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7.1 Additional analytical results and proofs

We begin with proofs of the lemmas and theorems that are presented in the main body of the paper
without proof. The statements of the lemmas and theorems are presented again for completeness.

Lemma 1: Let Assumptions 1 and 2 hold. The iterates of CDSGD (Algorithm 1) satisfy the following
inequality ∀k ∈ N:

E[V (xk+1)]− V (xk) ≤ −αk∇V (xk)TE[∇J i(xk)] +
γ̂

2
α2
kE[‖∇J i(xk)‖2] (19)

Proof. By Assumption 1, the iterates generated by CDSGD satisfy

V (xk+1)− V (xk) ≤ ∇V (xk)T (xk+1 − xk) +
1

2
γ̂‖xk+1 − xk‖2

= −α∇V (xk)T∇J i(xk) +
1

2
γ̂α2‖∇J i(xk)‖2

(20)

Taking expectations on both sides, we can obtain

E[V (xk+1)− V (xk)] ≤ E[−α∇V (xk)T∇J i(xk) +
1

2
γ̂α2‖∇J i(xk)‖2] (21)

While V (xk) is deterministic, V (xk+1) is stochastic due to the random sampling aspect. Therefore,
we have

E[V (xk+1)]− V (xk) ≤ −α∇V (xk)TE[∇J i(xk)] +
1

2
γ̂α2E[‖∇J i(xk)‖2] (22)

which completes the proof.

Lemma 2: Let Assumptions 1, 2, and 3 hold. The iterates of CDSGD (Algorithm 1) satisfy the
following inequality ∀k ∈ N:

E[V (xk+1)]− V (xk) ≤ −(ζ1 −
γ̂

2
αQm)α‖∇V (xk)‖2 +

γ̂

2
α2Q (23)

Proof. Recalling Lemma 1 and using Assumption 3 and Remark 1, we have

E[V (xk+1)]− V (xk) ≤ −ζ1α‖∇V (xk)‖2 +
γ̂

2
α2E[‖∇J i(xk)‖2]

≤ −ζ1α‖∇V (xk)‖2 +
γ̂

2
α2(Q+Qm‖∇V (xk)‖2)

= −(ζ1 −
γ̂

2
αQm)α‖∇V (xk)‖2 +

γ̂

2
α2Q

(24)

which completes the proof.

In order to prove Propositon 1, several auxiliary technical lemmas are presented first.

Lemma 3. V has a lower bound denoted by Vinf over an open set which contains the iterates {xk}
generated by CDSGD (Algorithm 1).

Lemma 3 can be obtained as each fj is proper and coercive. Such a lemma is able to help characterize
the nonconvex case in which the global optimum may not be achieved.
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Lemma 4. Let Assumption 1 holds. There exists some constant 0 < L <∞ such that E[‖g(xk)‖] ≤
L.

The proof of Lemma 4 directly follows from the Assumption 1 c) and L = maxjLj .

Theorem 1(Convergence of CDSGD with fixed step size, strongly convex case): Let Assumptions 1, 2
and 3 hold. The iterates of CDSGD (Algorithm 1) satisfy the following inequality ∀k ∈ N, when the
step size satisfies

0 < α ≤ ζ1 − (1− λN (Π))Qm
γmQm

E[V (xk)− V ∗] ≤ (1− αĤζ1)k−1(V (x1)− V ∗) +
α2γ̂Q

2

k−1∑
l=0

(1− αĤζ1)l

= (1− (αHm + 1− λ2(Π))ζ1)k−1(V (x1)− V ∗)

+
(α2γm + α(1− λN (Π)))Q

2

k−1∑
l=0

(1− (αHm + 1− λ2(Π))ζ1)l

(25)

Proof. Recalling Lemma 2 and using Eq. 10 yield that

E[V (xk+1)]− V (xk) ≤ −(ζ1 −
γ̂

2
αQm)α‖∇V (xk)‖2 +

γ̂

2
α2Q

≤ −1

2
αζ1‖∇(xk)‖2 +

α2γ̂Q

2

≤ −αζ1Ĥ(V (xk)− V ∗) +
α2γ̂Q

2

(26)

The second inequality follows from the relation: α ≤ ζ1
γ̂Qm

, which is implied by: α ≤
ζ1−(1−λN (Π))Qm

γmQm
. The third inequality follows from the strong convexity. The expectation taken

in the above inequalities is only related to xk+1. Hence, recursively taking the expectation and
subtracting V ∗ from both sides requires the following inequality to hold

E[V (xk+1)− V ∗] ≤ (1− αĤζ1)E[V (xk)− V ∗] +
α2γ̂Q

2
(27)

As 0 < αĤζ1 ≤ Ĥζ21
γ̂Qm

≤ Ĥζ21
γ̂ζ21

= Ĥ
γ̂ ≤ 1, the conclusion follows by applying Eq. 27 recursively

through iteration k ∈ N.

Theorem 2(Convergence of CDSGD with fixed step size, nonconvex case): Let Assumptions 1, 2,
and 3 hold. The iterates of CDSGD (Algorithm 1) satisfy the following inequality ∀m ∈ N, when the
step size satisfies

0 < α ≤ ζ1 − (1− λN (Π))Qm
γmQm

E[

m∑
k=1

‖∇V (xk)‖2] ≤ γ̂mαQ

ζ1
+

2(V (x1)− Vinf)

ζ1α

=
(γmα+ 1− λN (Π))mQ

ζ1
+

2(V (x1)− Vinf)

ζ1α

(28)

Proof. Recalling Lemma 2, and also taking the expectation lead to the following relation,

E[V (xk+1)]− E[V (xk)] ≤ −(ζ1 −
γ̂αQm

2
)αE[‖∇V (xk)‖2] +

γ̂α2Q

2
(29)

As the step size satisfies that α ≤ ζ1
γ̂Qm

, it results in

E[V (xk+1)]− E[V (xk)] ≤ −ζ1α
2

E[‖∇V (xk)‖2] +
α2γ̂Q

2
(30)
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Applying the above inequality from 1 to m and summing them up can give the following relation

Vinf − V (x1) ≤ E[V (xk+1)]− V (x1) ≤ −ζ1α
2

m∑
k=1

E[‖∇V (xk)‖2] +
mα2γ̂Q

2
(31)

The last inequality follows from the Lemma 3. Rearrangement of the above inequality and substituting
γ̂ = γm + α−1(1− λN (Π)) into it yield the desired result.

7.2 Proof with Diminishing Step Size

From results presented in section 4, it can be concluded that when the step size is fixed, the function
value can only converge near the optimal value. However, in many deep learning models, noisy
gradient is quite common due to the random data sampling. Hence, such a situation requires the step
size to be adaptive and then with noise, the function value sequence is able to converge to the optimal
value. Let {αk} be defined as a diminishing step size sequence that satisfies the following properties:

αk > 0,

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞

The implication of the above properties is that limk→∞ αk = 0. The next proposition states that when
the step size is diminishing, consensus can be achieved asymptotically, i.e., limk→∞ E[‖xjk − sk‖] =
0.
Proposition 2. (Consensus with diminishing step size) Let Assumptions 1 and 2 hold. The iterates of
CDSGD (Algorithm 1) satisfy the following inequality ∀k ∈ N, when αk is diminishing,

lim
k→∞

E[‖xjk − sk‖] = 0 (32)

The proof is adapted from the Lemma 1 in [26], Lemmas 5 and 6 in [30].

Recalling the algorithm CDSGD

xk+1 = wk − αkg(xk) = xk − αk(g(xk) +
1

αk
(xk −wk))

We define∇Ĵ i(xk) = ∇J i(xk, αk) = g(xk)+ 1
αk

(xk−wk), and the following Lyapunov function

V̂ (x) = V (x, αk) :=
N

n
1TF(x) +

1

2αk
‖x‖2I−Π (33)

The general Lyapunov function is a function of the diminishing step size αk. However, the step size is
independent of the variable x such that it only affects the magnitude of ‖x‖2I−Π along with iterations.
Note, from Proposition 2, we have that each agent eventually reaches the consensus with diminishing
step size. Hence, the term 1

2αk
‖x‖2I−Π should not increase with increase in k as the step size αk → 0

for k → ∞. To show that CDSGD with diminishing step size enables convergence to the optimal
value, the necessary lemmas and assumptions are directly used from the previous part of the paper
with modified constants.

We next show that the Lyapunov function and stochastic Lyapunov gradient with the diminishing step
size are bounded. More formally, we aim to show that ‖∇Ĵ i(xk)‖ is bounded above for all k ∈ N.
We have, ‖∇Ĵ i(xk)‖ ≤ ‖g(xk)‖+ 1

αk
‖(I −Π)xk‖ and g(xk) is bounded. Therefore, we have to

show that 1
αk
‖(I −Π)xk‖ is bounded for all k ∈ N.

Lemma 5. Let Assumptions 1 and 2 hold. The iterates of CDSGD (Algorithm 1) satisfy the following
inequality ∀k ∈ N, when the step size is diminishing and satisfies that

0 < α0 ≤
ζ̂1 − (1− λN (Π))Q̂m

γmQ̂m
,

1

αk
E[‖(I −Π)xk‖] <∞ (34)

and
lim
k→∞

E[‖(I −Π)xk‖] = 0. (35)

ζ̂1, Q̂m correspond to V̂ .
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The proof of Lemma 5 requires another auxiliary technical lemma as follows.
Lemma 6. Let Assumptions 1 and 2 hold. The iterates of CDSGD (Algorithm 1) satisfy the following
inequality ∀k ∈ N, when the step size is diminishing and satisfies that

0 < α0 ≤
ζ̂1 − (1− λN (Π))Q̂m

γmQ̂m
,

∞∑
k=2

αkE[‖(I −Π)xk‖] <∞. (36)

Proof. Recalling the CDSGD algorithm,

xk+1 = Πxk − αkg(xk) (37)

Applying the above equality from 1 to k − 1 yields that

xk = Πk−1x1 −
k−1∑
l=1

αlΠ
k−1−lg(xl) (38)

Setting x1 = 0 results in that xk = −
∑k−1
l=1 αlΠ

k−1−lg(xl). With this setup, we have
∞∑
k=2

αk‖(I −Π)xk‖ ≤
∞∑
k=2

αk‖I −Π‖‖xk‖

≤
∞∑
k=2

αk‖
k−1∑
l=1

αlΠ
k−1−lg(xl)‖

≤
∞∑
k=2

αk

k−1∑
l=1

αl‖Πk−1−lg(xl)‖

≤
∞∑
k=2

αk

k−1∑
l=1

αl‖Πk−1−l‖‖g(xl)‖

≤
∞∑
k=2

αk

k−1∑
l=1

αl‖Π‖k−1−l‖g(xl)‖

(39)

With the step size being nonincreasing, taking expectation on both side leads to

E[

∞∑
k=2

αk‖(I −Π)xk‖] ≤
∞∑
k=2

k−1∑
l=1

α2
l ‖Π‖k−1−lE[‖g(xl)‖] (40)

As we discussed earlier, we consider that there exists a constant L that bounds E[‖g(xk)‖] from
above for k ∈ N. Thus, the following relation can be obtained

E[

∞∑
k=2

αk‖(I −Π)xk‖] ≤
∞∑
k=2

k−1∑
l=1

α2
l λ2(Π)k−1−lE[‖g(xl)‖]

≤ L
∞∑
k=2

k−1∑
l=1

α2
l λ2(Π)k−1−l

(41)

As
∑∞
k=1 α

2
k <∞ and λ2(Π) < 1 then by Lemma 5 in [30], the desired result follows.

Proof of Lemma 5. We first define that hk = ‖(I−Π)xk‖
αk

. Hence, the result of Lemma 6 can be
rewritten as

∑∞
k=2 α

2
kE[hk] < ∞. By defining hm = sup{E[hk]}, we have hm

∑∞
k=2 α

2
k < ∞,

which implies that hm <∞ as
∑∞
k=1 α

2
k <∞. Hence, it is immediately seen that E[hk] <∞. As

k →∞, αk → 0 and 1
αk

E[‖(I−Π)xk‖] <∞, then limk→∞ E[‖(I−Π)xk‖] = 0, which completes
the proof.
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The implication of Lemma 5 is two folds: One can observe that V̂ (xk) and∇Ĵ i(xk) are finite even
with diminishing step size such that based on Definition 2 there exists a finite positive constant γ′ to
allow the smoothness of V̂ (xk) for all k ∈ N to hold true; another observation is that Assumption 3
still can be used in the main results. It can also be concluded that V̂ is strongly convex with some
constant 0 ≤ H ′ <∞, where H ′ corresponds to V̂ .
Theorem 3. (Convergence of CDSGD with diminishing step size, strongly convex case) Let Assump-
tions 1, 2 and 3 hold. The iterates of CDSGD (Algorithm 1) satisfy the following inequality ∀k ∈ N,
when the step size is diminishing and satisfies that

0 < α0 ≤
ζ̂1 − (1− λN (Π))Q̂m

γmQ̂m
,

E[V̂ (xk)− V̂ ∗] ≤ βk−2(V̂ (x1)− V̂ ∗) +
γ′Q̂

2

k−2∑
p=1

βk−p−2α2
p

+
γ′Q̂α2

k−1

2

(42)

where sup{1− αkH ′ζ̂1} ≤ β < 1, and γ′, Q̂ correspond to V̂ .

Proof. As α1 ≤ ζ̂1
γ′Q̂m

, then it can be obtained that αkγ′Q̂m ≤ α1γ
′Q̂m ≤ ζ̂1 for all k ∈ N.

Recalling Lemma 2 and Eq. 10, subtracting V̂ ∗ from both sides, and taking the expectation yield the
following relation

E[V̂ (xk+1)− V̂ ∗] ≤ (1− αkH ′ζ̂1)E[V̂ (xk)− V̂ ∗] +
γ′Q̂α2

k

2
(43)

Applying the above inequality recursively can give the following relation

E[V̂ (xk+1)− V̂ ∗] ≤ (1− αkH ′ζ̂1)(1− αk−1H
′ζ̂1)E[V̂ (xk−1)− V̂ ∗]

+ (1− αk−1H
′ζ̂1)

γ′Q̂α2
k−1

2
+
γ′Q̂α2

k

2

(44)

By induction, the following can be obtained

E[V̂ (xk+1)− V̂ ∗] ≤
k∏
q=1

(1− αqH ′ζ̂1)(V̂ (x1)− V̂ ∗) +
γ′Q̂

2

k−1∑
p=1

k∏
r=p+1

(1− αrH ′ζ̂1)α2
p

+
γ′Q̂α2

k

2

(45)

As H ′ ≤ γ′, it can be derived that 0 < αkH
′ζ̂1 ≤ 1 for all k ∈ N. Therefore, 1− αkH ′ζ̂1 ∈ [0, 1)

such that we can define a positive constant β satisfies that sup{1 − αkH ′ζ̂1} ≤ β < 1. Hence,
combining the last inequalities together, we have

E[V̂ (xk+1)− V̂ ∗] ≤ βk−1(V̂ (x1)− V̂ ∗) +
γ′Q̂

2

k−1∑
p=1

βk−p−1α2
p

+
γ′Q̂α2

k

2

(46)

which completes the proof by replacing k + 1 with k.

Remark 4. From Theorem 3, we can conclude that the function value sequence {V̂ (xk)} asymptoti-
cally converges to the optimal value. (This holds regardless of whether the “gradient noise" parameter
Q̂ is zero or not.) In fact, we can establish the rate of convergence as follows: the first term on the
right hand side decreases exponentially if β. < 1, and the last term decreases as quickly as α2

k. For
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the middle term, we can use Lemma 3.1 of [31] that establishes bounds on the convolution of two
scalar sequences. If we choose t > 0 such that αk = 1

kε+t , where ε ∈ (0.5, 1], then the necessary
growth conditions on αk are satisfied; substituting this into Theorem 3 yields the stated convergence
rate of O( 1

kε ). In practice, αk can be made adaptive to Θ
kε+t for any constant Θ > 0.

Similarly, we also present the convergence results for the nonconvex objective functions.

Theorem 4. (Convergence of CDSGD with diminishing step size, nonconvex case) Let Assump-
tions 1, 2 and 3 hold. The iterates of CDSGD (Algorithm 1) satisfy the following inequality ∀m ∈ N,
when the step size is diminishing and satisfies that

0 < α0 ≤
ζ̂1 − (1− λN (Π))Q̂m

γmQ̂m
,

E[

m∑
k=1

αk‖∇V̂ (xk)‖2] ≤ 2(V̂ (x1)− V̂inf )

ζ̂1
+
γ′Q̂

ζ̂1

m∑
k=1

α2
k (47)

Proof. Assume that αkγ′Q̂m ≤ ζ̂1 for all k ∈ N. Based on Eq. 29 we consider the diminishing step
size and Lyapunov function, then the following relation can be obtained

E[V̂ (xk+1)]− E[V̂ (xk)] ≤ −(ζ̂1 −
γ′αkQ̂m

2
)αkE[‖∇V̂ (xk)‖2] +

γ′αkQ̂

2
(48)

Combining the condition for the step size yields the following inequality

E[V̂ (xk+1)]− E[V̂ (xk)] ≤ − ζ̂1αk
2

E[‖∇V̂ (xk)‖2] +
γ′αkQ̂

2
(49)

Applying the last inequality from 1 to m and summing them up,

V̂inf − E[V̂ (x1)] ≤ E[V̂ (xk+1)]− E[V̂ (x1)] ≤

− ζ̂1
2

m∑
k=1

αkE[‖∇V̂(xk)‖2] +
γ′Q̂

2

m∑
k=1

α2
k

(50)

Dividing by ζ̂1/2 and rearranging the terms lead to the desired results.

Remark 5. Compared to Theorem 2, Theorem 4 has shown the decaying of gradient ‖∇V̂ (xk)‖ even
with noise when the step size is diminishing in the nonconvex case. This is because when k →∞,
the right hand side of Eq. 47 remains finite such that ‖∇V̂ (xk)‖2 approaches 0.

7.3 Additional pseudo-codes of the algorithms

Momentum methods have been regarded as effective methods to speed up the convergence in
numerous optimization problems. While the Nesterov Momentum method has been extended widely
to generate variants with provable global convergence properties, the global convergence analysis of
Polyak Momentum methods is still quite challenging and an active research topic. Pseudo-codes
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Figure 3: Average training (solid lines) and validation (dash lines) loss for (a) CDSGD algorithm
with SGD algorithm and (b) CDMSGD with Federated averaging method

of CDSGD combined with Polyak momentum and Nesterov momentum methods are presented below.

Algorithm 2: CDSGD with Polyak Momentum
Input :m, α, N , µ (momentum term)
Initialize:xj0, vj0
Distribute the training data set to N agents
For each agent:
for k = 0 : m do

Randomly shuffle the corresponding data subset;
wjk+1 =

∑
l∈Nb(j) πjlx

l
k

vjk+1 = µvjk − αkgj(x
j
k)

xjk+1 = wjk+1 + vjk+1

end

Algorithm 3: CDSGD with Nesterov Momentum
Input :m, α, N , µ
Initialize:xj0, vj0
Distribute the training data set to N agents
For each agent:
for k = 0 : m do

Randomly shuffle the corresponding data subset
wjk+1 =

∑
l∈Nb(j) πjlx

l
k

vjk+1 = µvjk − αkgj(x
j
k + µvjk)

xjk+1 = wjk+1 + vjk+1

end

7.4 Additional Experimental Results

We begin with a discussion on the training loss profiles for the CIFAR-10 results presented in the
main body of the paper.

7.4.1 Comparison of the loss for benchmark methods

Figure 3 (a) shows the loss (in log scale) with respect to the number of epochs for SGD and CDSGD
algorithms. The solid curve means training and the dash curve indicates validation. From the loss
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Figure 4: Average training (solid lines) and validation (dash lines) (a) loss and (b) accuracy for SGD,
CDSGD, CDMSGD and Federated averaging method for the CIFAR-100 dataset (c) loss and (d)
accuracy for SGD, CDSGD, CDMSGD and Federated averaging method for the MNIST dataset

results, it can be observed that SGD has the sublinear convergence rate for training and dominates
among the two methods during the training process. While for the validation, SGD performs poorly
after around 70 epochs. However, CDSGD shows linear convergence rate (in log scale as discussed
in the analysis) for both training and validation. Though, it takes a lot of more time compared to SGD
for convergence, it eventually performs better than SGD in the validation data and the gap between
the training and validation loss (i.e., the generalization gap [29]) is very less compared to that in SGD.

7.4.2 Results on CIFAR-100 dataset

For the experiments on the CIFAR-100 dataset, we use a CNN similar to that used for the CIFAR-10
dataset. While the results of CIFAR-100 also converges fast for SGD, CDMSGD and Federated
Averaging SGD (FedAvg) algorithms (CDMSGD being the slowest) as shown in Figure 4, it can be
seen that eventually, the loss converges better than the FedAvg algorithm. Similar to the observation
made for the CIFAR-10 dataset, we observe that CDMSGD achieves significantly higher validation
accuracy compared to FedAvg while approaching similar accuracy level as that of (centralized) SGD.
It can also be seen that as expected CDSGD’s convergence is very slow compared to the others.

7.4.3 Results on MNIST dataset

For the experiments on the MNIST dataset, the model used for training is a Deep Neural Network
with 20 Fully Connected layers consisting of 50 ReLU units each and the output layer with 10
units having softmax activation. The model was trained using the catagorical cross-entropy loss.
Figure 4(c & d) shows the loss and accuracy obtained over the number of epochs. In this case, while
the accuracy levels are significantly higher as expected for the MNIST dataset, the trends remain
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Figure 5: Average training (solid lines) and validation (dash lines) (a) loss and (b) accuracy for SGD,
MSGD and CDMSGD method for the MNIST dataset for decaying step size. (c) loss and (d) accuracy
for CDMSGD for the MNIST data with different learning rates

consistent with the results obtained for the other benchmark datasets of CIFAR-10 and CIFAR-100.
Note, the generalization gap between the training and validation data for all the methods are very less
(least for CDMSGD).

7.4.4 Effect of the decaying step size

Based on the analysis presented in section 7.2, it is evident that decaying step size has a significant
effect on the accuracy as well as convergence. A performance comparison of SGD, Momentum SGD
(MSGD) and CDMSGD with a decaying stepsize is performed using the MNIST dataset. It can be
seen that the performance of the CDMSGD with decaying step size becomes slightly better than SGD
with decaying step size while (centralized) MSGD has the best performance. Although CDMSGD
sometimes suffers from large fluctuations, it demonstrates the least generalization gap among all the
algorithms.

7.4.5 Effect of step size

The analysis presented in this paper shows that choice of step size is critical in terms of convergence
as well as accuracy. To explore this aspect experimentally, we compare the performance of CDMSGD
for three different fixed step sizes using MNIST data. The results are presented in 5 (c) & (d),
where the (fixed) step size was varied from 0.1(1E − 1) to 0.01(1E − 2) and then to 0.001(1E − 3).
While the fastest convergence of the algorithm is observed with step size 0.1, the level of consensus
(indicated by the variance among the agents) is quite unstable. On the other hand, with very low step
size 0.001, the level of consensus is quite stable (moving average of variance remains 0). However,
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the convergence is extremely slow. This observation conforms to the theoretical analysis described in
the paper as well as justifies the choice of step size 0.01 in the experiments presented above.
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