
A PAC-Bayesian Analysis of Randomized Learning
with Application to Stochastic Gradient Descent

*** Supplemental Material ***

Ben London
blondon@amazon.com

Amazon AI

A Proofs from Section 3

The stability bounds in Section 3 require several characterizations of a loss or objective function. In
the following definitions, we consider generic functions of the form ϕ : H×Z → R. Since we are
only interested in how a function behaves with respect toH, we specify the definitions accordingly.

Definition 4 (Convexity). A differentiable function, ϕ : H×Z → R, is convex (inH) if

∀h, h′ ∈ H, ∀z ∈ Z, 〈∇ϕ(h, z), h′ − h〉 ≤ ϕ(h′, z)− ϕ(h, z).

Further, ϕ is γ-strongly convex (with respect to the 2-norm) if
γ

2
‖h′ − h‖2 + 〈∇ϕ(h, z), h′ − h〉 ≤ ϕ(h′, z)− ϕ(h, z).

Definition 5 (Lipschitzness). A function, ϕ : H×Z → R, is λ-Lipschitz (inH) if

sup
h,h′∈H

sup
z∈Z

|ϕ(h, z)− ϕ(h′, z)|
‖h− h′‖

≤ λ. (11)

If ϕ is differentiable, then Equation 11 is equivalent to

sup
h∈H

sup
z∈Z
‖∇ϕ(h, z)‖ ≤ λ.

Definition 6 (Smoothness). A differentiable function, ϕ : H×Z → R, is σ-smooth (inH) if

sup
h,h′∈H

sup
z∈Z

‖∇ϕ(h, z)−∇ϕ(h′, z)‖
‖h− h′‖

≤ σ.

Smoothness is a form of Lipschitzness; a function is σ-smooth if its gradient is σ-Lipschitz.

A.1 Proof of Propositions 1 to 3

Propositions 1 to 3 extend work by Hardt et al. [5] and Kuzborskij and Lampert [8], whose defini-
tions of data stability differ slightly from ours (which are taken from [3]). To reconcile our definition
of βZ -uniform stability with Hardt et al.’s, which does not involve an absolute value, observe that

sup
S,S′,z

∣∣∣ E
θ∼P

[L(A(S, θ), z)− L(A(S′, θ), z)]
∣∣∣ = sup

S,S′,z
E
θ∼P

[L(A(S, θ), z)− L(A(S′, θ), z)]

by the symmetry of the supremum over S and S′. Kuzborskij and Lampert’s definition of hypothesis
stability equates to our pointwise hypothesis stability, though they do not include an absolute value
inside the expectation over θ ∼ P. Nonetheless, since the loss function is always assumed to be

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

λ-Lipschitz, this distinction does not matter. Indeed, all existing stability proofs for SGD implicitly
leverage the following upper bound:

E
θ∼P

[L(A(S, θ), z)− L(A(S′, θ), z)] ≤ E
θ∼P

[|L(A(S, θ), z)− L(A(S′, θ), z)|]

≤ λ E
θ∼P

[‖A(S, θ)−A(S′, θ)‖] . (12)

Equation 12 implies that Kuzborskij and Lampert’s proofs hold for our definition of pointwise hy-
pothesis stability; we simply start the proof from the right-hand side of the first inequality. By the
same logic, we can convert existing proofs of βZ -uniform stability to proofs of βZ -pointwise hy-
pothesis stability. Moreover, Equation 12 lets us distinguish between the loss function, L, and the
objective function, F , which is optimized by A; though [5, 8] do not make this distinction, their
results hold when L 6= F because they assume Lipschitzness.

Using the above reasoning, we therefore arrive at the following adaptations, which will be used to
prove Propositions 1 and 3.

Lemma 1 (adapted from [5, Theorem 3.7]). Assume that the loss function, L, is λ-Lipschitz, and
that the objective function, F , is convex, λ-Lipschitz and σ-smooth. Suppose SGD is run for T
iterations with a uniform sampling distribution, P, and step sizes ηt ∈ [0, 2/σ]. Then, SGD is both
βZ -uniformly stable and βZ -pointwise hypothesis stable with respect to L and P, with

βZ ≤
2λ2

n

T∑
t=1

ηt.

Lemma 2 (adapted from [8, Theorem 3]). Assume that the loss function, L, is λ-Lipschitz, and that
the objective function, F , is convex, λ-Lipschitz and σ-smooth. Suppose SGD starts from an initial
hypothesis, h0, and is run for T iterations with a uniform sampling distribution, P, and step sizes
ηt ∈ [0, 2/σ]. Then, SGD is βZ -pointwise hypothesis stable with respect to L and P, with

βZ ≤
2λ
√

2σ Ez∼D[L(h0, z)]

n

T∑
t=1

ηt.

If η ≤ 2/σ, then ηt ≤ η/t ≤ 2/σ for all t ≥ 1. We thus have from Lemma 1 that

βZ ≤
2λ2η

n

T∑
t=1

1

t
≤ 2λ2η

n
(lnT + 1) ,

which proves Proposition 1. The last inequality follows from the fact that the T th harmonic number,∑T
t=1

1
t , is upper-bounded by lnT + 1. We obtain Proposition 3 from Lemma 2 using an identical

proof.

Proposition 2 follows from [5, Theorem 3.8] with a few small modifications. As previously men-
tioned, we can use Equation 12 to reconcile definitional differences, distinguish L from F , and
adapt the proof for pointwise hypothesis complexity. We also assume that L is M -bounded instead
of 1-bounded, so we use suph,z L(h, z) ≤M in the proof (see [4, Lemma 3.11]).

A.2 Proof of Proposition 4

We characterize SGD updates using the following definition, borrowed from Hardt et al. [5].

Definition 7 (Expansivity). An update rule, U : H×Z → H, is α-expansive if

sup
h,h′∈H

sup
z∈Z

‖U(h, z)− U(h′, z)‖
‖h− h′‖

≤ α.

We say that U is contractive if α ≤ 1.

Expansivity is yet another form of Lipschitzness; an update rule is α-expansive if it is α-Lipschitz.

We begin our proof with a fundamental technical lemma.

2

Lemma 3. Assume that the objective function, F , is λ-Lipschitz. Further, assume that each SGD
update, Ut, is αt-expansive. If SGD is run for T iterations on two sequences of examples that differ
at a single iteration, k, then the resulting learned hypotheses, hT and h′T , satisfy

‖hT − h′T ‖ ≤ 2ληk

T∏
t=k+1

αt.

Proof. For the first k − 1 iterations of SGD, the example sequences are the same; therefore, so are
the learned weights. On processing the kth example, the weights may diverge, but we will show that
the divergence is bounded, due to the Lipschitz property. For every iteration after k, the weights may
continue to follow different trajectories, but the expansivity property lets us bound the difference of
the final, learned weights.

Starting at T and recursing backward, we have that

‖hT − h′T ‖ ≤
∥∥hT−1 − h′T−1

∥∥ αT ≤ . . . ≤ ‖hk − h′k‖ T∏
t=k+1

αt. (13)

Then, expanding the kth update,

‖hk − h′k‖ = ‖hk−1 − ηk∇F (hk−1, zk)− hk−1 + ηk∇F (hk−1, z
′
k)‖

≤ ‖ηk∇F (hk−1, zk)‖ + ‖ηk∇F (hk−1, z
′
k)‖

≤ 2ηkλ. (14)

Combining Equations 13 and 14 completes the proof.

We can now prove Proposition 4. First, note that ηt ≤ 1/σ for all t ≥ 1. As noted by Hardt et al. [4,
proof of Theorem 3.9], due to the strong convexity of the objective function, this step size guarantees
that each update is contractive with coefficient 1 − ηtγ = 1 − (t + σ/γ)−1. Moreover [4, proof of
Theorem 3.10],

E
θ∼P

[‖hT − h′T ‖] ≤
T∑
k=1

(
T∏

t=k+1

(1− ηtγ)

)
ηk ·

2λ

n

=

T∑
k=1

(
T∏

t=k+1

(
1− 1

t+ σ/γ

))
1

k + σ/γ
· 2λ

γn

=
T∑
k=1

k + σ/γ

T + σ/γ
· 1

k + σ/γ
· 2λ

γn

=
T

T + σ/γ
· 2λ

γn
≤ 2λ

γn
. (15)

Combining Equations 12 and 15 yields an upper bound on the data stability coefficient, βZ ≤ 2λ2

γn .

Now, suppose the example sequence is perturbed at any index k. Via Lemma 3, we have that

‖hT − h′T ‖ ≤ 2ληk

T∏
t=k+1

(1− ηtγ)

=
2λ

γ
· 1

k + σ/γ

T∏
t=k+1

(
1− 1

t+ σ/γ

)
=

2λ

γ
· 1

k + σ/γ
· k + σ/γ

T + σ/γ
≤ 2λ

γT
,

which we combine with the Lipschitz property (Equation 11) to obtain βΘ ≤ 2λ2

γT .

3

B Proofs from Section 4

B.1 Stability of the Generalization Error

Our analysis in Section 4 uses stability to bound the moments and moment-generating function of
the generalization error. To enable these proofs, we first derive some technical lemmas that relate
stability in the loss to the stability in the generalization error. The first lemma applies to data stability;
the second, to hyperparameter stability.

Lemma 4. If A is βZ -uniformly stable with respect to an M -bounded loss function, L, and a
distribution, P, then, for any S, S′ ∈ Zn : DH(S, S′) = 1,

G(S,P)−G(S′,P) ≤ 2βZ +
M

n
.

Proof. Observe that the difference of generalization errors decomposes as

G(S,P)−G(S′,P) = (R(S,P)−R(S′,P)) + (R̂(S′,P)− R̂(S,P)). (16)

We will upper-bound each difference separately. First, using linearity of expectation and βZ -uniform
stability, we have that

R(S,P)−R(S′,P) = E
z∼D

E
θ∼P

[L(A(S, θ), z)− L(A(S′, θ), z)] ≤ βZ . (17)

Then, without loss of generality, assume that S′ differs from S at the ith example, denoted z′i. Using
βZ -uniform stability again,

R̂(S′,P)− R̂(S,P) =
1

n

∑
j 6=i

E
θ∼P

[L(A(S′, θ), zj)− L(A(S, θ), zj)]

+
1

n
E
θ∼P

[L(A(S′, θ), z′i)− L(A(S, θ), zi)]

≤ 1

n

∑
j 6=i

βZ +
M

n
≤ βZ +

M

n
. (18)

Combining Equations 16 to 18 completes the proof.

Lemma 5. If A is βΘ-uniformly stable with respect to a loss function, L, then, for any S ∈ Zn and
θ, θ′ ∈ Θ : DH(θ, θ′) = 1,

G(S, θ)−G(S, θ′) ≤ 2βΘ.

Proof. The proof is almost identical to that of Lemma 4. First, we decompose the generalization
error:

G(S, θ)−G(S, θ′) = (R(S, θ)−R(S, θ′)) + (R̂(S, θ′)− R̂(S, θ)). (19)

Then, we upper-bound the difference of risk terms:

R(S, θ)−R(S, θ′) = E
z∼D

[L(A(S, θ), z)− L(A(S, θ′), z)] ≤ βΘ. (20)

Then, we upper-bound the difference of empirical risk terms:

R̂(S, θ′)− R̂(S, θ) =
1

n

n∑
i=1

L(A(S, θ′), zi)− L(A(S, θ), zi) ≤ βΘ. (21)

Combining Equations 19 to 21 completes the proof.

Note that it is unnecessary to upper-bound the absolute difference in generalization error when using
uniform stability, since it follows from the symmetry of the supremum over S, S′ ∈ Zn or θ, θ′ ∈ Θ.

4

B.2 Proof of Theorem 1

PAC-Bayesian analysis typically requires a key step known as change of measure. For our first
bound, we use a change of measure inequality based on the Rényi divergence,

Dα(Q‖P) ,
1

α− 1
ln E
X∼P

[(
Q(X)

P(X)

)α]
.

Lemma 6 ([1, Theorem 8]). LetX denote a random variable taking values in Ω, and let ϕ : Ω→ R
denote a measurable function. Then, for any α > 1, and any two distributions, P and Q, on Ω,

α

α− 1
ln E
X∼Q

[ϕ(X)] ≤ Dα(Q‖P) + ln E
X∼P

[
ϕ(X)

α
α−1
]
. (22)

An important special case of Lemma 6 is α = 2, in which case

D2(Q‖P) = ln E
X∼P

[(
Q(X)

P(X)

)2
]

= ln
(
χ2(Q‖P) + 1

)
,

and, taking the exponent of Equation 22,

E
X∼Q

[ϕ(X)] ≤
√

(χ2(Q‖P) + 1) E
X∼P

[ϕ(X)2].

Thus, with X , θ and ϕ(X) , G(S, θ),

G(S,Q) = E
θ∼Q

[G(S, θ)] ≤
√

(χ2(Q‖P) + 1) E
θ∼P

[G(S, θ)2].

Further, since Eθ∼P[G(S, θ)2] is a nonnegative function of S ∼ Dn, Markov’s inequality says that

Pr
S∼Dn

{
E
θ∼P

[
G(S, θ)2

]
≥ 1

δ
E

S∼Dn
E
θ∼P

[
G(S, θ)2

]}
≤ δ.

We therefore have that with probability at least 1− δ over draws of S ∼ Dn,

G(S,Q) ≤
√

(χ2(Q‖P) + 1)
1

δ
E

S∼Dn
E
θ∼P

[G(S, θ)2]. (23)

All that remains is to upper-bound ES∼Dn Eθ∼P
[
G(S, θ)2

]
, which can be accomplished via point-

wise hypothesis stability.

Lemma 7 ([3, Lemma 11]). For any (randomized) learning algorithm, A, and M -bounded loss
function, L,

E
S∼Dn

[
G(S, θ)2

]
≤ 2M2

n
+

12M

n

n∑
i=1

E
S∼Dn

E
z∼D

[∣∣L(A(S, θ), zi)− L(A(Si,z, θ), zi)
∣∣] . (24)

Taking the expectation over θ ∼ P on both sides of Equation 24, and using the linearity of expecta-
tion, we have that

E
S∼Dn

E
θ∼P

[
G(S, θ)2

]
≤ 2M2

n
+

12M

n

n∑
i=1

E
S∼Dn

E
z∼D

E
θ∼P

[∣∣L(A(S, θ), zi)− L(A(Si,z, θ), zi)
∣∣]

≤ 2M2

n
+

12M

n

n∑
i=1

βZ =
2M2

n
+ 12MβZ . (25)

The last inequality follows directly from Definition 2. Combining Equations 23 and 25, we obtain
Equation 5.

5

B.3 Proof of Theorem 2

The proof of Theorem 2 requires two technical lemmas: the first is a change of measure inequality
based on the KL divergence, attributed to Donsker and Varadhan [2]; the second is an upper bound
on the moment-generating function of the generalization error, which we prove herein.
Lemma 8 ([2]). Let X denote a random variable taking values in Ω, and let ϕ : Ω → R denote a
measurable function. Then, for any two distributions, P and Q, on Ω,

E
X∼Q

[ϕ(X)] ≤ DKL(Q‖P) + ln E
X∼P

[exp(ϕ(X))] .

Lemma 9. Fix a product measure, P, on Θ =
∏T
t=1 Θt, and suppose A is a (βZ , βΘ)-uniformly

stable with respect to L and P. Then, with

β̄Z = 2βZ +
M

n
, (26)

for any ε > 0, the moment-generating function (MGF) of G(S, θ) satisfies

E
S∼Dn

E
θ∼P

[exp (εG(S, θ))] ≤ exp

(
ε2

8

(
nβ̄2
Z + 4Tβ2

Θ

)
+ ε βZ

)
. (27)

Proof. Before we begin, let us pause to recognize that the random variable G(S, θ) has nonzero
mean. This is because the learning algorithm—hence, the loss composed with the learning
algorithm—is a non-decomposable function of the training data and hyperparameters. We there-
fore start by defining a zero-mean random variable,

Φ(S, θ) , G(S, θ)−G(D,P),

where
G(D,P) , E

S∼Dn
E
θ∼P

[G(S, θ)]

denotes the expected generalization error over draws of both S ∼ Dn and θ ∼ P. These definitions
let us decompose the MGF of G(S, θ) as

E
S∼Dn

E
θ∼P

[exp (εG(S, θ))] = E
S∼Dn

E
θ∼P

[exp (εΦ(S, θ) + εG(D,P))]

= E
S∼Dn

E
θ∼P

[exp (εΦ(S, θ))] exp (εG(D,P)) . (28)

The second equality uses the fact that G(D,P) is constant with respect to the outer expectations.
We now have that the MGF of G(S, θ) is the product of two factors: the MGF of Φ(S, θ), and a
monotonic function of G(D,P). We will bound these terms separately.

First, we upper-bound G(D,P) as follows:

G(D,P) = E
S∼Dn

E
θ∼P

[
E
z∼D

[L(A(S, θ), z)]− 1

n

n∑
i=1

L(A(S, θ), zi)

]

=
1

n

n∑
i=1

E
S∼Dn

E
z∼D

E
θ∼P

[L(A(S, θ), z)− L(A(S, θ), zi)]

≤ 1

n

n∑
i=1

E
S∼Dn

E
z∼D

E
θ∼P

[
L(A(Si,z, θ), z)− L(A(S, θ), zi)

]
+ βZ

= 0 + βZ .

In the second line, we rearrange the expectations using the linearity of expectation. In the third
line, we form a new dataset, Si,z , by replacing zi with z; via Definition 1, the expected difference
of losses due to replacement, Eθ∼P[L(A(S, θ), z) − L(A(Si,z, θ), z)], is upper-bounded by βZ -
uniform stability. The last line follows from the fact that each example is i.i.d.; since both S and
Si,z are distributed according to Dn, and θ is independent of the datasets, the losses cancel out in
expectation. Therefore, using the monotonicity of the exponent, and the fact that ε is positive, we
have that

exp (εG(D,P)) ≤ exp (ε βZ) . (29)

6

We now upper-bound the MGF of Φ(S, θ), which involves a somewhat technical proof. To reduce
notation, we omit the subscript on expectations. Further, we use the shorthand zi:j , (zi, . . . , zj)

and θi:j , (θi, . . . , θj) to denote subsequences. (Interpret z1:0 and θ1:0 as the empty set.) We start
by constructing a Doob martingale as follows:

Vi ,

{
E[G(S, θ) | z1:i]− E[G(S, θ) | z1:i−1] for i = 1, . . . , n;

E[G(S, θ) |S, θ1:t]− E[G(S, θ) |S, θ1:t−1] for i = n+ t, t = 1, . . . , T.

Observe that E[Vi] = 0 and
∑n+T
i=1 Vi = Φ(S, θ). Thus, using the law of total expectation (alterna-

tively, law of iterated expectations, or tower rule),

E [exp (εΦ(S, θ))] ≤

(
n∏
i=1

sup
z1:i−1

E
[
eεVi | z1:i−1

])(T∏
t=1

sup
S,θ1:t−1

E
[
eεVn+t |S, θ1:t−1

])
. (30)

Each iterate of Equation 30 is the supremum of the MGF for the corresponding martingale variable.
We will use Hoeffding’s lemma [6] to uniformly upper-bound each MGF. Hoeffding’s lemma states
that, if X is a zero-mean random variable, such that a ≤ X ≤ b almost surely, then for all ε ∈ R,

E
[
eεX
]
≤ exp

(
ε2(b− a)2

8

)
. (31)

To apply Hoeffding’s lemma to each iterate of Equation 30, it suffices to show that

∀i ∈ {1, . . . , n}, ∃ci : supVi − inf Vi

= sup
z1:i, z

′
1:i :

z1:i−1=z′1:i−1

E[G(S, θ) | z1:i]− E[G(S′, θ) | z′1:i] ≤ ci; (32)

and ∀t ∈ {1, . . . , T}, ∃ct : supVn+t − inf Vn+t

= sup
S

sup
θ1:t, θ

′
1:t :

θ1:t−1=θ′1:t−1

E[G(S, θ) |S, θ1:t]− E[G(S, θ′) |S, θ′1:t] ≤ ct. (33)

The constants ci and ct replace a− b in Equation 31.

To prove Equation 32, we use Lemma 4 (since A is βZ -uniformly stable) and the independence of
examples and hyperparameters. For any z1:i, z

′
1:i ∈ Zi : z1:i−1 = z′1:i−1,

E[G(S, θ) | z1:i]− E[G(S′, θ) | z′1:i] =
∑
zi+1:n

(G(S,P)−G(S′,P))

n−i∏
j=1

D(zi+j) ≤ β̄Z .

(For notational simplicity, the expectation over zi+1:n is written as a summation, though Z need not
be a finite set.) To prove Equation 33, we use Lemma 5 (since A is βΘ-uniformly stable) and the
independence of hyperparameters. For any S ∈ Zn and θ1:t, θ

′
1:t ∈

∏t
j=1 Θj : θ1:t−1 = θ′1:t−1,

E[G(S, θ) |S, θ1:t]− E[G(S, θ′) |S, θ′1:t] =
∑
θt+1:T

(G(S, θ)−G(S, θ′))

T−t∏
j=1

P(θt+j) ≤ 2βΘ.

Thus, applying Hoeffding’s lemma (Equation 31) to each iterate of Equation 30—using ci = β̄Z in
Equation 32, and ct = 2βΘ in Equation 33—we have that

E [exp (εΦ(S, θ))] ≤

(
n∏
i=1

exp

(
ε2β̄2
Z

8

))(T∏
t=1

exp

(
ε2(2βΘ)2

8

))

= exp

(
ε2

8

(
nβ̄2
Z + 4Tβ2

Θ

))
. (34)

Finally, by combining Equations 28, 29 and 34, we establish Equation 27.

7

We are now ready to prove Theorem 2. Let ε > 0 denote a free parameter, which we will define
later. Via Lemma 8 (with X , θ and ϕ(X) , εG(S, θ)), we have that

G(S,Q) =
1

ε
E
θ∼Q

[εG(S, θ)] ≤ 1

ε

(
DKL(Q‖P) + ln E

θ∼P
[exp (εG(S, θ))]

)
. (35)

By Markov’s inequality, with probability at least 1− δ over draws of S ∼ Dn,

E
θ∼P

[exp (εG(S, θ))] ≤ 1

δ
E

S∼Dn
E
θ∼P

[exp (εG(S, θ))]

≤ 1

δ
exp

(
ε2

8

(
nβ̄2
Z + 4Tβ2

Θ

)
+ ε βZ

)
. (36)

The second inequality uses Lemma 9 to upper-bound the MGF of G(S, θ), with β̄Z defined in
Equation 26. Combining Equations 35 and 36, we thus have that with probability at least 1− δ,

G(S,Q) ≤ βZ +
1

ε

(
DKL(Q‖P) + ln

1

δ

)
+
ε

8

(
nβ̄2
Z + 4Tβ2

Θ

)
. (37)

What remains is to optimize ε to minimize the bound. Minimizing an expression of the form a/ε+bε

is fairly straightforward; the optimal value for ε is
√
a/b. However, if we were to apply this formula

to Equation 37, the optimal ε would depend on Q via the KL divergence term. Since we want the
bound to hold simultaneously for all Q, we need to define ε such that it does not depend on Q. To
do so, we construct an infinite sequence of ε values; for i = 0, 1, 2, . . . , let

εi , 2i

√
8 ln 2

δ

nβ̄2
Z + 4Tβ2

Θ

. (38)

For each εi, we assign δi , δ2−(i+1) mass to the probability that Equation 37 does not hold,
substituting εi and δi for ε and δ, respectively. Thus, by the union bound, with probability at least
1−

∑∞
i=0 δi = 1− δ

∑∞
i=0 2−(i+1) = 1− δ, all i = 0, 1, 2, . . . satisfy

G(S,Q) ≤ βZ +
1

εi

(
DKL(Q‖P) + ln

1

δi

)
+
εi
8

(
nβ̄2
Z + 4Tβ2

Θ

)
.

For any Q, we select the optimal index, i?, as

i? =

⌊
1

2 ln 2
ln

(
DKL(Q‖P)

ln(2/δ)
+ 1

)⌋
.

Since, with a bit of arithmetic,

1

2

√
DKL(Q‖P)

ln(2/δ)
+ 1 ≤ 2i

?

≤

√
DKL(Q‖P)

ln(2/δ)
+ 1, (39)

combining Equations 38 and 39, we have that√
2(DKL(Q‖P) + ln 2

δ)

nβ̄2
Z + 4Tβ2

Θ

≤ εi? ≤

√
8(DKL(Q‖P) + ln 2

δ)

nβ̄2
Z + 4Tβ2

Θ

.

It can also be shown [9] that

DKL(Q‖P) + ln
1

δi?
≤ 3

2

(
DKL(Q‖P) + ln

2

δ

)
.

Therefore, with probability at least 1− δ over draws of S ∼ Dn, every posterior, Q, satisfies

G(S,Q) ≤ βZ +
1

εi?

(
DKL(Q‖P) + ln

1

δi?

)
+
εi?

8

(
nβ̄2
Z + 4Tβ2

Θ

)
≤ βZ +

√
nβ̄2
Z + 4Tβ2

Θ

2(DKL(Q‖P) + ln 2
δ)
· 3

2

(
DKL(Q‖P) + ln

2

δ

)

+

√
8(DKL(Q‖P) + ln 2

δ)

nβ̄2
Z + 4Tβ2

Θ

· nβ̄
2
Z + 4Tβ2

Θ

8

= βZ +

√
2

(
DKL(Q‖P) + ln

2

δ

)(
nβ̄2
Z + 4Tβ2

Θ

)
.

8

Substituting Equation 26 for β̄Z , we obtain Equation 6.

B.4 Proof of Theorem 3

To accommodate all posteriors that might arise from drawing S ∼ Dn, it helps to consider Q as a
function of S. Accordingly, we let QS denote the distribution induced by S. With δ1 , δ/2, let

E1(S) , 1

{
∃Q : G(S,Q) ≥ +βZ +

√
2

(
DKL(Q‖P) + ln

2

δ1

)(
(M + 2nβZ)2

n
+ 4Tβ2

Θ

)}
denote the event that there exists a posterior for which Equation 6 does not hold. With δ2 , δ/2, let

E2(S, θ) , 1

{
G(S, θ) ≥ G(S,QS) + βΘ

√
2T ln

1

δ2

}
denote the event that the generalization error for a given θ exceeds the expected generalization error
under the posterior QS by more than βΘ

√
2T ln 1

δ2
.

The probability we want to upper-bound is

Pr
S∼Dn
θ∼QS

{E1(S) ∨ E2(S, θ)} ≤ Pr
S∼Dn

{E1(S)} + Pr
S∼Dn
θ∼QS

{E2(S, θ)}

≤ Pr
S∼Dn

{E1(S)} + sup
S∈Zn

Pr
θ∼QS

{E2(S, θ) |S}.

The first inequality follows from the union bound; the second inequality follows from probability
theory. By Theorem 2, PrS∼Dn{E1(S)} ≤ δ1. To upper-bound Prθ∼QS{E2(S, θ) |S}, it suffices
to show that G(S, θ) concentrates tightly around G(S,QS). We will do so with McDiarmid’s in-
equality [10]. The following is a specialized version of the theorem.
Lemma 10 ([10]). LetX1, . . . , Xn denote i.i.d. random variables, each taking values in Ω. Suppose
ϕ : Ωn → R is a measurable function for which there exists a constant, β, such that

sup
ω1,...,ωn∈Ωn

sup
ω′i∈Ω

|ϕ(ω1, . . . , ωi, . . . , ωn)− ϕ(ω1, . . . , ω
′
i, . . . , ωn)| ≤ β. (40)

Then, for any ε > 0,

Pr {ϕ(X)− Eϕ(X) ≥ ε} ≤ exp

(
−2ε2

nβ2

)
. (41)

An important special case is when β = Θ(n−1), in which case Equation 41 is O(exp(−2nε2)),
which decays rapidly.

Recall thatA is βΘ-uniformly stable with respect to L, independent of the posterior. Remember also
that, by Lemma 5, G satisfies McDiarmid’s stability condition (Equation 40) with β , 2βΘ. Since
QS is a product measure, we can therefore apply McDiarmid’s inequality; with ε , βΘ

√
2T ln 1

δ2
,

Pr
θ∼QS

{E2(S, θ) |S} ≤ exp

−2
(
βΘ

√
2T ln 1

δ2

)2

T (2βΘ)
2

 = δ2.

Thus,
Pr

S∼Dn
θ∼QS

{E1(S) ∨ E2(S, θ)} ≤ δ1 + δ2 = δ;

so, with probability at least 1− δ,

G(S, θ) ≤ βΘ

√
2T ln

1

δ2
+G(S,QS)

≤ βΘ

√
2T ln

1

δ2
+ βZ +

√
2

(
DKL(QS‖P) + ln

2

δ1

)(
(M + 2nβZ)2

n
+ 4Tβ2

Θ

)
.

Replacing δ1 and δ2 with δ/2 yields Equation 7.

9

C Efficient Iteratively Re-weighted Sampling

At each iteration of Algorithm 1, we sample from a categorical distribution on {1, . . . , n}, then
re-weight the distribution. While sampling from a uniform distribution is trivial, sampling from a
nonuniform distribution is complicated. If the distribution is static, sampling can be performed in
constant time, with O(n) initialization time and O(n) space, using the alias method [7]. However,
the data structure that enables the alias method cannot be updated in sublinear time, which makes
the alias method inefficient for iterative re-weighting when n is large.

In this section, we describe an algorithm for iteratively re-weighted sampling that balances sampling
efficiency with re-weighting efficiency. Like the alias method, the algorithm requires O(n) initial-
ization time and O(n) space, but the cost of sampling and re-weighting is O(log n)-time. Even for
very large n, logarithmic time is an acceptable iteration complexity—especially since it may pale in
comparison to the complexity of updating the hypothesis.

Before training, we initialize a full binary tree of depth dlog ne. We label the first n leaves with the
initial sampling weights (e.g., for uniform initialization, n−1) and label the remaining 2dlogne − n
leaves with 0. We then label each internal node with the sum of its children. During training, we
sample from the distribution by performing a random tree traversal: at each internal node visited, we
flip a biased coin, whose outcome probabilities are proportional to the labels of the node’s children,
then move to the corresponding child; the index of the leaf node we arrive at is the sampled value. It
is easy to verify that this procedure results in a sample from the distribution. To modify the weight
for a given index, we add the change in weight to each node in the path from the root to the associated
leaf node. Pseudocode for these procedures is given in Algorithm 2.

Algorithm 2 Efficient Iteratively Re-weighted Sampling

1: procedure INITIALIZE(q1, . . . , qn)
2: Initialize a full binary tree, T , of depth dlog ne
3: For i = 1, . . . , n, label the ith leaf node with qi; label the remaining leaf nodes with 0
4: Label each internal node with the sum of its children’s labels.
5: procedure SAMPLE(T)
6: v ← ROOT(T)
7: while v is not a leaf do
8: Flip a biased coin, c, with outcome probabilities proportional to the labels of v’s children
9: if c = HEADS then

10: v ← LEFTCHILD
11: else
12: v ← RIGHTCHILD
13: return index of leaf node v
14: procedure UPDATE(T , i, q)
15: ∆ ← q − qi
16: for node v on the path from the root to the ith leaf node do
17: Add ∆ to the label of v

D Proofs from Section 5

D.1 Proof of Theorem 4

Observe that the KL divergence decomposes as

DKL(Q‖P) = E
(i1,...,iT)∼Q

[
ln

(
Q(i1, . . . , iT)

P(i1, . . . , iT)

)]
=

T∑
t=1

E
(i1,...,it)∼Q

[
ln

(
Qt(it)
Pt(it)

)]
, (42)

where Qt(i) = Q(it = i | i1, . . . , it−1) is the conditional posterior at iteration t, and Pt(i), the
conditional prior, is simply a uniform distribution on {1, . . . , n}. In the first iteration, Q1(i) =
P1(i), since the sampling weights are initialized uniformly to 1. Then, for every t ≥ 2,

ln

(
Qt(it)
Pt(it)

)
= ln

(
q

(t)
it
/
∑n
i=1 q

(t)
i

n−1

)
= ln q

(t)
it
− ln

(
1

n

n∑
i=1

q
(t)
i

)
, (43)

10

where q(t)
i denotes the state of qi at the start of the tth iteration. Unrolling the recursive definition of

q
(t)
i , we have

ln q
(t)
i = ln

Ni,t∏
j=1

exp
(
α f(zi, hOi,j) τ

Ni,t−j
)

= α

Ni,t∑
j=1

f(zi, hOi,j) τ
Ni,t−j . (44)

Further, using Jensen’s inequality and the concavity of the logarithm,

ln

(
1

n

n∑
i=1

q
(t)
i

)
= ln

 1

n

n∑
i=1

Ni,t∏
j=1

exp
(
α f(zi, hOi,j) τ

Ni,t−j
)

≥ 1

n

n∑
i=1

ln

Ni,t∏
j=1

exp
(
α f(zi, hOi,j) τ

Ni,t−j
)

=
α

n

n∑
i=1

Ni,t∑
j=1

f(zi, hOi,j) τ
Ni,t−j . (45)

Combining Equations 42 to 45, we have

DKL(Q‖P) ≤
T∑
t=2

E
(i1,...,it)∼Q

αNit,t∑
j=1

f(zit , hOit,j) τ
Nit,t−j − α

n

n∑
i=1

Ni,t∑
k=1

f(zi, hOi,k) τNi,t−k

 .
We then reorder the summations to obtain Equation 9.

D.2 Proof of Theorem 5

First, observe that the lower bound in Equation 45 is nonnegative, due to the nonnegativity of the
utility function, amplitude and decay. We can therefore drop ln

(
1
n

∑n
i=1 q

(t)
i

)
from Equation 43,

which yields the following upper bound:

DKL(Q‖P) ≤ E
(i1,...,iT)∼Q

[
T∑
t=2

ln q
(t)
it

]
= E

(i1,...,iT)∼Q

α T∑
t=2

Nit,t∑
j=1

f(zit , hOit,j) τ
Nit,t−j

 . (46)

Since it = iOit,j for all j ∈ Nit,t, we have that

f(zit , hOit,j) = f(ziOit,j
, hOit,j) = f(zit′ , ht′)

for every t′ < t : it = it′ . Thus, the tth computed utility value, f(zit , ht), is referenced whenever
the same index is sampled in future iterations. We can therefore reorder the above summations as

T∑
t=2

Nit,t∑
j=1

f(zit , hOit,j) τ
Nit,t−j =

T−1∑
t=1

f(zit , ht)

Nit,T+1−Nit,t+1∑
j=1

τ j−1. (47)

Note that whenNit,T+1−Nit,t+1 = 0 (i.e., when it is not sampled again in iterations t+1, . . . , T),
the inner summation evaluates to zero. Since the utility function and amplitude are nonnegative,
adding a term for it that never appears again can only increase the bound. Thus, we can simplify the
above expression by extending the inner summation to an infinite series:

Nit,T+1−Nit,t+1∑
j=1

τ j−1 ≤
∞∑
j=0

τ j ≤ 1

1− τ
. (48)

The last inequality follows from the geometric series identity, since τ ∈ (0, 1). Combining Equa-
tions 46 to 48 yields Equation 10.

11

References
[1] L. Bégin, P. Germain, F. Laviolette, and J.-F. Roy. PAC-Bayesian bounds based on the Rényi

divergence. In Artificial Intelligence and Statistics, 2016.

[2] M. Donsker and S. Varadhan. Asymptotic evaluation of certain Markov process expectations
for large time. Communications on Pure and Applied Mathematics, 28(1):1–47, 1975.

[3] A. Elisseeff, T. Evgeniou, and M. Pontil. Stability of randomized learning algorithms. Journal
of Machine Learning Research, 6:55–79, 2005.

[4] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic
gradient descent. CoRR, abs/1509.01240, 2015.

[5] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International Conference on Machine Learning, 2016.

[6] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

[7] R. Kronmal and A. Peterson. On the alias method for generating random variables from a
discrete distribution. The American Statistician, 33(4):214–218, 1979.

[8] I. Kuzborskij and C. Lampert. Data-dependent stability of stochastic gradient descent. CoRR,
abs/1703.01678, 2017.

[9] B. London, B. Huang, and L. Getoor. Stability and generalization in structured prediction.
Journal of Machine Learning Research, 17(222):1–52, 2016.

[10] C. McDiarmid. On the method of bounded differences. Surveys in Combinatorics, 141:148–
188, 1989.

12

	Proofs from sec:stability
	Proof of prop:stabilityconvexsgddecreasingstepsize,prop:stabilitynonconvexsgd,prop:hypstabilityconvexsgddecreasingstepsize
	Proof of prop:randstabilitystronglyconvexsgd

	Proofs from sec:generrbounds
	Stability of the Generalization Error
	Proof of th:hypstabilitypacbayesbound
	Proof of th:unifstabilitypacbayesbound
	Proof of th:hpunifstabilitypacbayesbound

	Efficient Iteratively Re-weighted Sampling
	Proofs from sec:adaptivesamplingsgd
	Proof of th:adasampklbound
	Proof of th:adasampklboundnonnegutility

