
A Hoeffding’s Inequality for Sub-Gaussian RVs

Let X1, .., Xn be independent, mean-zero, σ2
i -sub-Gaussian random variables. Then for all t ≥ 0,

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

{
− t2

2
∑n
i=1 σ

2
i

}
(14)

B Optimal Policy

B.1 Proof of Lemma 2.1

In this section we show that πmax, defined by Eq. (3) is an optimal policy for the RB problem.
Assume on the contrary, that πmax is not an optimal policy. Thus, there exists a time horizon, T , for
which there exists some other policy πcand that satisfies J

(
T ;πcand

)
> J (T ;πmax).

Let m be the first time step in which πcand deviates from πmax, since J
(
T ;πcand

)
> J (T ;πmax) we

infer that m ≤ T (i.e., there is such time step). Let π̃ be a policy defined by,

π̃ (t) =


πcand (t) , if t < m

argmaxi∈[K]{µ (Ni (m) + 1; θ∗i )}, if t = m

πcand (t− 1) , if t > m

where if there exist more than one member in argmaxi∈[K]{µ (Ni (m) + 1; θ∗i )}, π̃ chooses the
same action as πmax. That is, π̃ mimics πcand until time step m, then plays according to argmax rule,
and then re-mimics πcand. Let µm, µT be the expected rewards of the arms that π̃ chose at the mth

time step, and that πcand chose at the T th time step, respectively. It is easy to see that,

J (T ; π̃)− J
(
T ;πcand

)
= µm − µT ≥ 0 (15)

where the second transition holds by the argmax rule combined with the assumption that the expected
rewards are non-increasing (assumption 2.1). Thus, J (T ; π̃) ≥ J

(
T ;πcand

)
. If we apply the above

logic steps recursively, we obtain a series of policies with non-decreasing values of expected total
reward J (T ; ·), where the series ends when there is no time step which deviates from πmax, i.e.,
J (T ;πmax) ≥ J

(
T ;πcand

)
, in contradiction to πmax being non-optimal. Thus, we infer that πmax is

indeed an optimal policy.

C Non-Parametric Case

C.1 Proof of Thm. 3.1

We define, {
M = dα42/3σ2/3K−2/3T 2/3 ln1/3

(√
2T
)
e

q = α−1/221/3σ2/3K1/3T−1/3 ln1/3
(√

2T
)

and start by making two useful observations:

Observation 1: By Hoeffding’s Inequality we have,

P
(
|X̄M − E

[
X̄M

]
| ≥ q

)
≤ 1

T 2
(16)

where X̄M is the empirical average of M independent σ2 sub-Gaussian samples.

Observation 2: Since the expected rewards of an arm only depends on the time it is being pulled (and
not on the time step itself), the expected total reward of a policy only depends on the number of pulls
of the different arms (and not on the order of pulls).

From now on we assume that |X̄M − E
[
X̄M

]
| < q (see Observation 1) for all arms throughout the

trajectory, and later address the case where it is violated.
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Step 1: bound the number of significantly sub-optimal pulls.

In what is following we prove by induction that for all the ends of time steps t ∈ [T ], by applying
SWA, there is no arm j for which,{

|n| : µj
(
NπSWA

j (t)− n
)
< max
i∈[K]

[
µi

(
NπSWA

i (t)
)]
− 2q, n ∈ N0

}
> M (17)

where NπSWA

i (t) is the number of pulls of arms i at time t induced by policy πSWA, which is defined
by the SWA algorithm. That is, following SWA ensures that for all time steps, no arm would be
pulled more than M times in which its expected reward is at least 2q lower than the expected reward
of the (current) optimal arm.
Basis: for all the ends of time steps t ∈ {1, ..,KM} this holds trivially since, by the definition of
SWA we pull each arm exactly M times.
Inductive hypothesis: Assume that the above statement holds for the end of time step t′ such that,
KM ≤ t′ < T .
Inductive step: We show that the above statement holds for the end of time step t′ + 1. By the
non-increasing Assumption 2.1 we note two things: (1) The RHS of the inner inequality in Eq. (17)
is non-increasing in t, thus if the inequality did not hold for some arm j at the end of time step t′ it
can only hold for it at the end of t′ + 1 if SWA pulls arm j in that round. (2) The number of ns for
which the inequality holds for some arm j can increase only by one at each time step. Combining the
two with our inductive hypothesis we simply need to show that if for some arm j, Eq. (17) holds with
equality (i.e., the number of ns is M ), that arm would not be pulled in t′ + 1. By the non-increasing
Assumption 2.1 we know that the last M expected rewards of arm j are those who are at least 2q

lower. Let i∗ ∈ argmaxi∈[K]

[
µi

(
NπSWA

i (t′ + 1)
)]

(if this set contains more than one arm, choose
arbitrarily). We have,

1

M

Nπ
SWA

j (t′+1)∑
n=Nπ

SWA
j (t′+1)−M+1

rnj
(1)
< E

 1

M

Nπ
SWA

j (t′+1)∑
n=Nπ

SWA
j (t′+1)−M+1

rnj

+ q
(2)

≤

µj

(
NπSWA

j (t′ + 1)−M + 1
)

+ q
(3)
< µi∗

(
NπSWA

i∗ (t′ + 1)
)
− q

(4)

≤

E

 1

M

Nπ
SWA

i∗ (t′+1)∑
n=Nπ

SWA
i∗ (t′+1)−M+1

rni∗

− q (5)
<

1

M

Nπ
SWA

i∗ (t′+1)∑
n=Nπ

SWA
i∗ (t′+1)−M+1

rni∗ (18)

where (1) and (5) hold by our assumption regarding |X̄M − E
[
X̄M

]
| < q, (2) and (4) hold by the

non-increasing Assumption 2.1, and (3) holds by the definition of the inequality in Eq. (17). Since the
SWA algorithm chooses in the Balance step according to the empirical averages of the last M -pulls of
each arm, we infer that arm j would not be pulled (i∗ has higher empirical average). This concludes
the inductive step proof, and hence our statement holds.

Step 2: bound J
(
T ;πm̂ax

)
− J

(
T ;πSWA

)
.

Let πm̂ax be a policy defined by,

πm̂ax (t) ∈ argmax
i∈[K]

{µi (Ni (t))} (19)

where we first pull each arm once using Round-Robin (before following the above rule), and in a
case of tie, break it using the smallest index.
Define

Im̂ax (T ) =

{(
im̂ax
t , nm̂ax

t

)}T
t=1

(20)

to be the (deterministic) set of tuples induced by applying πm̂ax, where im̂ax
t is the arm chosen at time

step t, and nm̂ax
t is the time it is being pulled. In the same manner, we define the (stochastic) set

ISWA (T ), composed of
(
iSWA
t , nSWA

t

)
tuples, which induced by applying πSWA. We further define

Im̂ax
\SWA (T ) = Im̂ax (T ) \{Im̂ax (T ) ∩ ISWA (T )}, and ISWA

\m̂ax (T ) = ISWA (T ) \{Im̂ax (T ) ∩ ISWA (T )},
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and also µSWA
max (T + 1) = maxi∈[K]

[
µi

(
NπSWA

i (T + 1)
)]

. By Observation 2, the difference in the
policies expected total rewards only depends on these number of pull sets. Since both policies start
with one Round-Robin pulls of the arms we have,

J
(
T ;πm̂ax

)
− J

(
T ;πSWA) =

∑
(im̂ax
t ,nm̂ax

t )∈Im̂ax

µim̂ax
t

(
nm̂ax
t

)
−
∑

(iSWA
t ,nSWA

t )∈ISWA

µiSWA
t

(
nSWA
t

)
=
∑

(im̂ax
t ,nm̂ax

t )∈Im̂ax
\SWA

µim̂ax
t

(
nm̂ax
t

)
−
∑

(iSWA
t ,nSWA

t )∈ISWA
\m̂ax

µiSWA
t

(
nSWA
t

)
≤ µSWA

max (T + 1)× |Im̂ax
\SWA| − 0×KM

−
(
µSWA

max (T + 1)− 2q
)
×
(
|Im̂ax
\SWA| −KM

)
≤ KM max

i∈[K]
µi (1) + 2qT

(21)

The first inequality holds by: (1) the non-increasing Assumption 2.1 implies that all the tuples in
Im̂ax
\SWA correspond to expected reward upper bounded by µSWA

max (T + 1), and (2) by what we showed
in Step 1, there are at most KM members in ISWA

\m̂ax that are more than 2q below µSWA
max (T + 1), and

the positiveness of the expected rewards by Assumption 2.1. The second inequality holds by trivially
bounding µSWA

max (T + 1) ≤ maxi∈[K] µi (1), and |Im̂ax
\SWA| = |I

SWA
\m̂ax| ≤ T .

Finally, we note that all the above analysis was done assuming that |X̄M − E
[
X̄M

]
| < q for all

arms throughout the trajectory, and we now address the case where it is violated. By Observation 1,
the probability of the inequality to be violated ≤ 1/T 2. The number of times this inequality is
tested throughout the trajectory is bounded by KT (for each of the arms, in every time step, during
the Balance step), and if the inequality is violated (even once) then J

(
T ;πm̂ax

)
− J

(
T ;πSWA

)
is

trivially bounded by T maxi∈[K] µi (1) according to the non-increasing Assumption 2.1. Thus, we
infer that in expectation we have,

J
(
T ;πm̂ax

)
− J

(
T ;πSWA) ≤ KM max

i∈[K]
µi (1) + 2qT +K max

i∈[K]
µi (1) (22)

Step 3: bound the regret.

We bound the regret using our previous obtained result for πm̂ax by,

R
(
T ;πSWA) = max

π∈Π
{J (T ;π)} − J

(
T ;πSWA)

= J (T ;πmax)− J
(
T ;πSWA)

=
(
J (T ;πmax)− J

(
T ;πm̂ax

))
+
(
J
(
T ;πm̂ax

)
− J

(
T ;πSWA))

≤ K max
i∈[K]

µi (1) +
(
J
(
T ;πm̂ax

)
− J

(
T ;πSWA))

≤ 2K max
i∈[K]

µi (1) +KM max
i∈[K]

µi (1) + 2qT

=

(
α max
i∈[K]

µi (1) + α−1/2

)
42/3σ2/3K1/3T 2/3 ln1/3

(√
2T
)

+ 3K max
i∈[K]

µi (1)

(23)

where the first equality holds by Lemma 2.1, the first inequality holds by Theorem 3 in Heidari
et al. [2016], the second inequality holds by the bound we found in Step 2, and the last equality holds
by plugging in the definition for M and q. This establishes Theorem 3.1.

C.2 Proof of Corollary 3.1.1

For convenience, we define the following objects: R (t1 → t2;π) is the regret accumulated between
time steps t1 and t2 (included), by applying policy π consistently. R (t1 → t2;π2|π1 (t1)) is the
regret accumulated between time steps t1 and t2, by applying π1 until time step t1, and then π2 for
the measured time steps. We define similar objects for the expected total reward, J .
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We note that,

J (t1 → t2;πmax) ≤ J
(
t1 → t2;πmax

∣∣∣∣π (t1)

)
, ∀π ∈ Π (24)

The above inequality can be understood by the following argument: consider a decreasing sorted list
of all the expected rewards across all arms. By Assumption 2.1, at each time step, πmax simply pulls
an arm corresponding to the highest element in that list, that was not previously pulled (independently
of previous pulls).
Thus, J (t1 → t2;πmax) is the sum of the tth1 to tth2 elements in this list, which is the lowest possible
sum of the |t2 − t1 + 1| highest elements in the list, following any |t1 − 1| pulls.

Consider the nth iteration of wSWA. i.e., between time steps t1 = 2n−1 and t2 = min [2n − 1, T ].
We have,

R
(
t1 → t2;πwSWA) (1)

= J (t1 → t2;πmax)− J
(
t1 → t2;πwSWA)

(2)
= J

(
t1 → t2;πmax

∣∣∣∣πmax (t1)

)
− J

(
t1 → t2;πwSWA

∣∣∣∣πwSWA (t1)

)
(3)

≤ J

(
t1 → t2;πmax

∣∣∣∣πwSWA (t1)

)
− J

(
t1 → t2;πwSWA

∣∣∣∣πwSWA (t1)

)
(4)
= J

(
t1 → t2;πmax

∣∣∣∣πwSWA (t1)

)
− J

(
t1 → t2;πSWA

∣∣∣∣πwSWA (t1)

)
(5)
= R

(
t1 → t2;πSWA

∣∣∣∣πwSWA (t1)

)
(6)

≤ Rbound (t2 − t1 + 1)

(25)

where (1) and (2) hold by definition. (3) holds by Eq. (24). (4) by noting the wSWA applies SWA
between t1 and t2. (5) by definition. (6) by observing that it is the regret of a known horizon problem
that holds Assumption 2.1, thus we can use the upper bound from Theorem 3.1, denoted byRbound.

Let ñ = blog2 T c+ 1, thus 2ñ−1 ≤ T ≤ 2ñ − 1, and we have,

R
(
T ;πwSWA) (1)

=

ñ−1∑
y=1

R
(
2y−1 → 2y − 1;πwSWA)+R

(
2ñ−1 → T ;πwSWA)

(2)

≤
ñ−1∑
y=1

Rbound
(
2y−1

)
+Rbound

(
T − 2ñ−1 + 1

)
(3)

≤
ñ−1∑
y=0

Rbound (2y)

(4)
=

ñ−1∑
y=0

[
A22y/3 ln1/3

(
2y+1/2

)
+B

]
(5)

≤ A ln1/3
(√

2T
) ñ−1∑
y=0

22y/3 +B (log2 T + 1)

(6)

≤ A25/3T 2/3 ln1/3
(√

2T
)

+B (log2 T + 1)

(26)

where (1) holds by dividing the horizon and noting that the regret is additive. (2) holds by
Eq (25). (3) holds by noting that both Theorem 3 from Heidari et al. and Step 1 from
the proof of Theorem 3.1 hold for any t ∈ [T ], thus the upper bound Rbound holds for any
t ∈ [T ] (clearly, by plugging T in the bound). (4) holds by plugging Rbound and defining
A =

(
αmaxi∈[K] µi (1) + α−1/2

)
42/3σ2/3K1/3, and B = 3K maxi∈[K] µi (1). (5) holds by

monotonicity of the logarithm, and noting that A and B are independent of y. Finally, (6) holds as a
sum of a geometric series, and simple algebra.
Plugging back A and B, we establish Corollary 3.1.1.
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D Parametric Case

D.1 Proof of Thm. 4.1

Bounding number of steps to optimality
We first characterize the bound, and later show feasibility (i.e., that the analysis we show here indeed
holds within the horizon).
Similar to the definition of m∗diff (p; θ∗i ) and m∗diff (p), we define m∗ (p; θ∗i ) as the solution
to optimization problem (11) using Eq. (7) as the proximity rule to hypothesize θ̂, and
m∗ (p) = maxθ∈Θm

∗ (p; θ).

Let T be some unknown horizon. We first show that m∗
(

1
KT 2

)
is finite. Define,

θ
′

i (m̃) = argmin
θ 6=θ∗i

{∣∣∣∣ m̃∑
j=1

µ (j; θ∗i )−
m̃∑
j=1

µ (j; θ)

∣∣∣∣} (27)

Thus we have, when we sample only from arm i,

P
(
θ̂i (m̃) 6= θ∗i

)
= P (∃θ 6= θ∗i : |Y (i, m̃; θ) | ≤ |Y (i, m̃; θ∗i ) |)

≤ P

∣∣∣∣ m̃∑
j=1

rij −
m̃∑
j=1

µ (j; θ∗i )

∣∣∣∣ > 1

2

∣∣∣∣ m̃∑
j=1

µ (j; θ∗i )−
m̃∑
j=1

µ
(
j; θ

′

i (m̃)
) ∣∣∣∣


≤ 2 exp

{
− 1

8× detθ∗i ,θ′i(m̃) (m̃)

}
(28)

where the first inequality holds by inclusion of events, and the second inequality holds by Eq. (14)
and the definition of detθ∗i ,θ

′
i
.

Since trivially bal (n) ≥ n, by assumption 4.2, there exists a finite m̃, for which,

max
θ1 6=θ2∈Θ2

{
detθ1,θ2 (m̃)

}
≤ 1

8
ln−1

(
2KT 2

)
(29)

Therefore, if we plug m̃ back in to the above equation we get,

2 exp

{
− 1

8× detθ∗i ,θ′i (m̄)

}
≤ 1

KT 2
(30)

Thus, we have a finite m̃ that satisfies the constraints of optimization problem (11) for p = 1/KT 2,
and by definition m∗

(
1

KT 2

)
≤ m̃. i.e., m∗

(
1

KT 2

)
is finite.

Given a rotting model, θ∗i of arm i, we term that arm ‘saturated’ if it has been pulled at least
m∗
(

1
KT 2 ; θ∗i

)
times, which is finite since, by definition, m∗

(
1

KT 2 ; θ∗i
)
≤ m∗

(
1

KT 2

)
. We assume

that once an arm is ‘saturated’, it is truely detected every time step, and omit this assertion from now
on (we deal with the misdetection case later). i.e., we assume that once arm i hypothesize its rotting
model to be θ̂i and also has been pulled at least m∗

(
1

KT 2 ; θ∗i
)

times, then θ̂i = θ∗i .

We next bound the number of pulls of different arms, given the number of pulls of some other arm.
Let s be the first time step for which mini∈[K]{Ni (s)} = maxθ∈Θ∗{m∗

(
1

KT 2 ; θ
)
}. We first note

that s is finite since by Assumption 4.1 we have µ (n; θ) ∈ o (1), combined with the argmax rule
CTOSIM follows and its tie breaking rule, at some finite time step all arms would be pulled the
specified amount of times. By our above assumption, from this point on, all the arms’ rotting models
are correctly detected. Thus, for any arm j, Nj (s) can be upper bounded by the solution for,

min tj

s.t


tj ∈ N
tj ≥ maxθ∈Θ∗ {m∗

(
1

KT 2 ; θ
)
}

µ
(
tj + 1; θ∗j

)
≤ minθ̃∈Θ

[
µ

(
maxθ∈Θ∗

{
m∗
(

1
KT 2 ; θ

)}
; θ̃

)] (31)
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where the above optimization bound characterization holds since:
(1) For any arm j ∈ argmini∈[K]{Ni (s)}, this holds trivially by the explicit constraint
tj ≥ maxθ∈Θ∗ {m∗

(
1

KT 2 ; θ
)
}.

(2) For any arm j /∈ argmini∈[K]{Ni (s)}, clearly the constraint on the lower bound holds. As
for the constraint on the upper bound, it holds by noting that all the arms’ hypothesized mod-
els are correct and CTOSIM follows an argmax policy, thus j would not be pulled such that
µ
(
Nj (s) ; θ∗j

)
< minθ∈Θ

[
µ
(
maxθ∈Θ∗{m∗

(
1

KT 2 ; θ
)
}
)]

, as the RHS is the lowest obtainable ex-
pected reward until time step s. In addition, since the tie breaking rule is least # of pulls, its expected
reward would not be equal to minθ∈Θ

[
µ
(
maxθ∈Θ∗{m∗

(
1

KT 2 ; θ
)
}
)]

.

Let µmin (s; Θ∗) = minj∈[K]{µ
(
Nj (s) ; θ∗j

)
}. Following CTOSIM policy we infer that there exists

s̃ ≥ s for which:
(1) µ (Ni (s̃) + 1; θ∗i ) ≤ µmin (s; Θ∗), for all i ∈ [K].
(2) µ (Ni (s̃) ; θ∗i ) > µmin (s; Θ∗), for all i /∈ argminj∈[K]{µ

(
Nj (s) ; θ∗j

)
}.

The above observation holds by noting that CTOSIM follows an argmax rule, thus it would
choose arms /∈ argminj[K]{µ

(
Nj (s) ; θ∗j

)
} to be pulled as long as their expected reward is

strictly greater than already pulled minimal expected reward µmin (s; Θ∗), before the possibil-
ity of choosing arms with expected reward ≤ µmin (s; Θ∗). Since by Eq. (31) we have that
minj∈[K]{µ

(
Nj (s) ; θ∗j

)
} ≥ minθ̃∈Θ

[
µ
(

maxθ∈Θ∗ {m∗
(

1
KT 2 ; θ

)
}; θ̃
)]

, we can upper bound s̃

by the following,

min ‖t‖1

s.t


t ∈ NK

ti ≥ maxθ∈Θ∗ {m∗
(

1
KT 2 ; θ

)
}, ∀i ∈ [K]

µ (ti + 1; θ∗i ) ≤ minθ̃∈Θ

[
µ

(
maxθ∈Θ∗

{
m∗
(

1
KT 2 ; θ

)}
; θ̃

)]
, ∀i ∈ [K]

(32)

We turn to show optimality starting from time step s̃. We start by showing for s̃.
Assume on the contrary that, J (s̃;πmax) 6= J

(
s̃;πCTOSIM

)
. On the one hand, by Lemma 2.1, we have,

J (s̃;πmax) ≥ J
(
s̃;πCTOSIM

)
. On the other hand, Let {qi}i∈[K] be the set of the arms’ number of

pulls at time s̃ following πmax (respectively, {s̃i}i∈[K] for CTOSIM), i.e.,

J (s̃;πmax) =
∑
i∈[K]

qi∑
j=1

µ (j; θ∗i ) (33)

We have that J
(
s̃;πCTOSIM

)
− J (s̃;πmax) is a sum of pairs in the form of, µ (l; θ∗i ) − µ

(
h; θ∗j

)
where l ≤ s̃i, and h > s̃j , for i 6= j ∈ [K]. By definition of {s̃i} and the non-increasing
assumption 2.1, we have that µ (l; θ∗i ) ≥ µmin (s; Θ∗), and µmin (s; Θ∗) ≥ µ

(
h; θ∗j

)
, resulting in

J
(
s̃;πCTOSIM

)
≥ J (s̃;πmax). Hence, the regret vanishes in time step s̃, achieving optimality.

We next show that the regret remains zero for ŝ ≥ s̃.
We showed optimality for time step s̃ defined above. We next show optimality for s̃+ 1. We examine
the two possible cases.
Case 1: ∀i ∈ [K] : qi = s̃i. Since CTOSIM follows the argmax rule as πmax does, we infer that
arms with equal expected reward would be chosen by both CTOSIM and πmax. Thereby, holding
J (s̃+ 1;πmax) = J

(
s̃+ 1;πCTOSIM

)
. i.e., zero regret as stated.

Case 2: ∃i : s̃i 6= qi. Therefore, there is an arm, denoted as igap, for which s̃igap < qigap . By the

argmax rule, CTOSIM chooses an arm is̃+1 such that, µ
(
s̃is̃+1

+ 1; θ∗is̃+1

)
≥ µ

(
s̃igap + 1; θ∗igap

)
.

By the non-increasing assumption 2.1, and the definition of πmax, since qigap ≥ s̃igap + 1, we

have µ
(
qjs̃+1

; θ∗js̃+1

)
≤ µ

(
qigap ; θ∗igap

)
≤ µ

(
s̃igap + 1; θ∗igap

)
, where js̃+1 is the arm chosen by

πmax. Thus, on the one hand we have J (s̃+ 1;πmax) ≤ J
(
s̃+ 1;πCTOSIM

)
. On the other hand,

by Lemma 2.1, we have J (s̃+ 1;πmax) ≥ J
(
s̃+ 1;πCTOSIM

)
. Combining the two, we have

J (s̃+ 1;πmax) = J
(
s̃+ 1;πCTOSIM

)
. i.e., zero regret as stated.

The above argument can be applied recursively for any ŝ > s̃, thus establishing optimality of CTOSIM
for all ŝ ≥ s, under true detection.
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If it happens to be that ‖t‖1 ≤ T , then for that T , CTOSIM will achieve zero regret (starting from s̃).
Since we require that the result will hold from some T ∗SIM onward, we need the above characterization
to also hold for any T̃ ≥ T . We thereby infer that the smallest T such that for any T̃ ≥ T , there
exists t for which the above stated result holds (i.e., the solution to the optimization problem is indeed
holds ‖t‖1 ≤ T̃ ), can serve as an upper bound for T ∗SIM, resulting in T ∗SIM being upper bounded by
the solution for,

min T

s.t



T, b ∈ N ∪ {0}, t ∈ NK

∀b,∃t :


‖t‖1 ≤ T + b

ti ≥ maxθ∈Θ∗

{
m∗
(

1
K(T+b)2

; θ
)}

µ (ti + 1; θ∗i ) ≤ minθ̃∈Θ

[
µ

(
maxθ∈Θ∗

{
m∗
(

1
K(T+b)2

; θ
)}

; θ̃

)] (34)

Feasibility
In order to show feasibility, we wish to obtain,

{# of steps for Detection} + {# of steps for Balance} ≤ T
where Detection is a phase of pulling arms until the rotting models are detected with high
enough probability (defined below), and Balance is a phase which at the end of it there is no
arm which yields strictly higher expected reward than the minimal observed expected reward
so far, as explained in the former step, resulting in vanishing regret (similar to s and s̃ dis-
cussed above). We require that the detection of each arm is w.p of at least 1 − 1

KT 2 . Define

W (T ) = maxθ1,θ2

{
det?↓θ1,θ2

(
1
16 ln−1

(√
2KT

))}
. As shown in the beginning of this proof, af-

ter pulling an arm for W (T ) times, the probability of misdetection its rotting model ≤ 1
KT 2 . We

refer to an arm that has been pulled at leastW (T ) times as ‘strongly saturated’. From now on we will
assume that any ‘strongly saturated’ arm is truely detected at each decision point, and will discuss the
other case later on.

On the one hand, by the definition of bal (), the non-increasing assumption 2.1, and the rule of
tie breaking applied by CTOSIM, we have that all arms become ‘strongly saturated’ after, at most,
W (T ) + (K − 1)× bal (W (T )) time steps.
On the other hand, from the definition of bal (), and CTOSIM, we infer that no arm would be pulled
bal (W (T )) + 1 times before all other arms would become ‘strongly saturated’.
Combining the two above observations we have that, after at most W (T ) + (K − 1)× bal (W (T ))
time steps, there exists a time step in which all arms have became ‘strongly saturated’, but were
not pulled more than bal (W (T )) times. From that point, following the same flow at the former
subsection, the total number of pulls required in order to “balance" the arms (i.e., there is no pull that
would yield strictly higher reward than the minimal expected reward observed so far), is bounded by
K × bal (W (T )). That is under the worst case scenario, where every arm that becomes ‘strongly
saturated‘ is detected to be an arm that requires bal (W (T )) pulls to “balance" itself w.r.t to another
‘strongly saturated’ arm. Thus, we infer that,

{# of steps for Detection} + {# of steps for Balance} ≤ K × bal (W (T ))

Let ε =
(
K
√

2K
)−1

. By assumption 4.2, we have that there exists a finite T̃max for which,

∀T̃ ≥ T̃max : bal

(
max

θ1 6=θ2∈Θ2

{
det?↓θ1,θ2

(
1

16
ln−1

(
T̃
))})

≤ εT̃ (35)

We denote T =
(√

2K
)−1

T̃ , and get,

∀T ≥ T̃max√
2K

: K × bal (W (T )) ≤ T (36)

which implies, under true detection, that ∀T ≥ T̃max/
√

2K, CTOSIM algorithm achieves zero regret.
Since by definition we have ∀θ ∈ Θ : m∗

(
1

KT 2 ; θ
)
≤ m∗

(
1

KT 2

)
, and by definition of m∗

(
1

KT 2

)
17



we have m∗
(

1
KT 2

)
≤W (T ), we infer that there exists (a finite) T ∗SIM that holds the optimization

problem characterization as stated above (i.e., ∀T̃ ≥ T ∗SIM the optimization problem is feasible).

Misdetection and Expectation
So far, we assumed that each ‘saturated’ (or ‘strongly saturated’) arm is truely detected. By definition
each ‘saturated’ (or ‘strongly saturated’) arm probability of misdetection in any time step is upper
bounded by 1/KT 2. Thereby, after all the arms are ‘saturated’, the probability of a misdetection
in each time step is upper bounded by 1/T 2. The number of time steps where all the arms are
‘saturated’ (referred to as the ‘saturated step’) is trivially bounded by T . Hence, the probability that a
misdetection occurs after the ‘saturated step’ is bounded by 1/T . Meaning that ∀T ≥ T ∗SIM, CTOSIM
achieves zero regret w.p of at least 1− 1/T .
Next, we note that, as for the case where we misdetect any arm,

J (T ;πmax)− J
(
T ;πCTOSIM

)
=

K∑
i=1

Nmax
i (T )∑
j=1

µ (j; θ∗i )−
K∑
i=1

N
CTOSIM
i (T )∑
j=1

µ (j; θ∗i )

≤
K∑
i=1

I{Nmax
i (T )>N

CTOSIM
i (T )}

Nmax
i (T )∑

N
CTOSIM
i (T )+1

µ (j; θ∗i )

≤ T max
θ∈Θ∗

{
µ

(
min
i∈[K]
{NCTOSIM

i (T )}; θ
)}

(37)

where the first inequality holds by only considering cases where Nmax
i (T ) > NCTOSIM

i (T ), and not
the other way around (since the expected rewards are positive by Assumption 4.1).

By applying expectation over events (true detection or not), we get,

R
(
T ;πCTOSIM

)
= R

(
T ;πCTOSIM |true detection

)
× P (true detection)

+R
(
T ;πCTOSIM |misdetection

)
× P (misdetection)

≤ max
θ∈Θ∗

{
µ

(
min
i∈[K]
{NCTOSIM

i (T )}; θ
)} (38)

Finally,

T =

K∑
i=1

NCTOSIM
i (T )

≤ min
i∈[K]

NCTOSIM
i (T ) + (K − 1) max

i∈[K]
NCTOSIM
i (T )

≤ min
i∈[K]

NCTOSIM
i (T ) + (K − 1)× bal

(
min
i∈[K]

NCTOSIM
i (T )

)
≤ K × bal

(
min
i∈[K]

NCTOSIM
i (T )

)
(39)

Hence, by assumption 2.1, mini∈[K]N
CTOSIM
i (T )

T→∞−→ ∞, resulting inR
(
T ;πCTOSIM

)
∈ o (1), and

trivially ≤ maxθ∈Θ∗ µ (1; θ).

We Note that from the feasibility step, given a function U (ε) that satisfies ∀n ≥ U (ε),

bal

(
max

θ1 6=θ2∈Θ2

{
det?↓θ1,θ2

(
1

16
ln−1 (n)

)})
≤ εn (40)

we have,

T ∗SIM ≤
U

((
K
√

2K
)−1

)
√

2K
(41)
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D.2 Proof of Thm. 4.2

Decomposing the regret
First, we upper bound the regret by,

R
(
T ;πD-CTOUCB

)
=

K∑
i=1

E
[
Nπ

max
i (T )

]∑
j=1

µi (j)−
K∑
i=1

E
[
Nπ

D-CTOUCB
i (T )

]∑
j=1

µi (j)

≤
∑
i 6=a∗

µ?↓(∆i;θ
∗
i )∑

j=1

µi (j)︸ ︷︷ ︸
=C̃(Θ∗,{µci})

+

T∑
j=1

µa∗ (j)−
K∑
i=1

E
[
Nπ

D-CTOUCB
i (T )

]∑
j=1

µi (j)

= C̃ (Θ∗, {µci}) +

T∑
E[Nπmax

a∗ (T )]+1

µa∗ (j)−
∑
i 6=a∗

E
[
Nπ

D-CTOUCB
i (T )

]∑
j=1

µi (j)

≤ C̃ (Θ∗, {µci}) +

T∑
E[Nπmax

a∗ (T )]+1

(µca∗ + µ (1; θ∗a∗))−
∑
i 6=a∗

E
[
Nπ

D-CTOUCB
i (T )

]∑
j=1

µci

≤ C̃ (Θ∗, {µci}) +
∑
i 6=a∗

E
[
NπD-CTOUCB

i (T )
]
× (∆i + µ (1; θ∗a∗))

(42)

where E
[
Nπmax

i (T )
]

is the expected number of pulls of arm i at time T induced by the optimal
policy, πmax, and ENπD-CTOUCB

i (T ) is the expected number of pulls induced by policy πD-CTOUCB . The
first inequality holds by noting that πmax pulls according to argmax rule, thus any arm i 6= a∗ would
not be pulled after yielding expected reward not greater than µca∗ , according to the behavior of µ (·; ·)
by assumption 2.1.

Detecting the models
Next, we show that m∗diff (δ/K) is finite. Define,

D (µ (·; θ) , 1, n) =

bn2 c∑
j=1

µ (j; θ)−
n∑

j=bn2 c+1

µ (j; θ) (43)

and,

θ
′

i (m̃) = argmin
θ 6=θ∗i

{∣∣∣∣D (µ (·; θ∗i ) , 1, m̃)−D (µ (·; θ) , 1, m̃)

∣∣∣∣} (44)

Thus, we have, when we sample only from arm i, and for an even m̃

P
(
θ̂i (m̃) 6= θ∗i

)
= P (∃θ 6= θ∗i : |Z (i, m̃; θ) | ≤ |Z (i, m̃; θ∗i ) |)

≤ P

∣∣∣∣
 m̃

2∑
j=1

rij −
m̃∑

j= m̃
2 +1

rij

−D (µ (·; θ∗i ) , 1, m̃)

∣∣∣∣ >
1

2

∣∣∣∣D (µ (·; θ∗i ) , 1, m̃)−D
(
µ
(
·; θ
′

i (m̃)
)
, 1, m̃

) ∣∣∣∣)
≤ 2 exp

{
− 1

8×Ddetθ∗i ,θ′i(m̃) (m̃)

}
(45)
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where the first inequality holds by inclusion of events, and the second inequality holds by Eq. (14),
the definition of Ddetθ∗i ,θ

′
i
, and noting that for an even m̃ we have,

E

 m̃
2∑
j=1

rij −
m̃∑

j= m̃
2 +1

rij

 = D (µ (·; θ∗i ) , 1, m̃) (46)

By assumption 4.3, there exists a finite, even, m̃ for which,

max
θ1 6=θ2∈Θ2

{
Ddetθ1,θ2 (m̃)

}
≤ 1

8
ln−1

(
2K

δ

)
(47)

If we plug m̃ back to the above equation we get,

2 exp

{
− 1

8×Ddetθ∗i ,θ′i(m̃) (m̃)

}
≤ δ

K
(48)

Thus, we have a finite m̃ that satisfies the constraints of Prob. (11) for p = δ/K, and by definition
m∗diff (δ/K) ≤ m̃. i.e., m∗diff (δ/K) is finite.

Bounding number of pulls
We wish to bound E

[
NπD-CTOUCB

i (T )
]

for all i 6= a∗. Remember that in the exploration part (leading
to the Detect step), we pull each arm m∗diff (δ/K) times, hence,

NπD-CTOUCB

i (T ) = m∗diff (δ/K) +

T∑
t=K×m∗diff(δ/K)+1

1{i(t)=i} (49)

where 1{·} is the indicator function. Similarly to the proof of UCB1 (Auer et al. [2002a]) we have,

NπD-CTOUCB

i (T ) ≤ li +

∞∑
t=1

t−1∑
s=m∗diff(δ/K)

t−1∑
si=li

1{µ̂c
a∗ (s)+µ(s;θ∗a∗)+ct,s≤µ̂ci (si)+µ(si;θ∗i )+ct,si}

(50)

where for some εi ∈ (0,∆i), we denote li = max

{
m∗diff (δ/K) , µ?↓ (εi; θ

∗
i ) , d 32σ2 lnT

(∆i−εi)2
e
}

, and we

note that we assume that we have detected the true underlying rotting models (holds w.p of at least
1− δ as shown above).
The above indicator function holds when at least one of the following holds,

µ̂ca∗ (s) ≤ µca∗ − ct,s
µ̂ci (si) ≥ µci + ct,si
µca∗ + µ (s; θ∗a∗) < µci + µ (si; θ

∗
i ) + 2ct,si

(51)

Plugging ct,s and ct,si , and using Eq. (14), we have,{
P (µ̂ca∗ (s) ≤ µca∗ − ct,s) = t−4

P (µ̂ci (si) ≥ µci + ct,si) = t−4 (52)

And for si ≥ li we have,
µca∗ + µ (s; θ∗a∗)− µci − µ (si; θ

∗
i )− 2ct,si ≥ µca∗ − µci − µ (si; θ

∗
i )− 2ct,si

≥ µca∗ − µci − εi − 2ct,si
= (∆i − εi)− 2ct,si
≥ 0

(53)

where the first inequality holds by assumption 4.1, the second inequality by si ≥ µ?↓ (εi; θ
∗
i ), and

the third inequality by si ≥ d 32σ2 lnT
(∆i−εi)2

e.
Thus, combining the above observations, we get,

E [Nπ
i (T )] ≤ li +

∞∑
t=1

t−1∑
s=m∗diff(δ/K)

t−1∑
si=li

(P (µ̂ca∗ ≤ µca∗ − ct,s) + P (µ̂ci ≥ µci + ct,si))

≤ li +
π2

3

(54)

Denoting C (Θ∗, {µci}) = C̃ (Θ∗, {µci}) +
∑
i 6=a∗

π2+3
3 (∆i + µ (1; θ∗a∗)), and plugging back into

the upper bound on the regret, we achieve the stated result.
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E Example 4.1

Next, we show an example for which the different assumptions hold; the case where the reward of
arm i for its nth pull is distributed as N

(
µci + n−θ

∗
i , σ2

)
. Where θ∗i ∈ Θ = {θ1, θ2, ..., θM}, and

∀θ ∈ Θ : 0.01 ≤ θ ≤ 0.49.

E.1 Assumption 4.1

The assumption given by µ (n; θ) is positive, non-increasing in n, and µ (n; θ) ∈ o (1) ,∀θ ∈ Θ,
where Θ is a discrete known set. Indeed, for any θ ∈ {θ1, θ2, ..., θM}, which is a discrete known set
where 0.01 ≤ θ ≤ 0.49, we have n−θ ≥ 0 for all n ≥ 1. Moreover, ∂n

−θ

∂θ = −θn−θ−1 < 0 for all
n ≥ 1, and n−θ n→∞−→ 0.

E.2 Assumption 4.2

The assumption is given by,

bal

(
max

θ1 6=θ2∈Θ2

{
det?↓θ1,θ2

(
1

16
ln−1 (ζ)

)})
∈ o (ζ) (55)

Without a loss of generality, assume θ2 > θ1. We have for large enough n,

detθ1,θ2 (n) =
nσ2(∑n

j=1 j
−θ1 −

∑n
j=1 j

−θ2
)2

≤ nσ2

(c1n1−θ1 − c1 − c2n1−θ2)
2

=
nσ2

c21n
2−2θ1 + c22n

2−2θ2 − 2c1c2n2−θ1−θ2 − 2c21n
1−θ1 + 2c1c2n1−θ2 + c21

≤ nσ2

c̃n2−2θ1

=
c̄

n1−2θ1

(56)

where {c1, c2, c̃, c̄} are positive constants (independent of n). The first inequality holds by bounding
the sums by integrals and keeping in mind that θ2 > θ1 combined with 0.01 ≤ θ ≤ 0.49. The second
inequality holds from large enough n (leading exponent, depends only on {θ1, θ2}, but finite).
Next, we have,

c̄

n1−2θ1
<

1

16
ln−1 (ζ) =⇒ n > (16c̄ ln (ζ))

1
1−2θ1 > (16c̄ ln (ζ))

50 (57)

Meaning that ζ large enough,

max
θ1 6=θ2∈Θ2

{
det?↓θ1,θ2

(
1

16
ln−1 (ζ)

)}
< (16c̄ ln (ζ))

50 (58)

Next, we have,
α−0.1 ≤ x−0.49 =⇒ α ≥ x4.9 (59)

Hence, bal (x) = x4.9. Since bal (·) is monotonically increasing, we have that for ζ large enough,

bal

(
max

θ1 6=θ2∈Θ2

{
det?↓θ1,θ2

(
1

16
ln−1 (ζ)

)})
< ĉ ln245 (ζ) (60)

where ĉ is a positive constant (independent of ζ). Finally, we note that,

lim
ζ→∞

ln245 (ζ)

ζ
= 0 (61)

Thus we infer that the assumption holds.
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E.3 Assumption 4.3

The assumption is given by,

max
θ1 6=θ2∈Θ2

{
Ddet?↓θ1,θ2 (ε)

}
≤ B (ε) <∞, ∀ε > 0 (62)

Without a loss of generality, assume θ2 > θ1. We have for large enough n,

Ddetθ1,θ2 (n) =
nσ2((∑bn2 c

j=1 j
−θ1 −

∑n
j=bn2 c+1 j

−θ1

)
−
(∑bn2 c

j=1 j
−θ2 −

∑n
j=bn2 c+1 j

−θ2

))2

≤ nσ2(
c1

(
−1 + 2

⌊
n
2

⌋1−θ1 − n1−θ1
)
− c2

(
2
(⌊
n
2

⌋
+ 1
)1−θ2 − n1−θ2

))2

≤ nσ2

c̃n2−2θ1

=
c̃

n1−2θ1

(63)

where {c1, c2, c̃} are positive constants (independent of n). The inequalities hold by the same
arguments as in E.2. Again, following the same logic as the end of E.2, we have that the assumption
holds.
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