
A Construction of Forney-style model equivalent to factor-graph model

In this Section, we describe construction of a Forney-style GM equivalent to the factor-graph GM.
Consider a factor-graph GM defined on graph G = (X ,F , E) with factors {fa}a∈F . Then one
introduces the following Forney-style GM defined over the graph (V, E) with factors {f†a}a∈V

V ← X ∪ F , f†a ← fa, ∀a ∈ F ,

f†a(xa)←
{
1 if xa = (1, 1, · · ·) or (0, 0, · · ·)
0 otherwise

, ∀a ∈ X .

One observes that if the factor-graph GM (possibly, of high-order) is sparse, i.e., the maximum degree
of (X ,F , E) is small, then the equivalent Forney-style GM is too. See Figure 5 for illustration.

Figure 5: Example of the transformation from the factor-graph GM (left) to the Forney-style GM
(right). Factors denoted as ‘=’ constrains adjoining variables to have the same value. Originally, the
factor-graph GM had 3 variables (x1, x2, x3) and 2 factors (a, b). In the equivalent Forney-style GM,
there are 6 variables (x1a, x1b, x2a, x2b, x3a, x3b) and 5 factors (a, b and three ‘=’ factors).

B Proof of Theorem 1

To prove Theorem 1 one, first, shows that the line graph GM can be gauge transformed into a
distribution equivalent to the alternating cycle GM. Then it is sufficient for proving Theorem 1 to
consider only the case of an alternating cycle.

Consider a GM defined on a line graph G = (V, E) with V = {a1, a2, · · · , an} and edges E =
{{a1, a2}, {a2, a3}, · · · , {an−1, an}}. Then the gauge transformed factor fai,G can be expressed as:

fai,G = G>aiai−1
fai
Gaiai+1

,

where we used the fact that the size/cardinality of the factor is 2. Next, we ‘flip’ factor f2, associated
with the node number 2, such that there exist an odd number of negative definite factors among
f2, · · · fn−1, i.e., the flipping sets

Ga1a2
, Ga2a1

=

[
0 1
1 0

]
, (12)

thus resulting in reversing the sign of det(fa2
). If fa2

is non-invertible, i.e. det(fa2
) = 0, we instead

flip f3 and so on. If all factors are non-invertible, the resulting distribution is a product distribution
and one can easily find the optimal q for the corresponding line graph, which completes the proof.
Otherwise, we ‘join’ the endpoints a1, an into a0 by introducing a non-invertible factor f0 = f1f

>
n ,

which results in an alternating cycle with the probability distribution identical to the one of a line
graph GM.

Our next step is to prove Theorem 1 for an alternating cycle GM. Our high level logic here is as
follows. We first fix the distribution q of (6) according to

q(x) =

{
1 if x = (0, 0, · · ·),
0 otherwise.

,

and then show that the GM can be gauge transformed into a distribution with a nonzero probability
concentrated only at (0, 0, · · ·). The resulting objective of (6) will become exactly the partition
function. To implement this logic, consider an alternating cycle defined on some graph G =

11

(V, E) with V = {a1, a2, · · · , an} and edges E = {{a1, a2}, {a2, a3}, · · · , {an−1, an}, {an, a1}}.
Observe that, that the gauge transformed factor,

∏
i fai,G , and the original factor,

∏
i fai , share a pair

of eigenvalues λ1, λ2 due to the following relationship:∏
i

fai,G = G−1ana1

∏
i

fiGana1

One finds that λ1λ2 =
∏

det(fi) ≤ 0 since there exist an odd number of negative definite factors
in the cycle. Moreover, λ1 + λ2 > 0 because the diagonal sum,

∏
i fi, is equivalent to the partition

function of GM. Thus one can assume, without loss of generality, that λ1 > 0 and λ2 < 0.

Next, utilizing a simple linear algebra, one derives

Q−12 Q1Gana1

∏
i

fi,GQ
−1
1 Q2 =

[
λ1 + λ2 λ1
−λ2 0

]
,

whereQ1 andQ2 are matrices whose j-th column is an eigen-vector of
∏

i fi and,
[
λ1 + λ2 λ1
−λ2 0

]
,

respectively. Now let

Gana1
= Q−11 Q2, Gai−1ai

= (fiG
>
aiai+1

)−1 for i = 2, · · ·n,

where an+1 = a1. Here we assume that there exists at most one non-invertible factor in the GM
and f2, · · · , fn are invertible so that (fiG>aiai+1

)−1 is defined properly. Otherwise, the GM can be
decomposed into separate line graphs and the proof can be applied recursively. Then the gauge
transformed factors become:

fa1,G =

[
λ1 + λ2 λ1
−λ2 0

]
, fai,G =

[
1 0
0 1

]
∀i 6= 1,

which corresponds to a GM with objective of (6) to be equal to the log partition function. This
completes the proof of the Theorem 1.

C Generating GM instances (for experiments)

In this section, we provide more details on our experimental setups reported in in Section 4. First, we
explain how the two types of factors, non-log-supermodular and log-supermodular, were constructed.
In the generic case (of non-log-supermodular factors), i.e., correspondent to Figure 1 and Figure 3,
one generates factor by first drawing the interaction strength vector at random from the i.i.d. uniform
distribution over the interval [−T, T] for some T > 0, i.e., βa ∼ U(−T, T). Then, in order to
introduce a bias, we add an external variable ya, i.e., half-edge, as follows:

fa(xa) = exp(βa|h0(xa ∪ ya)− h1(xa ∪ ya)|),

where ya is either {0} or {1} with probability 1/2 each. More specifically in experiments resulted
in Figure 1 one varies T while in the experiments resulted in Figure 3 one fixes T to 1.0, i.e.,
βa ∼ [−1.0, 1.0]. Next, in the case of the log-supermodular factors, i.e., setting resulted in Figure 2
and Figure 4, one generates log-supermodular factors by drawing the interaction strength vector from
normal distribution with the average T > 0 and the variance, 10−4, i.e., βa ∼ N (T, 10−4). Note
that there exist no bias in the factors and even though the distribution of the interaction strength is
normal, it is highly likely to observe a positive value concentrated around T .

D Running time comparison of algorithms

In this section, we report experimental results on running time of our proposed algorithms. To this
end, we consider 3-regular and grid graphs with varying size with non-log-supermodular factors, i.e.,
the setting is identical to experiment for Figure 3. Running time was measured by total elapsed time
for optimization of intermediate sub-problems, e.g., Step A., Step C. of Algorithm 1. Results for
G-BP-single and G-BP-multiple were omitted since they solve the same number of optimization as in
G-BP. We remark that implementation of algorithms were not fully optimized. Especially, we expect
a considerable boost in speed of gauge optimization when generic solver (IPOPT) is replaced by

12

graph size MF G-MF G-BP G-BP-sequential
50 0.11 0.45 2.30 21.33

100 0.14 0.97 2.72 74.54
150 0.25 1.62 6.19 161.77
200 0.31 2.38 11.31 292.90

graph size MF G-MF G-BP G-BP-sequential
16 0.02 0.18 26.80 29.78
36 0.05 0.59 69.44 87.88
64 0.14 1.24 106.03 174.39

100 0.40 2.51 182.98 366.74

Table 1: Running time (in seconds) vs graph size (i.e., number of factors) in generic (non-log-
supermodular) GMs on 3-regular (top) and grid (bottom) graphs, where average is taken over 20
random models.

efficient algorithm specifically designed for the purpose. The experiments were performed using a
machine with Intel CPU (Intel(R) Xeon(R) CPU E5-2630, 2.20GHz) and 32 GB RAM. The results
are reported in Table 1. Overall, observed running time is ranked as: MF < G-MF < G-BP <
G-BP-sequential. Remarkably, we observed each gauge optimization in G-MF being solved much
faster than that of G-BP, especially in grid graphs. This is because G-BP tries to solve an extreme
case of G-MF, where small precision is required. The performance of MF and G-BP-sequential is as
expected, since MF is subroutine of G-MF and G-BP is subroutine of G-BP-sequential. Finally, we
argue that G-MF and G-BP are scalable to large graph, since increase in running time with respect
to increase in graph size are comparable to MF, e.g., MF gets up to 20 times slower in grid graph
as its size grows up to 100, while Gauged-MF and Gauged-BP gets slower 13 and 9 times slower
respectively.

13

