed, the reward is the number of
nodes activated in this round, and one wants to repeat this process to cumulate as much reward as
possible. Putting it into the CMAB-T framework, the set of edges E is the set of arms [m], and their
outcome distribution D is the joint distribution of m independent Bernoulli distributions with means
p(u, v) for all (u, v) ∈ E. Any seed set S ⊆ V with at most k nodes is an action. The triggered
arm set τt is the set of edges (u, v) reached by the propagation, that is, u can be reached from St
by passing through only edges e ∈ E with X(t)

e = 1. In this case, the distribution Dtrig(St, X
(t))

degenerates to a deterministic triggered set. The rewardR(St, X
(t), τt) equals to the number of nodes

in V that is reached from S through only edges e ∈ E with X(t)
e = 1, and the expected reward is

exactly the influence spread σ(St). The offline oracle is a (1−1/e− ε, 1/|V |)-approximation greedy
algorithm. We remark that the general triggered set distributionDtrig(St, X

(t)) (together with infinite
action space) can be used to model extended versions of influence maximization, such as randomly
selected seed sets in general marketing actions [12] and continuous influence maximization [26] (see
supplementary material).

Now let us consider combinatorial cascading bandits [14, 16]. In this case, we have m independent
Bernoulli random variables X1, . . . , Xm as base arms. An action is to select an ordered sequence
from a subset of these arms satisfying certain constraint. Playing this action means that the player
reveals the outcomes of the arms one by one following the sequence order until certain stopping
condition is satisfied. The feedback is the outcomes of revealed arms and the reward is a function
form of these arms. In particular, in the disjunctive form the player stops when the first 1 is revealed
and she gains reward of 1, or she reaches the end and gains reward 0. In the conjunctive form, the
player stops when the first 0 is revealed (and receives reward 0) or she reaches the end with all 1
outcomes (and receives reward 1). Cascading bandits can be used to model online recommendation
and advertising (in the disjunctive form with outcome 1 as a click) or network routing reliability (in
the conjunctive form with outcome 0 as the routing edge being broken). It is straightforward to see
that cascading bandits fit into the CMAB-T framework: m variables are base arms, ordered sequences
are actions, and the triggered set is the prefix set of arms until the stopping condition holds.
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Algorithm 1 CUCB with computation oracle.

Input: m,Oracle
1: For each arm i, Ti ← 0 {maintain the total number of times arm i is played so far}
2: For each arm i, µ̂i ← 1 {maintain the empirical mean of Xi}
3: for t = 1, 2, 3, . . . do
4: For each arm i ∈ [m], ρi ←

√
3 ln t
2Ti

{the confidence radius, ρi = +∞ if Ti = 0}
5: For each arm i ∈ [m], µ̄i = min {µ̂i + ρi, 1} {the upper confidence bound}
6: S ← Oracle(µ̄1, . . . , µ̄m)

7: Play action S, which triggers a set τ ⊆ [m] of base arms with feedback X(t)
i ’s, i ∈ τ

8: For every i ∈ τ , update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X
(t)
i − µ̂i)/Ti

9: end for

3 Triggering Probability Modulated Condition

Chen et al. [7] use two conditions to guarantee the theoretical regret bounds. The first one is
monotonicity, which we also use in this paper, and is restated below.

Condition 1 (Monotonicity). We say that a CMAB-T problem instance satisfies monotonicity, if for
any action S ∈ S, for any two distributions D,D′ ∈ D with expectation vectors µ = (µ1, . . . , µm)
and µ′ = (µ′1, . . . , µ

′
m), we have rS(µ) ≤ rS(µ′) if µi ≤ µ′i for all i ∈ [m].

The second condition is bounded smoothness. One key contribution of our paper is to properly
strengthen the original bounded smoothness condition in [7] so that we can both get rid of the
undesired 1/p∗ term in the regret bound and guarantee that many CMAB problems still satisfy the
conditions. Our important change is to use triggering probabilities to modulate the condition, and
thus we call such conditions triggering probability modulated (TPM) conditions. The key point of
TPM conditions is including the triggering probability in the condition. We use pD,Si to denote the
probability that action S triggers arm i when the environment instance is D. With this definition,
we can also technically define p∗ as p∗ = infi∈[m],S∈S,pD,S

i >0 p
D,S
i . In this section, we further use

1-norm based conditions instead of the infinity-norm based condition in [7], since they lead to better
regret bounds for the influence maximization and cascading bandits.

Condition 2 (1-Norm TPM Bounded Smoothness). We say that a CMAB-T problem instance sa-
tisfies 1-norm TPM bounded smoothness, if there exists B ∈ R+ (referred as the bounded smoothness
constant) such that, for any two distributions D,D′ ∈ D with expectation vectors µ and µ′, and any
action S, we have |rS(µ)− rS(µ′)| ≤ B

∑
i∈[m] p

D,S
i |µi − µ′i|.

Note that the corresponding non-TPM version of the above condition would remove pD,Si in the
above condition, which is a generalization of the linear condition used in linear bandits [15]. Thus, the
TPM version is clearly stronger than the non-TPM version (when the bounded smoothness constants
are the same). The intuition of incorporating the triggering probability pD,Si to modulate the 1-norm
condition is that, when an arm i is unlikely triggered by action S (small pD,Si ), the importance of
arm i also diminishes in that a large change in µi only causes a small change in the expected reward
rS(µ). This property sounds natural in many applications, and it is important for bandit learning —
although an arm i may be difficult to observe when playing S, it is also not important to the expected
reward of S and thus does not need to be learned as accurately as others more easily triggered by S.

4 CUCB Algorithm and Regret Bound with TPM Bounded Smoothness

We use the same CUCB algorithm as in [7] (Algorithm 1). The algorithm maintains the empirical
estimate µ̂i for the true mean µi, and feed the upper confidence bound µ̄i to the offline oracle to
obtain the next action S to play. The upper confidence bound µ̄i is large if arm i is not triggered often
(Ti is small), providing optimistic estimates for less observed arms. We next provide its regret bound.
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Definition 2 (Gap). Fix a distribution D and its expectation vector µ. For each action S, we define
the gap ∆S = max(0, α · optµ − rS(µ)). For each arm i, we define

∆i
min = inf

S∈S:pD,S
i >0,∆S>0

∆S , ∆i
max = sup

S∈S:pD,S
i >0,∆S>0

∆S .

As a convention, if there is no action S such that pD,Si > 0 and ∆S > 0, we define ∆i
min = +∞,

∆i
max = 0. We define ∆min = mini∈[m] ∆i

min, and ∆max = maxi∈[m] ∆i
max.

Let S̃ = {i ∈ [m] | pµ,Si > 0} be the set of arms that could be triggered by S. Let K = maxS∈S |S̃|.
For convenience, we use dxe0 to denote max{dxe, 0} for any real number x.
Theorem 1. For the CUCB algorithm on a CMAB-T problem instance that satisfies monotonicity
(Condition 1) and 1-norm TPM bounded smoothness (Condition 2) with bounded smoothness constant
B, (1) if ∆min > 0, we have distribution-dependent bound

Regµ,α,β(T ) ≤
∑
i∈[m]

576B2K lnT

∆i
min

+
∑
i∈[m]

(⌈
log2

2BK

∆i
min

⌉
0

+ 2

)
· π

2

6
·∆max + 4Bm; (1)

(2) we have distribution-independent bound

Regµ,α,β(T ) ≤ 12B
√
mKT lnT +

(⌈
log2

T

18 lnT

⌉
0

+ 2

)
·m · π

2

6
·∆max + 2Bm. (2)

For the above theorem, we remark that the regret bounds are tight (up to a O(
√

log T ) factor in the
case of distribution-independent bound) base on a lower bound result in [15]. More specifically,
Kveton et al. [15] show that for linear bandits (a special class of CMAB-T without probabilis-
tic triggering), the distribution-dependent regret is lower bounded by Ω( (m−K)K

∆ log T ), and the
distribution-independent regret is lower bounded by Ω(

√
mKT ) when T ≥ m/K, for some in-

stance where ∆i
min = ∆ for all i ∈ [m] and ∆i

min < ∞. Comparing with our regret upper
bound in the above theorem, (a) for distribution-dependent bound, we have the regret upper bound
O( (m−K)K

∆ log T ) since for that instance B = 1 and there are K arms with ∆i
min =∞, so tight with

the lower bound in [15]; and (b) for distribution-independent bound, we have the regret upper bound
O(
√
mKT log T ), tight to the lower bound up to a O(

√
log T ) factor, same as the upper bound for

the linear bandits in [15]. This indicates that parameters m and K appeared in the above regret
bounds are all needed. As for parameter B, we can view it simply as a scaling parameter. If we
scale the reward of an instance to B times larger than before, certainly, the regret is B times larger.
Looking at the distribution-dependent regret bound (Eq. (1)), ∆i

min would also be scaled by a factor
of B, canceling one B factor from B2, and ∆max is also scaled by a factor of B, and thus the regret
bound in Eq. (1) is also scaled by a factor of B. In the distribution-independent regret bound (Eq. (2)),
the scaling of B is more direct. Therefore, we can see that all parameters m, K, and B appearing in
the above regret bounds are needed. Finally, we remark that the TPM Condition 2 can be refined such
that B is replaced by arm-dependent Bi that is moved inside the summation, and B in Theorem 1 is
replaced with Bi accordingly. See the supplementary material for details.

4.1 Novel Ideas in the Regret Analysis

Due to the space limit, the full proof of Theorem 1 is moved to the supplementary material. Here
we briefly explain the novel aspects of our analysis that allow us to achieve new regret bounds and
differentiate us from previous analyses such as the ones in [7] and [16, 15].

We first give an intuitive explanation on how to incorporate the TPM bounded smoothness condition
to remove the factor 1/p∗ in the regret bound. Consider a simple illustrative example of two actions
S0 and S, where S0 has a fixed reward r0 as a reference action, and S has a stochastic reward
depending on the outcomes of its triggered base arms. Let S̃ be the set of arms that can be triggered
by S. For i ∈ S̃, suppose i can be triggered by action S with probability pSi , and its true mean is µi
and its empirical mean at the end of round t is µ̂i,t. The analysis in [7] would need a property that, if
for all i ∈ S̃ |µ̂i,t − µi| ≤ δi for some properly defined δi, then S no longer generates regrets. The
analysis would conclude that arm i needs to be triggered Θ(log T/δ2

i ) times for the above condition
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to happen. Since arm i is only triggered with probability pSi , it means action S may need to be played
Θ(log T/(pSi δ

2
i )) times. This is the essential reason why the factor 1/p∗ appears in the regret bound.

Now with the TPM bounded smoothness, we know that the impact of |µ̂i,t − µi| ≤ δi to the
difference in the expected reward is only pSi δi, or equivalently, we could relax the requirement to
|µ̂i,t − µi| ≤ δi/pSi to achieve the same effect as in the previous analysis. This translates to the result
that action S would generate regret in at most O(log T/(pSi (δi/p

S
i )2)) = O(pSi log T/δ2

i ) rounds.

We then need to handle the case when we have multiple actions that could trigger arm i. The
simple addition of

∑
S:pSi >0 p

S
i log T/δ2

i is not feasible since we may have exponentially or even
infinitely many such actions. Instead, we introduce the key idea of triggering probability groups,
such that the above actions are divided into groups by putting their triggering probabilities pSi
into geometrically separated bins: (1/2, 1], (1/4, 1/2] . . . , (2−j , 2−j+1], . . . The actions in the same
group would generate regret in at most O(2−j+1 log T/δ2

i ) rounds with a similar argument, and
summing up together, they could generate regret in at most O(

∑
j 2−j+1 log T/δ2

i ) = O(log T/δ2
i )

rounds. Therefore, the factor of 1/pSi or 1/p∗ is completely removed from the regret bound.

Next, we briefly explain our idea to achieve the improved bound over the linear bandit result
in [15]. The key step is to bound regret ∆St generated in round t. By a derivation similar to
[15, 7] together with the 1-norm TPM bounded smoothness condition, we would obtain that ∆St ≤
B
∑
i∈S̃t

pD,St

i (µ̄i,t − µi) with high probability. The analysis in [15] would analyze the errors
|µ̄i,t − µi| by a cascade of infinitely many sub-cases of whether there are xj arms with errors larger
than yj with decreasing yj , but it may still be loose. Instead we directly work on the above summation.
Naive bounding the about error summation would not give a O(log T ) bound because there could
be too many arms with small errors. Our trick is to use a reverse amortization: we cumulate small
errors on many sufficiently sampled arms and treat them as errors of insufficiently sample arms, such
that an arm sampled O(log T ) times would not contribute toward the regret. This trick tightens our
analysis and leads to significantly improved constant factors.

4.2 Applications to Influence Maximization and Combinatorial Cascading Bandits

The following two lemmas show that both the cascading bandits and the influence maximization
bandit satisfy the TPM condition.

Lemma 1. For both disjunctive and conjunctive cascading bandit problem instances, 1-norm TPM
bounded smoothness (Condition 2) holds with bounded smoothness constant B = 1.

Lemma 2. For the influence maximization bandit problem instances, 1-norm TPM bounded
smoothness (Condition 2) holds with bounded smoothness constant B = C̃, where C̃ is the largest
number of nodes any node can reach in the directed graph G = (V,E).

The proof of Lemma 1 involves a technique called bottom-up modification. Each action in cascading
bandits can be viewed as a chain from top to bottom. When changing the means of arms below, the
triggering probability of arms above is not changed. Thus, if we change µ to µ′ backwards, the
triggering probability of each arm is unaffected before its expectation is changed, and when changing
the mean of an arm i, the expected reward of the action is at most changed by pD,Si |µ′i − µi|.
The proof of Lemma 2 is more complex, since the bottom-up modification does not work directly
on graphs with cycles. To circumvent this problem, we develop an influence tree decomposition
technique as follows. First, we order all influence paths from the seed set S to a target v. Second,
each edge is independently sampled based on its edge probability to form a random live-edge graph.
Third, we divide the reward portion of activating v among all paths from S to v: for each live-edge
graph L in which v is reachable from S, assign the probability of L to the first path from S to v in L
according to the path total order. Finally, we compose all the paths from S to v into a tree with S
as the root and copies of v as the leaves, so that we can do bottom-up modification on this tree and
properly trace the reward changes based on the reward division we made among the paths.

4.3 Discussions and Comparisons

We now discuss the implications of Theorem 1 together with Lemmas 1 and 2 by comparing them
with several existing results.
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Comparison with [7] and CMAB with∞-norm bounded smoothness conditions. Our work is
a direct adaption of the study in [7]. Comparing with [7], we see that the regret bounds in Theorem 1
are not dependent on the inverse of triggering probabilities, which is the main issue in [7]. When
applied to influence maximization bandit, our result is strictly stronger than that of [7] in two aspects:
(a) we remove the factor of 1/p∗ by using the TPM condition; (b) we reduce a factor of |E| and√
|E| in the dominant terms of distribution-dependent and -independent bounds, respectively, due

to our use of 1-norm instead of∞-norm conditions used in Chen et al. [7]. In the supplementary
material, we further provide the corresponding∞-norm TPM bounded smoothness conditions and
the regret bound results, since in general the two sets of results do not imply each other.

Comparison with [25] on influence maximization bandits. Conceptually, our work deals with
the general CMAB-T framework with influence maximization and combinatorial cascading bandits
as applications, while Wen et al. [25] only work on influence maximization bandit. Wen et al. [25]
further study a generalization of linear transformation of edge probabilities, which is orthogonal
to our current study, and could be potentially incorporated into the general CMAB-T framework.
Technically, both studies eliminate the exponential factor 1/p∗ in the regret bound. Comparing the
rest terms in the regret bounds, our regret bound depends on a topology dependent term C̃ (Lemma 2),
while their bound depends on a complicated term C∗, which is related to both topology and edge
probabilities. Although in general it is hard to compare the regret bounds, for the several graph
families for which Wen et al. [25] provide concrete topology-dependent regret bounds, our bounds
are always better by a factor from O(

√
k) to O(|V |), where k is the number of seeds selected in each

round and V is the node set in the graph. This indicates that, in terms of characterizing the topology
effect on the regret bound, our simple complexity term C̃ is more effective than their complicated
term C∗. See the supplementary material for the detailed table of comparison.

Comparison with [16] on combinatorial cascading bandits By Lemma 1, we can apply The-
orem 1 to combinatorial conjunctive and disjunctive cascading bandits with bounded smoothness
constant B = 1, achieving O(

∑
1

∆i
min
K log T ) distribution-dependent, and O(

√
mKT log T )

distribution-independent regret. In contrast, besides having exactly these terms, the results in [16] have
an extra factor of 1/f∗, where f∗ =

∏
i∈S∗ p(i) for conjunctive cascades, and f∗ =

∏
i∈S∗(1−p(i))

for disjunctive cascades, with S∗ being the optimal solution and p(i) being the probability of success
for item (arm) i. For conjunctive cascades, f∗ could be reasonably close to 1 in practice as argued in
[16], but for disjunctive cascades, f∗ could be exponentially small since items in optimal solutions
typically have large p(i) values. Therefore, our result completely removes the dependency on 1/f∗

and is better than their result. Moreover, we also have much smaller constant factors owing to the
new reverse amortization method described in Section 4.1.

Comparison with [15] on linear bandits. When there is no probabilistically triggered arms
(i.e. p∗ = 1), Theorem 1 would have tighter bounds since some analysis dealing with probabilistic
triggering is not needed. In particular, in Eq. (1) the leading constant 624 would be reduced to 48, the
dlog2 xe0 term is gone, and 6Bm becomes 2Bm; in Eq. (2) the leading constant 50 is reduced to 14,
and the other changes are the same as above (see the supplementary material). The result itself is also
a new contribution, since it generalizes the linear bandit of [15] to general 1-norm conditions with
matching regret bounds, while significantly reducing the leading constants (their constants are 534
and 47 for distribution-dependent and independent bounds, respectively). This improvement comes
from the new reversed amortization method described in Section 4.1.

5 Lower Bound of the General CMAB-T Model

In this section, we show that there exists some CMAB-T problem instance such that the regret
bound in [7] is tight, i.e. the factor 1/p∗ in the distribution-dependent bound and

√
1/p∗ in the

distribution-independent bound are unavoidable, where p∗ is the minimum positive probability that
any base arm i is triggered by any action S. It also implies that the TPM bounded smoothness may
not be applied to all CMAB-T instances.

For our purpose, we only need a simplified version of the bounded smoothness condition of [7] as
below: There exists a bounded smoothness constant B such that, for every action S and every pair of
mean outcome vectors µ and µ′, we have |rS(µ)− rS(µ′)| ≤ Bmaxi∈S̃ |µi − µ′i|, where S̃ is the
set of arms that could possibly be triggered by S.

8



We prove the lower bounds using the following CMAB-T problem instance ([m],S,D, Dtrig, R). For
each base arm i ∈ [m], we define an action Si, with the set of actions S = {S1, . . . , Sm}. The family
of distributions D consists of distributions generated by every µ ∈ [0, 1]m such that the arms are
independent Bernoulli variables. When playing action Si in round t, with a fixed probability p, arm i

is triggered and its outcome X(t)
i is observed, and the reward of playing Si is p−1X

(t)
i ; otherwise

with probability 1− p no arm is triggered, no feedback is observed and the reward is 0. Following the
CMAB-T framework, this means that Dtrig(Si, X), as a distribution on the subsets of [m], is either
{i} with probability p or ∅ with probability 1−p, and the rewardR(Si, X, τ) = p−1Xi ·I{τ = {i}}.
The expected reward rSi(µ) = µi. So this instance satisfies the above bounded smoothness with
constant B = 1. We denote the above instance as FTP(p), standing for fixed triggering probability
instance. This instance is similar with position-based model [17] with only one position, while the
feedback is different. For the FTP(p) instance, we have p∗ = p and rSi

(µ) = p · p−1µi = µi.
Then applying the result in [7], we have distributed-dependent upper bound O(

∑
i

1
p∆i

min
log T ) and

distribution-independent upper bound O(
√
p−1mT log T ).

We first provide the distribution-independent lower bound result.
Theorem 2. Let p be a real number with 0 < p < 1. Then for any CMAB-T algorithm A, if
T ≥ 6p−1, there exists a CMAB-T environment instance D with mean µ such that on instance
FTP(p),

RegAµ (T ) ≥ 1

170

√
mT

p
.

The proof of the above and the next theorem are all based on the results for the classical MAB
problems. Comparing to the upper bound O(

√
p−1mT log T ). obtained from [7], Theorem 2 implies

that the regret upper bound of CUCB in [7] is tight up to a O(
√

log T ) factor. This means that the
1/p∗ factor in the regret bound of [7] cannot be avoided in the general class of CMAB-T problems.

Next we give the distribution-dependent lower bound. For a learning algorithm, we say that it is
consistent if, for every µ, every non-optimal arm is played o(T a) times in expectation, for any real
number a > 0. Then we have the following distribution-dependent lower bound.
Theorem 3. For any consistent algorithm A running on instance FTP(p) and µi < 1 for every arm
i, we have

lim inf
T→+∞

RegAµ (T )

lnT
≥

∑
i:µi<µ∗

p−1∆i

kl(µi, µ∗)
,

where µ∗ = maxi µi, ∆i = µ∗ − µi, and kl(·, ·) is the Kullback-Leibler divergence function.

Again we see that the distribution-dependent upper bound obtained from [7] asymptotically match the
lower bound above. Finally, we remark that even if we rescale the reward from [1, 1/p] back to [0, 1],
the corresponding scaling factor B would become p, and thus we would still obtain the conclusion
that the regret bounds in [7] is tight (up to a O(

√
log T ) factor), and thus 1/p∗ is in general needed in

those bounds.

6 Conclusion and Future Work

In this paper, we propose the TPM bounded smoothness condition, which conveys the intuition that
an arm difficult to trigger is also less important in determining the optimal solution. We show that this
condition is essential to guarantee low regret, and prove that important applications, such as influence
maximization bandits and combinatorial cascading bandits all satisfy this condition.

There are several directions one may further pursue. One is to improve the regret bound for some
specific problems. For example, for the influence maximization bandit, can we give a better algorithm
or analysis to achieve a better regret bound than the one provided by the general TPM condition?
Another direction is to look into other applications with probabilistically triggered arms that may not
satisfy the TPM condition or need other conditions to guarantee low regret. Combining the current
CMAB-T framework with the linear generalization as in [25] to achieve scalable learning result is
also an interesting direction.
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