
A Additional figures and examples

A.1 Special cases of transductive regret.
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c:ψ(b,c)/1

a:ψ(c,a)/1

b:ψ(c,b)/1
c:ψ(c,c)/1

(iii) (iv)

Figure 4: Several families of WFSTs for special cases of transductive regret for ⌃ = {a, b, c}. (i)
External regret with parameter x 2 ⌃. (ii) Internal regret: family of transducers Ta1,a2 with a1 6= a2,
a1, a2 2 ⌃; example shown for Ta,b. (iii) Swap regret with parameter ' : ⌃ ! ⌃. (iv) Bigram
conditional swap regret with parameter  : (⌃ [ {✏})⇥ ⌃! ⌃.
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A.2 Example with a swapping subset.

0

a

a:φ(a)/0.1

b

b:φ(b)/0.2

c

c:φ(c)/0.3

d

d:φ(d)/0.2

aa

a:φ(a)/0.8

ab

b:φ(b)/0.2

bb

b:φ(b)/0.3

bc c:φ(c)/0.4

bd

d:φ(d)/0.3

cb

b:φ(b)/0.2

cc
c:φ(c)/0.5

cd

d:φ(d)/0.3

dd
d:φ(d)/0.7

da

a:φ(a)/0.3

a:φ(a)/0.4

b:φ(b)/0.6

b:φ(b)/0.5

c:φ(c)/0.3

d:φ(d)/0.2

b:φ(b)/0.3

c:φ(c)/0.3

d:φ(d)/0.4b:φ(b)/0.3

c:φ(c)/0.3

d:φ(d)/0.4

d:φ(d)/0.5

a:φ(a)/0.5

b:φ(b)/0.4

c:φ(c)/0.2

d:φ(d)/0.4
b:φ(b)/0.8

c:φ(c)/0.1
d:φ(d)/0.1

d:φ(d)/0.4

a:φ(a)/0.6

d:φ(d)/0.2

a:φ(a)/0.8

a:φ(a)/0.1

b:φ(b)/0.9

Figure 5: Example of a WFST with ⌃ = {a, b, c, d} and where each state has a swapping subset.
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B Pseudocode of FASTTRANSDUCE

Algorithm 3: FASTTRANSDUCE; (Au,i)u2QT ,i2ilab[ET [u]] external regret minimization algorithms.

Algorithm: FASTTRANSDUCE(T , (Au,i)u2QT ,i2ilab[ET [u]])
u IT
for t 1 to T do

for each i 2 ilab[ET [u]] do
qi  QUERY(Au,i)

Qt,u  [q1112ilab[ET [u]] · · · qN1N2ilab[ET [u]]]
>

for each j  1 to N do
cj  mini2ilab[ET [u]] Q

t,u
i,j 1j2ilab[ET [u]]

↵t  kck1; ⌧t  
l log

⇣
1p
t

⌘

log(1�↵t)

m

if ⌧t < N then
pt  p0

t  c
↵t

for ⌧  1 to ⌧t do
(p⌧

t )
>  (p⌧

t )
>(Qt,u �~1c>); pt  pt + p⌧

t
pt  pt

kptk1

else
p>t = FIXED-POINT(Qt,u)

xt  SAMPLE(pt); lt  RECEIVELOSS(); u �T (u, xt)
for each i 2 ilab[ET[u]] do

ATTRIBUTELOSS(Au,i, pt[i]lt)
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C Pseudocode of FASTSLEEPTRANSDUCE

Algorithm 4: FASTSLEEPTRANSDUCE. (Au,i) sleeping regret minimization algorithms.
Algorithm: FASTSLEEPTRANSDUCE(T , {Au,i}u2QT ,i2ilab[ET [u]])
u IT
for t 1 to T do

At  AWAKESET()
for each i 2 ilab[ET [u]] \At do

qi  QUERY(Au,i); qAt
i  

qi|AtP
j2At

qi

Qt,u  [qAt
1 112ilab[ET [u]]\At

; . . . ; qAt
N 1N2ilab[ET [u]]\At

]
for each j  1 to N do

cj  mini2ilab[ET [u]]\At
Qt,u

i,j 1j2ilab[ET [u]]\At

↵t  kck1; ⌧t  
l log

⇣
1p
t

⌘

log(1�↵t)

m

if ⌧t < N then
pt  p0

t  c
↵t

for ⌧  1 to ⌧t do
(p⌧

t )
>  (p⌧

t )
>(Qt,u � [112At ; . . . ; 1|ilab[ET [q]]|2At

]c>)
pt  pt + p⌧

t
pt  pt

kptk1

else
p>t  FIXED-POINT(Qt,u)

pAt
t  

pt|AtP
j2At

pt,j
; xt  SAMPLE(pAt

t ); lt  RECEIVELOSS(); u �T [u, xt]

for each i 2 ilab[ET [u]] do
ATTRIBUTELOSS(Au,i, pt[i]lt)
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D Proof of Theorem 1

Theorem 1. Let A1, . . . ,AN be external regret minimizing algorithms admitting data-dependent

regret bounds of the form O(
p
LT (Ai) logN), where LT (Ai) is the cumulative loss of Ai after T

rounds. Assume that, at each round, the sum of the minimal probabilities given to an expert by these

algorithms is bounded below by some constant ↵ > 0. Then, FASTSWAP achieves a swap regret in

O(
p
TN logN) with a per-iteration complexity in O

�
N

2 min
� log T

log(1/(1�↵)) , N
 �

.

Proof. Let pt be the distribution returned by FASTSWAP at round t. For any distribution p⇤t , t 2 [T ],
the following inequality holds:

TX

t=1

E
xt⇠pt

[lt(xt)]1⌧t<N =
TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N +
TX

t=1

E
xt⇠pt

[lt(xt)]1⌧t<N

�
TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N


TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N +
TX

t=1

kpt � p⇤t k1kltk11⌧t<N


TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N +
TX

t=1

kpt � p⇤t k11⌧t<N .

Let p⇤t be the stationary distribution of the row stochastic matrix Qt, p⇤>t Qt = p⇤>t . Then, we can
write

TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N =
TX

t=1

NX

j=1

p⇤t,j lt,j1⌧t<N

=
TX

t=1

NX

i=1

NX

j=1

p⇤t,iQ
t
i,j lt,j1⌧t<N

=
NX

i=1

TX

t=1

NX

j=1

Qt
i,jpt,ilt,j1⌧t<N +

NX

i=1

TX

t=1

NX

j=1

Qt
i,j(p

⇤
t,i

� pt,i)lt,j1⌧t<N


NX

i=1

TX

t=1

NX

j=1

Qt
i,jpt,ilt,j1⌧t<N +

TX

t=1

kp⇤t � ptk11⌧t<N .

On the other hand, by design, if ⌧t � N , then pt = p⇤t , so that

TX

t=1

E
xt⇠pt

[lt(xt)]1⌧t�N =
NX

i=1

TX

t=1

NX

j=1

Qt
i,jpt,ilt,j1⌧t�N .

Thus, it follows that

TX

t=1

E
xt⇠pt

[lt(xt)] 
NX

i=1

TX

t=1

NX

j=1

Qt
i,jpt,ilt,j + 2

TX

t=1

kp⇤t � ptk11⌧t<N


NX

i=1


min
j2[N ]

TX

t=1

pt,ilt,j +RegT (Ai,�ext)

�
+ 2

TX

t=1

kp⇤t � ptk11⌧t<N

= min
'2�swap

NX

i=1

 TX

t=1

pt,ilt,'(i) +RegT (Ai,�ext)

�
+ 2

TX

t=1

kp⇤t � ptk11⌧t<N .
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Now let LT (Ai) denote the cumulative loss incurred by algorithm Ai. Since the losses attributed to
algorithm Ai are scaled by pt,i, at each round, the sum of the losses over all the algorithms is at most
1. Thus, by Jensen’s inequality, the following inequalities hold:

1

N

NX

i=1

RegT (Ai,�ext) =
1

N

NX

i=1

O
�p

LT (Ai) logN
�

 O

 vuut 1

N

NX

i=1

LT (Ai) logN

!
 O

✓r
T logN

N

◆
,

which implies
PN

i=1 RegT (Ai,�ext) 
p
TN logN .

Finally, during the rounds in which 1⌧t<N , pt is an RPM approximation of p⇤t using ⌧t iterations.
Thus, by Equation 3.7 in [Nesterov and Nemirovski, 2015] the following inequality holds: kpt �
p⇤t k1  (1� ↵t)⌧t . Since ⌧t is chosen so that the inequality (1� ↵t)⌧t  1/

p
t holds, it follows thatPT

t=1 kpt � p⇤t k1⌧t<N 
PT

t=1 1/
p
t 
p
T , which proves the regret bound RegT (A,�swap) 

O(
p
TN logN).

Furthermore, the computational cost of the t-th iteration of the algorithm is dominated by ⌧t matrix

multiplications or the solution of the linear system. ⌧t can be bounded as follows: ⌧t =
l log

⇣
1p
t

⌘

log(1�↵t)

m


log
⇣

1p
t

⌘

log(1�↵) + 1. Thus, the computational cost of the t-th iteration is in

O

✓
N

2 min

⇢
log t

log(1/(1� ↵t))
, N

�◆
 O

✓
N

2 min

⇢
log T

log(1/(1� ↵)) , N
�◆

.
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E Proof of Theorem 2

Theorem 2. Let (Au,i)u2Q,i2ilab[ET [u]] be external regret minimizing algorithms admitting data-

dependent regret bounds of the form O(
p
LT (Au,i) logN), where LT (Au,i) is the cumulative loss

of Au,i after T rounds. Assume that, at each round, the sum of the minimal probabilities given to

an expert by these algorithms is bounded below by some constant ↵ > 0. Then, FASTTRANSDUCE
achieves a transductive regret against T that is in O(

p
T |ET |in logN) with a per-iteration complexity

in O

⇣
N

2 min
n

log T
log(1/(1�↵)) , N

o⌘
.

Proof. Let pt be the distribution output by FASTTRANSDUCE at round t. For any distribution p⇤t ,
t 2 [T ], the following inequalities hold:

TX

t=1

E
xt⇠pt

[lt(xt)]1⌧t<N =
TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N +
TX

t=1

E
xt⇠pt

[lt(xt)]1⌧t<N

�
TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N


TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N +
TX

t=1

kpt � p⇤t k1kltk11⌧t<N


TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N +
TX

t=1

kpt � p⇤t k11⌧t<N .

Let ut be the state that the algorithm is in at time t as a result of its past actions. Consider the matrix
Qt,ut defined in the algorithm. The restriction of the matrix Qt,ut to its non-zero rows and columns
is a row stochastic matrix. Let p⇤t be its stationary distribution, and by augmenting it with zeros in the
zero rows of Qt,ut , we may take p⇤t 2 �N as a fixed point of Qt,ut . Then, we can write:

TX

t=1

E
xt⇠p⇤t

[lt(xt)]1⌧t<N =
TX

t=1

NX

i=1

NX

j=1

p⇤t,iQ
t,ut
i,j lt,j1⌧t<N

=
NX

i=1

TX

t=1

NX

j=1

Qt,ut
i,j pt,ilt,j1⌧t<N

+
NX

i=1

TX

t=1

NX

j=1

Qt,ut
i,j (p⇤t,i � pt,i)lt,j1⌧t<N


NX

i=1

TX

t=1

NX

j=1

Qt,ut
i,j pt,ilt,j1⌧t<N +

TX

t=1

kp⇤t � ptk11⌧t<N .

On the other hand, by design, if ⌧t � N , then pt = p⇤t , so that

TX

t=1

E
xt⇠pt

[lt(xt)]1⌧t�N =
NX

i=1

TX

t=1

NX

j=1

Qt,ut
i,j pt,ilt,j1⌧t�N .

Thus, it follows that for any WFST T 2 T ,

TX

t=1

E
xt⇠pt

[lt(xt)] 
NX

i=1

TX

t=1

NX

j=1

X

u2QT

Qt,u
i,j 1�T (IT ,x1:t�1)=upt,ilt,j + 2

TX

t=1

kp⇤t � ptk11⌧t<N

=
X

u2QT

X

i2ilab[ET [u]]

TX

t=1

NX

j=1

Qt,u
i,j 1�T (IT ,x1:t�1)=upt,ilt,j
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+ 2
TX

t=1

kp⇤t � ptk11⌧t<N


X

u2QT

X

i2ilab[ET [u]]

min
i⇤2olab[ET [�T (IT ,x1:t�1),xt]]

TX

t=1

1�T (IT ,x1:t�1)=upt,ilt,i⇤

+ 2
TX

t=1

kp⇤t � ptk11⌧t<N +
NX

i=1

X

u2QT

RegT (Au,i,�ext)


X

u2QT

X

i2ilab[ET [q]]

X

e2ET [�T (IT ,x1:t�1),xt]

TX

t=1

1�T (IT ,x1:t�1)=upt,iw[e]lt(olab[e])

+ 2
TX

t=1

kp⇤t � ptk11⌧t<N +
X

u2QT

X

i2ilab[ET [q]]

RegT (Au,i,�ext)

=
TX

t=1

E
xt⇠pt

2

4
X

e2ET [�T (IT ,x1:t�1),xt]

w[e]lt(olab[e])

3

5+ 2
TX

t=1

kp⇤t � ptk11⌧t<N

+
X

u2QT

X

i2ilab[ET [q]]

RegT (Au,i,�ext).

Now let LT (Au,i) denote the cumulative loss incurred by algorithm Au,i. Since the losses attributed
to algorithm Au,i are scaled by 1�T (IT ,x1:t�1)=upt,i, it follows that at each round, the sum of the
losses over all the algorithms is at most 1. Thus, by Jensen’s inequality, it follows that

1P
u2QT

|ilab[ET [u]]|
X

u2QT

X

i2ilab[ET [u]]

RegT (Au,i,�ext)

=
1P

u2QT
|ilab[ET [u]]|

X

u2QT

X

i2ilab[ET [u]]

q
LT (Au,i) log(N)



vuut 1P
u2QT

|ilab[ET [u]]|
X

u2QT

X

i2ilab[ET [u]]

LT (Au,i) log(N)


s

1P
u2QT

|ilab[ET [u]]|
T log(N),

so that
P

u2QT

P
i2ilab[ET [u]] RegT (Au,i,�ext) 

q
T
P

u2QT
|ilab[ET [u]]| log(N).

Finally, during the rounds in which 1⌧t<N , pt is an RPM approximation of p⇤t using ⌧t iterations.
Thus, it follows from Equation 3.7 in [Nesterov and Nemirovski, 2015] that kpt� p⇤t k1  (1�↵t)⌧t .
By the algorithm’s choice of ⌧t, kpt�p⇤t k1  1p

t
. Thus, it follows that

PT
t=1 kpt�p⇤t k11⌧t<N 

p
T ,

so that RegT (A, T )  O(
q
T
P

u2QT
|ilab[ET [q]]| log(N)).

Moreover, the computational cost of the t-th iteration of the algorithm is dominated by ⌧t matrix

multiplications or the solution of the linear system. ⌧t can be bounded as follows: ⌧t =
l log

⇣
1p
t

⌘

log(1�↵t)

m


log
⇣

1p
t

⌘

log(1�↵) + 1. Thus, the computational cost of the t-th iteration is in

O

✓
N

2 min

⇢
log t

log(1/(1� ↵t))
, N

�◆
 O

✓
N

2 min

⇢
log T

log(1/(1� ↵)) , N
�◆

.
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F Proof of Theorem 3

Theorem 3. Let (AI,u,i)I2I,u2QT ,i2ilab[ET [q]] be external regret minimizing algorithms admitting

data-dependent regret bounds of the form O(
p
LT (AI,u,i) logN), where LT (AI,u,i) is the cumu-

lative loss of AI,u,i after T rounds. Let AI be an external regret minimizing algorithm over I that

admits a regret in O(
p
T log(|I|)) after T rounds. Assume further that at each round, the sum of

the minimal probabilities given to an expert by these algorithms is bounded below by some constant

↵ > 0. Then, FASTTIMESELECTTRANSDUCE achieves a time-selection transductive regret with re-

spect to the time-selection family I and WFST family T that is in O

⇣p
T (log(|I|) + |ET |in logN)

⌘

with a per-iteration complexity in O

⇣
N

2
⇣
min

n
log(T )

log((1�↵)�1) , N

o
+ |I|

⌘⌘
.

Proof. We first note that since AI is designed to minimize external regret against the losses (̃lt)Tt=1,
it follows that for any I

⇤ 2 I,
TX

t=1

X

I2I
q̃t

I l̃
t
I 

TX

t=1

l̃
t
I⇤ +RegT (AI).

Let ut be the state that the algorithm is in at time t as a result of its past actions. Consider the matrix
Qt,ut defined in the algorithm. The restriction of the matrix Qt,ut to its non-zero rows and columns
is a row stochastic matrix. Let p⇤t be its stationary distribution, and by augmenting it with zeros in
the zero rows of Qt,ut , we may take p⇤t 2 �N as a fixed point of of Qt,ut . Then, by expanding the
definition of l̃t, we can rewrite the expression on the left-hand side as

TX

t=1

X

I2I
q̃t

I l̃
t
I1⌧t<N =

TX

t=1

X

I2I
q̃t

II(t)
�
p>t Mt,ut,I lt � p>t lt

�
1⌧t<N

=
TX

t=1

X

I2I
q̃t

II(t)p
>
t Mt,ut,I lt1⌧t<N �

TX

t=1

X

I2I
q̃t

II(t)p
>
t lt1⌧t<N

�
TX

t=1

X

I2I
q̃t

II(t)(p
⇤
t )

>Mt,ut,I lt1⌧t<N �
TX

t=1

X

I2I
q̃t

II(t)(p
⇤
t )

>lt1⌧t<N

�
TX

t=1

kpt � p⇤t k11⌧t<N .

On the other hand, by design, if ⌧t � N , then pt = p⇤t , so that
TX

t=1

X

I2I
q̃t

I l̃
t
I1⌧t�N =

TX

t=1

X

I2I
q̃t

II(t)(p
⇤
t )

>Mt,ut,I lt1⌧t�N �
TX

t=1

X

I2I
q̃t

II(t)(p
⇤
t )

>lt1⌧t�N .

Thus, it follows that
TX

t=1

X

I2I
q̃t

I l̃
t
I �

TX

t=1

X

I2I
q̃t

II(t)(p
⇤
t )

>Mt,ut,I lt �
TX

t=0

X

I2I
q̃t

II(t)(p
⇤
t )

>lt �
TX

t=1

kpt � p⇤t k11⌧t<N .

If
P

I2I I(t)q̃t
I 6= 0, then the fact that p⇤t is a stationary distribution of Qt =

P
I2I I(t)q̃tIM

t,ut,I

P
I2I I(t)q̃tI

implies that X

I2I
q̃t

II(t)(p
⇤
t )

>Mt,ut,I lt =
X

I2I
q̃t

II(t)(p
⇤
t )

>lt.

On the other hand, if
P

I2I I(t)q̃t
I = 0, then by non-negativity, it must be the case that I(t)q̃t

I = 0
for every I 2 I. Thus, it follows that

X

I2I
q̃t

II(t)(p
⇤
t )

>Mt,ut,I lt =
X

I2I
q̃t

II(t)(p
⇤
t )

>lt = 0,
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which implies that
TX

t=1

�l̃tI⇤ 
TX

t=1

kpt � p⇤t k11⌧t<N +RegT (AI).

By expanding the definition of l̃tI⇤ , we can write

TX

t=1

�l̃tI⇤ =
TX

t=1

�I⇤(t)
⇣
p>t Mt,ut,I

⇤
lt � p>t lt

⌘
=

TX

t=1

I
⇤(t)p>t lt � I

⇤(t)p>t Mt,ut,I
⇤
lt.

Moreover, for any T 2 T , we can bound the second term in the following way:

TX

t=1

I
⇤(t)p>t Mt,ut,I

⇤
lt =

TX

t=1

I
⇤(t)

NX

i=1

pt,i

NX

j=1

Mt,ut,I
⇤

i,j lt,j

=
X

u2QT

NX

i=1

TX

t=1

NX

j=1

Mt,ut,I
⇤

i,j 1�T (IT ,x1:t�1)=uI
⇤(t)pt,ilt,j

=
X

u2QT

X

i2ilab[ET [u]]

TX

t=1

NX

j=1

Mt,ut,I
⇤

i,j 1�T (IT ,x1:t�1)=uI
⇤(t)pt,ilt,j


X

u2QT

X

i2ilab[ET [u]]

min
i⇤2olab[ET [u]]

TX

t=1

1�T (IT ,x1:t�1)=uI
⇤(t)pt,ilt,i⇤

+
X

u2QT

X

i2ilab[ET [u]]

RegT (AI,u,i,�ext)


X

u2QT

X

i2ilab[ET [u]]

X

e2ET [u]

w[e]
TX

t=1

1�T (IT ,x1:t�1)=uI
⇤(t)pt,ilt,olab[e]

+
X

u2QT

X

i2ilab[ET [u]]

RegT (AI,u,i,�ext)

=
TX

t=1

I
⇤(t) E

xt⇠pt

2

4
X

e2ET [�T (IT ,x1:t�1),xt]

w[e]lt(olab[e])
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+
X

u2QT

X

i2ilab[ET [u]]

RegT (AI,u,i,�ext),

using the fact that algorithm AI,u,i minimizes external regret against the surrogate losses
I(t)1�T (I�,x1:t�1)=upt,ilt.

As in Theorem 2, the scaling assumption on the external regret minimizing algorithms and Jensen’s
inequality imply that

X

u2QT

X

i2ilab[ET [u]]

RegT (AI,u,i,�ext)  O

0

@
s

T

X

u2QT

|ilab[ET[u]]| log(N)

1

A .

Thus, we can write for any I
⇤ 2 I that

TX

t=1

I
⇤(t)p>t lt � I

⇤(t)p>t Mt,ut,I
⇤
lt �

TX

t=1

I
⇤(t) E

xt⇠pt
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4
X

e2ET [�T (IT ,x1:t�1),xt]

w[e]lt(olab[e])

3
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 RegT (AI) +O

0

@
s
T

X

u2QT

|ilab[ET[u]]| log(N)

1

A+
TX

t=1

kpt � p⇤t k11⌧t<N ,
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and as in Theorem 2, we can bound the l1 approximation error of pt for p⇤t by

kpt � p⇤t k1  (1� ↵t)
⌧t  1p

t
,

by the algorithm’s choice of ⌧t. Thus, by applying regret guarantee of algorithm AI together with
the above calculations, the time-selection transductive regret of FASTTIMESELECTTRANSDUCE is

in O

✓r
T

⇣
log(|I|) +

P
q2Q�

|ilab[ET[q]]| log(N)
⌘◆

.

Moreover, at each round t, the computational cost of the algorithm is dominated by two quantities:
the update of |I|N external regret minimizing algorithms over the N experts, which is in O(|I|N2),
and the fixed-point approximation or solution of the linear system, which is in

O

✓
N

2 min

⇢
log(t)

log ((1� ↵t)�1)
, N

�◆
 O

✓
N

2 min

⇢
log(T )

log ((1� ↵)�1)
, N

�◆
.
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G Proof of Theorem 4

Theorem 4. Assume that the sleeping regret minimizing algorithms used as inputs of

FASTSLEEPTRANSDUCE achieve data-dependent regret bounds such that, if the algorithm selects

the distributions (pt)Tt=1 and observes losses (lt)Tt=1 with awake sets (At)Tt=1, then the regret of Aq
i is

at most O

✓qPT
t=1 u⇤(At)Ext⇠pt [lt(xt)] log(N)

◆
. Assume further that at each round, the sum of

the minimal probabilities given to an expert by these algorithms is bounded below by some constant

↵ > 0. Then, the sleeping regret RegT (FASTSLEEPTRANSDUCE, T , A
T
1 ) of FASTSLEEPTRANS-

DUCE is upper bounded by O

⇣qPT
t=1 u(At)|ET |in log(N)

⌘
. Moreover, FASTSLEEPTRANSDUCE

admits a per-iteration complexity in O

⇣
N

2 min
n

log T
log(1/(1�↵)) , N

o⌘
.

Proof. Let u 2 �N , and let pAt
t be the distribution output by FASTSLEEPTRANSDUCE at round t.

For any distribution p⇤t , t 2 [T ], the following inequalities hold:

u(At) E
xt⇠p

At
t

[lt(xt)]1⌧t<N = u(At)

 
E

xt⇠p
At,⇤
t

[lt(xt)] + E
xt⇠p

At
t

[lt(xt)]� E
xt⇠p

At,⇤
t

[lt(xt)]

!
1⌧t<N

 u(At)
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xt⇠p
At,⇤
t
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 u(At)

 
E

xt⇠p
At,⇤
t

[lt(xt)] + kpAt
t � pAt,⇤

t k1

!
1⌧t<N .

Let ut be the state that the algorithm is in at time t as a result of its past actions. Consider the matrix
Qt,ut defined in the algorithm. The restriction of Qt,ut to its non-zero rows and columns is a row
stochastic matrix. Let pAt,⇤

t be its stationary distribution, and by augmenting it with zeros in the zero
rows of Qt,ut , we may take pAt,⇤

t 2 �N as a fixed point of Qt,ut . Then, we can write:
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u(At) E
xt⇠p

At,⇤
t

[lt(xt)]1⌧t<N

=
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t=1

NX
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t k11⌧t<N .

On the other hand, by design, if ⌧t � N , then pt = p⇤t , so that
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t
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TX
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Thus, it follows that for any WFST T 2 T ,
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u(At) E
xt⇠p

At
t

[lt(xt)]


NX

i=1
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23



=
NX

i=1

TX

t=1

NX

j=1

X

u2QT

u(At)Q
t,u
i,j 1�T (IT ,x1:t�1)=upAt

t,i lt,j + 2
TX

t=1

u(At)kpAt,⇤
t � pAt

t k11⌧t<N

=
X

u2QT

X

i2ilab[ET [u]]

TX

t=1

NX

j=1

u(At)Q
t,u
i,j 1�T (IT ,x1:t�1)=upAt

t,i lt,j

+ 2
TX

t=1

u(At)kpAt,⇤
t � pAt

t k11⌧t<N


X

u2QT

X

i2ilab[ET [u]]

min
uu,i2�NP

j2At
uq,ij =u(At)

TX

t=1

NX

j=1

1�T (IT ,x1:t�1)=uuq,i
j 1j2Atp

At
t,i lt,j

+ 2
TX

t=1

u(At)kpAt,⇤
t � pAt

t k11⌧t<N +
X

u2QT

X

i2ilab[ET [u]]

RegT (Au,i,�sleep)


X

u2QT

X

i2ilab[ET [u]]

X

e2ET [q]

TX

t=1

NX

j=1

1�T (IT ,x1:t�1)=uuj1j2Atw[e]p
At
t,i lt,j

+ 2
TX

t=1

u(At)kpAt,⇤
t � pAt

t k11⌧t<N +
X

u2QT

X

i2ilab[ET [q]]

RegT (Au,i,�sleep)

=
TX

t=1

E
xt⇠pt

2

4
X

e2ET [�T (IT ,x1:t�1),xt]

(u|At)olab[e]w[e]p
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+ 2
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u(At)kpAt,⇤
t � pAt

t k11⌧t<N +
X

u2QT

X

i2ilab[ET [q]]

RegT (Au,i,�sleep).

For any distribution u⇤ 2 �N and awake sequence A
T
1 , Let Lu,AT

1
T =

PT
t=1 u⇤(At)Ext⇠pt [lt(xt)],

Thus, algorithm Au,i achieves a regret in O(

q
L
uq,⇤i ,AT

1
T log(N)), where uq,⇤

i is a maximizer of
algorithm Au,i’s sleeping regret.

Since the losses attributed to algorithm Au,i are scaled by 1�T (IT ,x1:t�1)=upAt
t,i , it follows that at

each round, the sum of the losses over all the algorithms is at most 1. Thus, by Jensen’s inequality, it
follows that

1P
u2QT

|ilab[ET [u]]|
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u2QT

X

i2ilab[ET [u]]

RegT (Au,i,�sleep)

=
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P
i2ilab[ET [u]] RegT (Au,i,�sleep) 

qPT
t=1 u(At)

P
u2QT

P
i2ilab[ET [u]] log(N).

Finally, during the rounds in which 1⌧t<N , pt is an RPM approximation of p⇤t using ⌧t iterations.
Thus, by Equation 3.7 in [Nesterov and Nemirovski, 2015] the following inequality holds: kpt �
p⇤t k1  (1� ↵t)⌧t . Since ⌧t is chosen so that the inequality (1� ↵t)⌧t  1/

p
t holds, it follows that
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t=1 u(At)kpAt

t � pAt,⇤
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p
T , which proves the regret bound
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Furthermore, the computational cost of the t-th iteration of the algorithm is dominated by ⌧t matrix

multiplications or the solution of the linear system. ⌧t can be bounded as follows: ⌧t =
l log

⇣
1p
t

⌘

log(1�↵t)

m


log
⇣

1p
t

⌘

log(1�↵) + 1. Thus, the computational cost of the t-th iteration is in
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.
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H Connections with game-theoretic equilibria

There is an elegant connection between regret minimization in online learning and convergence
to game-theoretic equilibria in repeated games [Nisan et al., 2007]. As an example, remarkably,
if all players in a repeated game follow a swap regret minimization algorithm, then the empirical
distribution of their play converges to a correlated equilibrium (see for example [Blum and Mansour,
2007]). Similarly, if all players follow a conditional swap regret minimization algorithm, then the
empirical distribution of their play converges to a conditional correlated equilibrium [Mohri and Yang,
2014]. Hazan and Kale [2008] showed a result generalizing this property to the case of a �-regret and
�-equilibrium. Moreover, the authors showed that the existence of an efficient �-regret minimizing
algorithm is equivalent to the possibility of efficiently computing a fixed point associated to �-regret.
However, their characterization of efficiency is a per iteration time complexity of O(|�|), which may
be very large, in fact exponential in the number of experts, as in the case of the examples discussed in
this paper. Here, we proved the existence of a large class of �-equilibria, transductive equilibria, i.e.
those induced by a WFST, that are realizable in time that is polynomial in the number of experts.

I Lower bound

Auer [2017] proved a lower bound of ⌦(
p
TN) for swap regret. Since swap regret is a special case

of transductive regret, that lower bound applies to the setting of transductive regret as well. This is
further detailed in an extended version of this paper.

J Bandit setting

Blum and Mansour [2007] and Mohri and Yang [2014] respectively showed that swap and conditional
swap regret-minimizing algorithms can be extended to the bandit setting. Similarly, our more general
transductive regret-minimizing can be extended to the bandit setting, as shown and detailed in the
extended version of this paper.
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