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1 Additional Remarks

In this supplementary material, we present additional remarks, proofs and experiments related to
our main submission. When referring to equations, lemmas and propositions in the supplementary
material, we use the prefix “SM”. Equations and references from the main paper are referred to
without prefix.

1.1 On Suppressing the Discriminatory Variable at Apply Time

In many applications the protected variable cannot be revealed to the classification algorithm. In this
case, the train-time discrimination guarantees are preserved at apply time if the Markov relationship
D → X̂ → Ŷ (i.e. pŶ |X̂,D = pŶ |X̂ ) holds since, in this case,

pỸ |D(ỹ|d) ≈
∑
x̂

pŶ |X̂(ỹ|x̂)pX̂|D(x̂|d) = pŶ |D(ỹ|d). (SM.1)

Thus, given that the distribution pD,X,Y is known, the guarantees provided during training still hold
when applied to fresh samples if the additional constraint pX̂,Ŷ |D,X,Y = pŶ |X̂pX̂|D,X,Y is satisfied.
We refer to (6) with the additional constraint pX̂,Ŷ |D,X,Y = pŶ |X̂pX̂|D,X,Y as the suppressed
optimization formulation (SOF). Alas, since the added constraint is non-convex, the SOF is not
a convex program, despite being convex in pX̂|D,X,Y for a fixed pŶ |X̂ and vice-versa (i.e. it is
biconvex). We propose next two strategies for addressing this problem.

1. The first approach is to restrict pŶ |X̂ = pY |X and solve (6) for pX̂|D,X,Y . If ∆(·, ·) is an
f -divergence, then

∆
(
pX,Y , pX̂,Ŷ

)
= Df

(
pX,Y ‖pX̂,Ŷ

)
=
∑
x,y

pX̂,Ŷ (x, y)f

(
pX,Y (x, y)

pX̂,Ŷ (x, y)

)

≥
∑
x

pX̂(x)f

(∑
y

pŶ |X̂(x|y)
pX,Y (x, y)

pX̂,Ŷ (x, y)

)
= Df

(
pX‖pX̂

)
,
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where the inequality follows from convexity of f . Since the last quantity is achieved by
setting pŶ |X̂ = pY |X , this choice is optimal in terms of the objective function. It may,
however, render the constraints in (6) infeasible. Assuming feasibility is maintained, this
approach has the added benefit that a classifier fθ(x) ≈ pY |X(·|x) can be trained using the
original (non-perturbed) data, and maintained for classification during apply time.

2. Alternatively, a solution can be found through alternating minimization: fix pŶ |X̂ and solve
the SOF for pX̂|D,X,Y , and then fix pX̂|D,X,Y as the optimal solution and solve the SOF for
pŶ |X̂ . The resulting sequence of values of the objective function is non-increasing, but may
converge to a local minima.

1.2 A Note on Estimation and Discrimination

There is a close relationship between estimation and discrimination. If the protected variableD can be
reliably estimated from the outcome variable Y , then it is reasonable to expect that the discrimination
control constraint (1) does not hold for small values of εy,d. We make this intuition precise in the
case when J is given in (3) next.

More specifically, we prove that if the advantage of estimatingD from Y over a random guess is large,
then there must exist a value of d and y such that J(pY |D(y|d), pYT

(y)) is also large. Thus, standard
estimation methods can be used to detect the presence of discrimination: if an estimation algorithm
can estimate D from Y , then discrimination may be present. Alternatively, if discrimination control
is successful, then no estimator can significantly improve upon a random guess when estimating D
from Y .

We denote the highest probability of correctly guessing D from an observation of Y by Pc(D|Y ),
where

Pc(D|Y ) , max
D→Y→D̂

Pr
(
D = D̂

)
, (SM.2)

and the maximum is taken across all estimators pD̂|Y that satisfy the Markov conditionD → Y → D̂.
For D and Y defined over finite supports, this is achieved by the maximum a posteriori (MAP)
estimator and, consequently,

Pc(D|Y ) =
∑
y∈Y

pY (y) max
d∈D

pD|Y (d|y). (SM.3)

Let p∗D be the most likely outcome of D, i.e. p∗D , maxd∈D pD(d). The (multiplicative) advantage
over a random guess is given by

Adv(D|Y ) ,
Pc(D|Y )

p∗D
. (SM.4)

The next proposition connects discrimination and estimation. Simply put, it shows that if a protected
variable D can be reliably estimated from the decision variable Y , then Y can discriminate in terms
of D. The proposition is given in terms of discrimination measured as (1), but a similar result holds
for (2).

Proposition SM.1. For D and Y defined over finite support sets, if Adv(D|Y ) > 1 + ε, then for any

pYT
, there exists y ∈ Y and d ∈ D such that

∣∣∣pY |D(y|d)
pYT

(y) − 1
∣∣∣ > ε.

Proof. We show the contrapositive of the statement of the proposition. Assume that∣∣∣∣pY |D(y|d)

pYT
(y)

− 1

∣∣∣∣ ≤ ε ∀y ∈ Y, d ∈ D. (SM.5)

Then

Pc(D|Y ) =
∑
y∈Y

max
d∈D

pD|Y (d|y)pY (y)

=
∑
y∈Y

max
d∈D

pY |D(y|d)pD(d)
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≤
∑
y∈Y

max
d∈D

(1 + ε)pYT
(y)pD(d)

= (1 + ε) max
d∈D

pD(d),

where the inequality follows by noting that (SM.5) implies pY |D(y|d) ≤ (1 + ε)pYT
(y) for all y ∈ Y ,

d ∈ D. Rearranging the terms of the last equality, we arrive at

Pc(D|Y )

maxd∈D pD(d)
≤ 1 + ε,

and the result follows by observing that the left-hand side is the definition of Adv(D|Y ).

2 Proofs

2.1 Proof of Proposition 1

We restate the proposition and provide its proof below.

Proposition 1. Problem (6) is a (quasi)convex optimization if ∆(·, ·) is (quasi)convex and J(·, ·) is
quasiconvex in their respective first arguments (with the second arguments fixed). If discrimination
constraint (2) is used in place of (1), then the condition on J is that it be jointly quasiconvex in both
arguments.

Proof. Considering first the objective function, the distribution pX,Y is a given quantity while

pX̂,Ŷ (x̂, ŷ) =
∑
d,x,y

pD,X,Y (d, x, y)pX̂,Ŷ |D,X,Y (x̂, ŷ|d, x, y)

is seen to be a linear function of the mapping pX̂,Ŷ |D,X,Y , i.e. the optimization variable. Hence
if the statistical dissimilarity ∆(·, ·) is convex in its first argument with the second fixed, then
∆(pX̂,Ŷ , pX,Y ) is a convex function of pX̂,Ŷ |D,X,Y by the affine composition property [Boyd and
Vandenberghe, 2004]. This condition is satisfied for example by all f -divergences [Csiszár and
Shields, 2004], which are jointly convex in both arguments, and by all Bregman divergences [Banerjee
et al., 2005]. If instead ∆(·, ·) is only quasiconvex in its first argument, a similar composition property
implies that ∆(pX̂,Ŷ , pX,Y ) is a quasiconvex function of pX̂,Ŷ |D,X,Y [Boyd and Vandenberghe,
2004].

For discrimination constraint (1), the target distribution pYT
is assumed to be given. The conditional

distribution pŶ |D can be related to pX̂,Ŷ |D,X,Y as follows:

pŶ |D(ŷ|d) =
∑
x̂

∑
x,y

pX,Y |D(x, y|d)pX̂,Ŷ |D,X,Y (x̂, ŷ|d, x, y).

Since pX,Y |D is given, pŶ |D is a linear function of pX̂,Ŷ |D,X,Y . Hence by the same composition
property as above, (1) is a convex constraint, i.e. specifies a convex set, if the distance function J(·, ·)
is quasiconvex in its first argument.

If constraint (2) is used instead of (1), then both arguments of J are linear functions of pX̂,Ŷ |D,X,Y .
Hence (2) is convex if J is jointly quasiconvex in both arguments.

Lastly, the distortion constraint (4) can be expanded explicitly in terms of pX̂,Ŷ |D,X,Y to yield∑
x̂,ŷ

pX̂,Ŷ |D,X,Y (x̂, ŷ|d, x, y)δ((x, y), (x̂, ŷ)) ≤ cd,x,y.

Thus (4) is a linear constraint in pX̂,Ŷ |D,X,Y regardless of the choice of distortion metric δ.

2.2 Proof of Proposition 2

We restate the proposition next.
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Proposition 2. Let pD,X,Y be the empirical distribution obtained from n i.i.d. samples that is used
to determine the mapping pŶ ,X̂|X,Y,D, and qD,X,Y be the true distribution of the data. In addition,
denote by qD,X̂,Ŷ the joint distribution after applying pŶ ,X̂|X,Y,D to samples from qD,X,Y . If for all

y ∈ Y , d ∈ D we have pY,D(y, d) > 0, J
(
pŶ |D(y|d), pYT

(y)
)
≤ ε, where J is given in (3), and

∆
(
pX,Y , pX̂,Ŷ

)
=
∑
x,y

∣∣∣pX,Y (x, y)− pX̂,Ŷ (x, y)
∣∣∣ ≤ µ,

then with probability 1− β,

max
{
J
(
qŶ |D(y|d), pYT

(y)
)
− ε,∆

(
qX,Y , qX̂,Ŷ

)
− µ

}
.

√
m

n
log
(

1 +
n

m

)
− log β

n
.

(SM.6)

As discussed in the main text, observe that hidden within the big-O terms in Proposition 2 are
constants that depend on the probability of the least likely symbol and the alphabet size. Moreover,
the upper bounds become loose if pY,D(y, d) can be made arbitrarily small. Thus, it is necessary to
assume that pY,D(y, d) is fixed and bounded away from zero. If the dimensionality of the support
sets of D,X and Y is large, and the number of samples n is limited, then a dimensionality reduction
step (e.g. clustering) may be necessary in order to assure that discrimination control and utility are
adequately preserved at test time. Proposition 2 and its proof can be used to provide an explicit
estimate of the required reduction. It is also clear from the proof that an equivalent upper-bound on
the convergence rate can be obtained when the discrimination constraint is of the form (2), i.e. for all
y ∈ Y , d ∈ D we have J

(
pŶ |D(y|d1), pYT

(y|d2)
)
≤ ε.

Finally, we also note that if there are insufficient samples to reliably estimate qD,X,Y (d, x, y) for
certain values (d, x, y) ∈ D × X × Y , then, for those groups (d, x), it is statistically challenging to
verify discrimination and thus control may not be meaningful.

The proposition is a consequence of the following elementary lemma.
Lemma SM.1. Let p(x), q(x) and r(x) be three fixed probability mass functions with the same
discrete and finite support set X , c1 , minx∈X

p(x)(1−p(x))
3(1+p(x))2 > 0 and pm , minx p(x) > 0. Then if

DKL (p‖q) ≤ τ ≤ c1 (SM.7)

and for all x ∈ X and

γ1 ≤
p(x)

r(x)
≤ γ2, (SM.8)

then for all x ∈ X and g(τ, pm) ,
√

3τ
pm

γ1 exp (−g(τ, pm)) ≤ q(x)

r(x)
≤ γ2 exp (g(τ, pm)) . (SM.9)

Proof. We assume τ > 0, otherwise p(x) = q(x) ∀x ∈ X and we are done. From (SM.7) and the
Data Processing Inequality for KL-divergence, for any x ∈ X

p(x) log
p(x)

q(x)
+ (1− p(x)) log

1− p(x)

1− q(x)
≤ τ. (SM.10)

Let x be fixed, and, in order to simplify notation, denote c , p(x). Assuming, without loss of
generality,

q(x) = c exp
(
−ατ
c

)
,

then (SM.10) implies

f(α) , α− 1− c
τ

log

(
1− c exp

(
−ατc

)
1− c

)
≤ 1. (SM.11)
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The Taylor series of f(α) around 0 has the form

f(α) =

∞∑
n=2

(−1)n

n!

(
τ

(1− c)c

)n−1
An−1(c)αn, (SM.12)

where An(c) is the Eulerian polynomial, which is positive for c > 0 and satisfies A1(c) = 1 and
A2(c) = (1 + c). First, assume α ≤ 0. Then f(α) can be lower-bounded by the first term in its
Taylor series expansion since all the terms in the series are non-negative. From (SM.11),

τα2

2(1− c)c
≤ f(α) ≤ 1. (SM.13)

Consequently,

α ≥ −
√

2(1− c)c
τ

. (SM.14)

Now assume α ≥ 0. Then the Taylor series (SM.12) becomes an alternating series, and f(α) can be
lower-bounded by its first two terms

τα2

2(1− c)c
− (1 + c)τ2α3

6(1− c)2c2
≤ f(α) ≤ 1. (SM.15)

The term in the l.h.s. of the first inequality satisfies

τα2

3(1− c)c
≤ τα2

2(1− c)c
− (1 + c)τ2α3

6(1− c)2c2
(SM.16)

as long as α ≤ c(1−c)
(1+c)τ . Since the lhs is larger than 1 when α >

√
3(1−c)c

τ , then it is a valid
lower-bound for f(α) in the entire interval where f(α) ≤ 1 and α ≥ 0 as long as√

3(1− c)c
τ

≤ c(1− c)
(1 + c)τ

⇔ τ ≤ c(1− c)
3(1 + c)2

, (SM.17)

which holds by assumption in the Lemma. Thus,

α ≤
√

3(1− c)c
τ

, (SM.18)

and combining the previous equation with (SM.14)

−
√

2(1− c)c
τ

≤ α ≤
√

3(1− c)c
τ

(SM.19)

Finally, since q(x)
p(x) = exp(−ατ/p(x)), from the previous inequalities

exp

(
−

√
3(1− p(x))τ

p(x)

)
≤ q(x)

p(x)

≤ exp

(√
2(1− p(x))τ

p(x)

)
, (SM.20)

and the result follows by further lower bounding the lhs by γ1r(x) ≤ p(x) and upper bounding the
rhs by p(x) ≥ γ2r(x)

The previous Lemma allows us to derive the result presented in Proposition 2.

Proof of Proposition 2. Let m , |X ||Y|D|. The distribution pD,X,Y is the type [Cover and Thomas,
2006][Chap. 11] of n observations of qD,X,Y . Then1, from [Csiszár and Shields, 2004][Corollary
2.1], for τ > 0

Pr (DKL(pD,X,Y ‖qD,X,Y ) ≥ τ) ≤
(
n+m− 1

m− 1

)
e−nτ

1Other bounds on the KL-divergence between an observed type and its distribution could be used, such as
[Cover and Thomas, 2006][Thm. 11.2.2], without changing the asymptotic result.
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≤
(
e(n+m)

m

)m
e−nτ .

From the Data Processing Inequality for KL-divergence, if DKL(pD,Ŷ ‖qD,Ŷ ) ≤
DKL(pD,X,Y ‖qD,X,Y ), and, consequently,

Pr
(
DKL(pD,Ŷ ‖qD,Ŷ ) ≤ τ

)
≥ Pr (DKL(pD,X,Y ‖qD,X,Y ) ≤ τ)

≥ 1−
(
e(n+m)

m

)m
e−nτ .

If DKL(pD,Ŷ ‖qD,Ŷ ) ≤ τ , then since 0 ≤ DKL(pD‖qD), we have

DKL(pŶ |D(·|d)‖qŶ (·|d)) ≤ τ

pD(d)
∀d ∈ D.

Choosing

τ =
1

n
log

(
1

β

(
e(n+m)

m

)m)
, (SM.21)

then, with probability 1− β, for all d ∈ D
DKL(pŶ |D(·|d)‖qŶ (·|d))

≤ 1

npD(d)
log

(
1

β

(
e(n+m)

m

)m)
.

Assuming that m, and cm , miny∈Y,d∈D pD,Ŷ (d, y) > 0 constant, from the proof of Lemma SM.1

and, more specifically, inequalities (SM.20), as long as τ ≤ mind,y
pŶ ,D(y,d)(1−pŶ |D(y|d))

3(1+pŶ |D(y|d))2 ,

(1− ε) exp (−h(n, β)) ≤
qŶ |D(y|d)

pYT (y)
(SM.22)

≤ (1 + ε) exp (h(n, β)) , (SM.23)

where

h(n, β) ,

√
3

ncm
log

(
1

β

(
e(n+m)

m

)m)
. (SM.24)

Observe that

h(n, β) = Θ

(√
1

n
log

n

β

)
.

Since for x sufficiently small ex ≈ 1 + x, we have∣∣∣qŶ |D(y|d)− pYT
(y)
∣∣∣

pYT
(y)

≤ ε+ Θ

(√
1

n
log

n

β

)
, (SM.25)

proving the first claim.

For the second claim, we start by applying the triangle inequality:

∆
(
qX,Y , qX̂,Ŷ

)
≤ ∆

(
pX,Y , pX̂,Ŷ

)
+ ∆ (qX,Y , pX,Y )

+ ∆
(
qX̂,Ŷ , pX̂,Ŷ

)
≤ µ+ ∆ (qX,Y , pX,Y )

+ ∆
(
qX̂,Ŷ , pX̂,Ŷ

)
. (SM.26)

Now assume DKL(pD,X,Y ‖qD,X,Y ) ≤ τ . Then the Data Processing Inequality for KL-divergence
yields DKL(pX,Y ‖qX,Y ) ≤ τ and DKL(pX̂,Ŷ ‖qX̂,Ŷ ) ≤ τ . In addition, from Pinsker’s inequality,

∆ (qX,Y , pX,Y ) ≤ 2
√

2DKL(pX,Y ‖qX,Y )
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≤ 2
√

2τ ,

and, analogously, ∆
(
qX̂,Ŷ , pX̂,Ŷ

)
≤ 2
√

2τ . Thus (SM.26) becomes

∆
(
qX,Y , qX̂,Ŷ

)
≤ µ+ 4

√
2τ . (SM.27)

Selecting τ as in (SM.21), then, with probability 1− β,

∆
(
qX,Y , qX̂,Ŷ

)
≤ µ+ 4

√
2

n
log

(
1

β

(
e(n+m)

m

)m)
, (SM.28)

and the result follows.

3 ProPublica’s COMPAS Dataset

Recidivism refers to a person’s relapse into criminal behavior. It has been found that about two-thirds
of prisoners in the US are re-arrested after release [Durose et al., 2014]. It is important therefore
to understand the recidivistic tendencies of incarcerated individuals who are considered for release
at several points in the criminal justice system (bail hearings, parole, etc.). Automated risk scoring
mechanisms have been developed for this purpose and are currently used in courtrooms in the US, in
particular the proprietary COMPAS tool by Northpointe [Northpointe Inc.].

Recently, ProPublica published an article that investigates racial bias in the COMPAS algorithm
[ProPublica, 2016], releasing an accompanying dataset that includes COMPAS risk scores, recidivism
records, and other relevant attributes [ProPublica, 2017]. A basic finding is that the COMPAS
algorithm tends to assign higher scores to African-American individuals, a reflection of the a priori
higher prevalence of recidivism in this group. The article goes on to demonstrate unequal false positive
and false negative rates between African-Americans and Caucasian-Americans, which has since been
shown by Chouldechova [2016] to be a necessary consequence of the calibration of the model and
the difference in a priori prevalence. In follow-up work, Chouldechova [2016] and others analyzed
the recidivism and COMPAS scores and showed that, within a given COMPAS score range, the true
recidivism rate is approximately independent of race, i.e. the score is well-calibrated. Chouldechova
[2016] further showed that a consequence of this calibration is that certain demographic groups may
experience higher false positive or false negative rates because their group has higher or lower a
priori prevalence of recidivism.

In this work, our interest is not in the debate surrounding the COMPAS algorithm but rather in
the underlying recidivism data [ProPublica, 2017]. Using the proposed data transformation ap-
proach, we demonstrate the technical feasibility of mitigating the disparate impact of recividism
records on different demographic groups while also preserving utility and individual fairness. (We
make no comment on the associated societal considerations.) Considering only shown African-
American and Caucasian individuals, Chouldechova [2016] show that the true recidivism rates for
a group of individuals with the same COMPAS rank is approximately independent of the race,
i.e., p(recidivism|compas rank, race) is close for both the races. However, members of certain
races can still be penalized more heavily because their group has a higher recidivism prevalence,
p(recidivism|race). We set out to mitigate this disparate impact, while preserving utility and individ-
ual fairness using our proposed data transformation approach.

As discussed in the main text, we select severity of charge, number of prior crimes, and age category
to be the decision variables (X). The outcome variable (Y ) is a binary indicator of whether the
individual recidivated (re-offended), and race and gender are set to be the protected variables (D)2.
The encoding of the decision and discrimination variables is described in Table 1. The dataset was
processed to contain around 5k records.

4 Additional Applications to Datasets

We present next additional results derived by applying the proposed optimization formulation to the
COMPAS and the UCI Adult dataset. These numerical results aim to demonstrate the versatility

2In the main text we considered only race as the protected variable D. Here, we consider both race and
gender.
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Table 1: ProPublica dataset features.
Feature Values Comments

Recidivism (binary) {0, 1} 1 if re-offended, 0 otherwise
Gender {Male, Female}
Race {Caucasian, African-American} Races with small samples removed

Age category {< 25, 25− 45, > 45} years of age
Charge degree {Felony, Misdemeanor} For the current arrest
Prior counts {0, 1− 3, > 3} Number of prior crimes

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ε

0.000

0.002

0.004

0.006

0.008

0.010

O
bj

ec
tiv

e 
V
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ue

Infeasible

Objective vs. ε

Figure 1: Objective vs. discrimination parameter ε for distortion constraint c = 0.25.

of our formulation in terms of utility metrics (here we use KL-divergence in addition to the total
variation metric used in the main text), and illustrate the trade-off between discrimination control and
utility. In addition, we also discuss the optimized probabilistic mappings produced by our formulation
for both datasets. These mappings capture different discrimination patterns and societal biases that
exist within each dataset.

4.1 A Closer Look at Randomized Mappings for ProPublica’s COMPAS Recidivism Data

Using the proposed data transformation approach, we demonstrate the technical feasibility of mitigat-
ing the disparate impact of recividism records on different demographic groups while also preserving
utility and individual fairness. (We make no comment on the associated societal considerations.)

Specific Form of Optimization. For the results in this section, we specialize our general formulation
in (6) by setting the utility measure ∆(pX,Y , pX̂,Ŷ ) to be the KL divergence DKL(pX,Y ‖pX̂,Ŷ ). For
discrimination control, we use (2), with J given in (3), while fixing εy,d1,d2 = ε. For the sake of
simplicity, we use the expected distortion constraint in (4) with cd,x,y = c uniformly. For the next
results, the distortion function δ in (4) has the following form. Jumps of more than one category
in age and prior counts are heavily discouraged by setting a high distortion penalty (104) for such
transformations. We impose the same penalty on increases in recidivism (change of Y from 0 to 1).
Both these choices are made to promote individual fairness. Furthermore, for every jump to the next
category for age and prior counts, a penalty of 1 is assessed, and a similar jump incurs a penalty
of 2 for charge degree. Reduction in recidivism (1 to 0) has a penalty of 2. The total distortion for
each individual is the sum of squares of distortions for each attribute of X . These distortion values
were chosen for demonstration purposes to be reasonable to our judgement, and can easily be tuned
according to the needs of a practitioner.

Results. We computed the optimal objective value (i.e., KL divergence) resulting from solving (6)
for different values of the discrimination control parameter ε, when the expected distortion constraint
c = 0.25. Around ε = 0.2, no feasible solution can be found that also satisfies the distortion
constraint. Above ε = 0.59, the discrimination control is loose enough to be satisfied by the original
dataset with just an identity mapping (DKL(pX,Y ‖pX̂,Ŷ ) = 0). In between, the optimal value varies
as a smooth function (Fig. 1).
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Figure 2: Conditional mappings pX̂,Ŷ |X,Y,D with ε = 0.1, and c = 0.5 for: (left) D =

(African-American,Male), less than 25 years (X), Y = 1, (middle) D = (African-American,Male), less
than 25 years (X), Y = 0, and (right) D = (Caucasian,Male), less than 25 years (X), Y = 1. Original charge
degree and prior counts (X) are shown in vertical axis, while the transformed age category, charge degree, prior
counts and recidivism (X̂, Ŷ ) are represented along the horizontal axis. The charge degree F indicates felony
and M indicates misdemeanor. Colors indicate mapping probability values. Columns included only if the sum of
its values exceeds 0.05.

Figure 3: Top row: Percentage recidivism rates in the original dataset as a function of charge degree, age and
prior counts for the overall population (i.e. pY |X(1|x)) and for different groups (pY |X,D(1|x, d)). Bottom row:
Change in percentages due to transformation, i.e. pŶ |X̂,D(1|x, d) − pY |X,D(1|x, d), etc. Values for cohorts
of charge degree, age, and prior counts with fewer than 20 samples are not shown. The discrimination and
distortion constraints are set to ε = 0.1 and c = 0.5 respectively.

We set c = 0.5 and ε = 0.1 for the rest of the experiments. The optimal value of utility measure (KL
divergence) was 0.021. In order to evaluate if discrimination control was achieved as expected, we
examine the dependence of the outcome variable on the discrimination variable before and after the
transformation. Note that to have zero disparate impact, we would like the Ŷ to be independent of
D, but practically it will be controlled by the discrimination control parameter ε. The corresponding
marginals pY |D and pŶ |D are illustrated in Table 2, where clearly Ŷ is less dependent onD compared
to Y . In particular, since an increase in recidivism is heavily penalized, the net effect of the randomized
transformation is to decrease the recidivism risk of males, and particularly African-American males.

The mapping pX̂,Ŷ |X,Y,D produced by the optimization (6) can reveal important insights on the
nature of disparate impact and how to mitigate it. We illustrate this by exploring pX̂,Ŷ |X,Y,D for
the COMPAS dataset next. Fig. 2 displays the conditional mapping restricted to certain socio-
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Table 2: Dependence of the outcome variable on the discrimination variable before and after the proposed
transformation. F and M indicate Female and Male, and A-A, and C indicate African-American and Caucasian.

D Before transformation After transformation
(gender, race) pY |D(0|d) pY |D(1|d) pŶ |D(0|d) pŶ |D(1|d)

F, A-A 0.607 0.393 0.607 0.393
F, C 0.633 0.367 0.633 0.367

M, A-A 0.407 0.593 0.596 0.404
M, C 0.570 0.430 0.596 0.404

Figure 4: Top row: High income percentages in the original dataset as a function of age and education for
the overall population (i.e. pY |X(1|x)) and for different groups pY |X,D(1|x, d)). Bottom row: Change in
percentages due to transformation, i.e. pŶ |X̂,D(1|x, d)− pY |X,D(1|x, d), etc. Age-education pairs with fewer
than 20 samples are not shown.

demographic groups. First consider young males who are African-American (left-most plot). This
group has a high recidivism rate, and hence the most prominent action of the mapping (besides
identity transformation) is to change the recidivism value from 1 (recidivism) to 0 (no recidivism).
The next prominent action is to change the age category from young to middle aged (25 to 45 years).
This effectively reduces the average value of Ŷ for young African-Americans, since the mapping
for young males who are African-American and do not recidivate (middle plot) is essentially the
identity mapping, with the exception of changing age category to middle aged. This is expected,
since increasing recidivism is heavily penalized. For young Caucasian males who recidivate, the
action of the proposed transformation seems to be similar to that of young African-American males
who recidivate, i.e., the outcome variable is either changed to 0, or the age category is changed to
middle age. However the probabilities of the transformations are lower since Caucasian males have,
according to the dataset, a lower recidivism rate.

We apply this conditional mapping on the dataset (one trial) and present the results in Fig. 3. The
original percentage recidivism rates are also shown in the top panel of the plot for comparison. Be-
cause of our constraint that disallows changing the outcome to 1, a demographic group’s recidivism
rate can (indirectly) increase only through changes to the decision variables (X). We note that the
average percentage change in recidivism rates across all demographics is negative when the discrim-
ination variables are marginalized out (leftmost column). The maximum decreases in recidivism
rates are observed for African-American males since they have the highest value of pY |D(1|d) (cf.
Table 2). Contrast this with Caucasian females (middle column), who have virtually no change in
their recidivism rates since they are a priori close to the final ones (see Table 2). Another interesting
observation is that middle aged Caucasian males with 1 to 3 prior counts see an increase in percentage
recidivism. This is consistent with the mapping seen in Fig. 2 (middle), and is an example of the
indirect introduction of positive outcome variables in a cohort as discussed above.
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4.2 Comparison Between the Proposed Method and LFR on the UCI Adult Data Set

The number of prototypes K was set to 10 while running LFR on the Adult dataset. We followed the
parameter settings in the SM of their original paper and set the values for both Ax and Az at 0.01 and
50, respectively. We performed parameter tuning for Ay over the set {0.1,0.5,1,5,10} optimizing for
prediction accuracy.

4.3 A Closer Look at Randomized Mappings for the UCI Adult Data Set

We now look at the randomized mappings produced for the UCI Adult Dataset [Lichman, 2013].
Here, the features were categorized as protected variables (D): Race (White, Minority) and Gender
(Male, Female)3; decision variables (X): Age (quantized to decades) and Education (quantized to
years); and response variable (Y ): Income (binary). While the response variable considered here is
income, the dataset could be regarded as a simplified proxy for analyzing other financial outcomes
such as credit approvals.

Specific Form of Optimization. For the next collection of results, we use `1-distance (twice the total
variation) [Pollard, 2002] to measure utility, ∆

(
pX,Y , pX̂,Ŷ

)
=
∑
x,y

∣∣∣pX,Y (x, y)− pX̂,Ŷ (x, y)
∣∣∣.

For discrimination control, we use (1), with J given in (3), We also set εy,d = ε in (1). We use
the distortion function in (4), and write x = (a, e) for an age-education pair and x̂ = (â, ê) for a
corresponding transformed pair. The distortion function returns (i) v1 if income is decreased, age is
not changed and education is increased by at most 1 year, (ii) v2 if age is changed by a decade and
education is increased by at most 1 year regardless of the change of income, (iii) v3 if age is changed
by more than a decade or education is lowered by any amount or increased by more than 1 year,
and (iv) 0 in all other cases. We set (v1, v2, v3) = (1, 2, 3) with corresponding distance thresholds
for δ = 0 as (0.9, 1.9, 2.9) and corresponding probabilities (cd,x,y) as (0.1, 0.05, 0) in (4). As a
consequence, decreases in income, small changes in age, and small increases in education (events (i),
(ii)) are permitted with small probabilities, while larger changes in age and education (event (iii)) are
not allowed at all. We note that the parameter settings are selected with the purpose of demonstrating
our approach, and would change depending on the practitioner’s requirements or guidelines.

Results. For the remainder of this section, we set ε = 0.15, and the optimal value of the utility
measure (`1 distance) was 0.014. We apply the conditional mapping, generated as the optimal
solution to (6), to transform the age, education, and income values of each sample in the dataset. The
result of a single realization of this randomization is given in Fig. 4, where we show percentages of
high income individuals as a function of age and education before and after the transformation. The
original age and education (X) are plotted throughout Fig. 4 for ease of comparison, and that changes
in individual percentages may be larger than a factor of 1± ε because discrimination is not controlled
by (1) at the level of age-education cohorts. The top left panel indicates that income is higher for
more educated and middle-aged people, as expected. The second column shows that high income
percentages are significantly lower for females and are accordingly increased by the transformation,
most strongly for educated older women and younger women with only 8 years of education, and
less so for other younger women. Conversely, the percentages are decreased for males but by much
smaller magnitudes. Minorities receive small percentage increases but less than for women, in part
because they are a more heterogeneous group consisting of both genders.

4.4 Final Remarks

The differences between the original and transformed datasets revealed interesting discrimination
patterns, as well as corrective adjustments for controlling discrimination while preserving utility of
the data. Despite being programmatically generated, the optimized transformation satisfied properties
that are sensible from a socio-demographic standpoint, reducing, for example, recidivism risk for
males who are African-American in the recidivism dataset, and increasing income for well-educated
females in the UCI adult dataset.

3In the main text we only consider Gender as a protected variable. Here we consider both Gender and Race.
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