
A Summary of joint dependence assumptions in previous work

We use the phrase “FDR⇤ control” to mean the control of either FDR or mFDR or sFDR. It is
important to discuss the assumptions on the joint dependence on p-values, under which FDR⇤ control
can be proved. These are listed from (approximately) weakest to strongest below:

1. Arbitrary Dependence. Null p-values are arbitrarily dependent on all other p-values.
2. SuperCoRD. Null p-values are super-uniform conditional on the time of most recent discovery,

meaning that for all t 2 H0 and for any ↵t 2 F t�1, we have
Pr{Pt  ↵t | ⌧prev}  ↵t,

where ⌧prev = maxs<t{s : Rs = 1} is the time of the previous rejection.
3. SuperCoND. Null p-values are super-uniform conditional on the number of discoveries up to

that point, meaning that for all t 2 H0 and for any ↵t 2 F t�1, we have
Pr{Pt  ↵t |R(T � 1)}  ↵t.

4. SuperCoAD. Null p-values are super-uniform conditional on all discoveries, meaning that for
all t 2 H0 and for any ↵t 2 F t�1, we have

Pr
�

Pt  ↵t

�

� F t�1

  ↵t.

5. Independence. Null p-values are independent of all other p-values.

Table 2 summarizes some known algorithms, the dependence these algorithms can handle, and the
type of FDR control they guarantee. Of special note is an algorithm called LORD [9] that the authors
noted performs consistently well in practice, and thus will be the focus of most of our experiments
(the conclusions of which carry forward qualitatively to other monotone algorithms).

Ref. Algorithm Dependence Control (at any T ) Monotone?
- Alpha-spending Arbitrary FWER(T ) No
[5] Alpha-investing (AI) SuperCoAD mFDR⌘(T ) No
[1] Generalized Alpha-investing (GAI) SuperCoAD mFDR⌘(T ) No
[8] Levels based on Number of Discoveries (LOND) SuperCoND mFDR⌘(T ), FDR(T ) Yes
[8] LOND (with a conservative correction) Arbitrary FDR(T ) Yes
[8] Levels based on most Recent Disc. (LORD’15) SuperCoRD mFDR⌘(T ) Yes
[9] Monotone GAI (including LORD’17) Independence FDR(T ), sFDR⌘(T ) Yes

Table 2: Summary of previous work. Note that LORD’17 is an improvement over LORD’15 with
higher power, and the shorthand “LORD” will be reserved for LORD’17.

B Abstinence for recovery from alpha-death

For truly temporal applications as outlined in motivation M2, we allow the algorithm to abstain from
testing, meaning that it does not need to perform a test at each time step. In this case, we use the
convention of Pt = �1 to indicate that we abstained from testing at time t. Also, we introduce the
random variables

At : = 1 {Pt = �1} , and Ac
t : = 1�At, (12)

as indicators for abstention. Abstention may happen due to the natural variation in frequency of
testing hypotheses in real-world applications. Additionally, abstention is the natural treatment for
recovery from alpha-death. If the alpha-wealth is deemed too low, abstaining for a while can drop
mem-FDR below a threshold, and when it becomes small enough, one can reset all variables and
restart the entire process. In more detail, note that we would change the quantities V (t),W (t), R(t)
only if we actually did not abstain and performed a test, as given by:

W (t) : = �W (t� 1) + (1� �)W
0

1 {⌧
1

> t� 1}�Ac
t�t +Ac

tRt t

V �
u (t) : = �V �

u (t� 1) + utA
c
tRt1

�

t 2 H0

 

R�
u(t) : = �R�

u(t� 1) + utA
c
tRt.

When we abstain, assuming that we have made at least one rejection, all three quantities decay
with time. Hence, the ratio V �

u (t)+W (t)
R�

u(t)
···················· remains unchanged initially, and when the denominator

R�
u(t) falls below one, the aforementioned ratio decays smoothly to zero (and hence so does the
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mem-FDRu). Using a user-defined tolerance ✏, we can then “reset” when R�
u(t) < ✏ by re-defining

all quantities to their starting values, setting the time to zero, and restarting the entire process.

An alternative to abstinence is to pre-define a period of time after which the process will reset,
like a calendar year, or a single financial quarter. With this choice, decaying memory may help
with piggybacking but is not needed for recovery from alpha-death. However, for applications in
which there is no natural special period, and which is in some sense continuous in time without
discrete breakpoints, the decaying memory FDR is a natural quantity to control, and abstinence is
an arguably intuitive solution to alpha-death. Indeed, companies are obviously less willing to accept
a permanent alpha-death that ends all testing forever, and are more likely to be willing to abstain
from testing for a while, and run an internal check on why they lost alpha-wealth by testing too many
nulls, or perhaps why they had very low signal on their non-nulls (making them seem like nulls).

C Numerical Simulations
Here, we provide proof-of-concept experiments for various aspects of the paper.1

C.1 Evidence of higher power of GAI++ over GAI

To demonstrate an improvement of GAI++ over GAI, we follow the simple experimental setup
of Javanmard and Montanari [9] which tests the means of T = 1000 Gaussian distributions. The
null hypothesis is Hj : µj = 0 for j = {1, . . . , T}. We observe independent Zj ⇠ N(µj , 1), which
can be converted using the Gaussian CDF � to a one-sided p-value, Pj = �(�Zj) or to a two-sided
p-value, Pj = 2�(�|Zj |). Notice that the p-value is exactly uniformly distributed when the null
hypothesis is true, that is µj = 0. The means µj are set independently according to the mixture:

µj ⇠
⇢

0 with probability 1� ⇡1,

N(0,�2) with probability ⇡1,

and we set �2

= 2 log T , resulting in means that are near the boundary of detectability. Indeed,
under the global null where ⇡

1

= 0, maxj Zj = (1 + o(1))
p
2 log T , and

p
2 log T is the minimax

amplitude for estimation under the sparse Gaussian sequence model.

The improvement in power of GAI++ over GAI depends on the choice of W
0

and B
0

= ↵�W
0

. If
W

0

is too small, the algorithm may suffer from alpha-death too quickly, because the signals may not
be strong enough for the algorithm to recover by accumulating the large rewards B

0

. If W
0

is too
large, the reward B

0

at each step will be too small, and the algorithm will suffer from lower power.
Hence, the larger W

0

is, the smaller B
0

is, and the more GAI++ will improve over GAI. For our
simulations, we set W

0

= ↵/5, for which we only expect a small improvement, and always have
↵ = 0.05, and run 200 independent trials to estimate the power and FDR.

Figure 1: Plots of power vs ⇡
1

(left panel) and FDR versus ⇡
1

(right panel, for various algorithms.

1The code for reproducing all experiments in this paper and producing graphs is publicly available at
https://github.com/fanny-yang/OnlineFDRCode.
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For concrete monotone GAI and GAI++ procedures, we choose LORD’17 as detailed in Table 1 and
LORD++ from definition (5). We define power as usual in the FDR literature:

power(T ) : = E
 P

t2H1

Rt
PT

t=1 1 {t 2 H1}··································
�

.

In Figure 1, we plot the power and FDR for the Bonferroni and LORD algorithms using W
0

= ↵/2

and the constant sequenuce �j = 0.0722 log(j_2)

je
p

log j derived for testing Gaussian means [9], where the
leading constant was approximated so that the infinite sequence sums to one. As predicted by the
theory, the power of the LORD++ algorithm is uniformly better than LORD.

C.2 Piggybacking and decaying memory

For this subsection, we move away from the stationary setting that is a useful base case, but unre-
alistic in practice. To bring out the phenomenon of piggybacking, we consider the setting where
⇡
1

� 0.5 in the first 1000 tests, and ⇡
1

⌧ 0.5 in the second 1000. There is nothing specific to this
particular choice, and will qualitatively occur whenever there is a stretch of non-nulls followed by a
stretch of nulls. For simplicity, we restrict our attention to the LORD++ and the mem-LORD++ al-
gorithms, and plot their mem-FDR as a function of time. In particular, we use the following concrete
update for ↵t in the mem-LORD++ algorithm:

↵t = �tW0

�t�min{⌧
1

,t}
+ (↵�W

0

)�t�⌧
1�t�⌧

1

+ ↵
�

X

⌧j<t,⌧j 6=⌧
1

�t�⌧j�t�⌧j

�

.

Figure 2: Plots of mem-power versus time (left panel and mem-FDR versus time (right panel), for
LORD++ and mem-LORD++ with � = 0.99. The spike in false discoveries suffered by LORD++
due to piggybacking is significantly smoothed by mem-LORD++ without much loss of power.

Figure 2 demonstrates see that LORD++ suffers a large spike in mem-FDR locally in time, which
is significantly smoothed out by mem-LORD++ with � = 0.99, at an insignificant loss of power.
Arguably, the power should itself be replaced by a “decaying memory power” which we call mem-
power, which definition is analogous to mem-FDR in relation to FDR, i.e.

mem-power(T ) : = E


U�(T )
D�(T )
··············

�

,

where U �
(T ) : = �U �

(T � 1) +RT1
�

T 2 H1

 

and D�
(T ) : = �D�

(T � 1) + 1
�

T 2 H1

 

. Due
to its conservative choice for ↵t, the smoothing of the mem-FDR measure comes at the expense of
lower mem-power for mem-LORD++ compared to LORD++ in the second half of the experiment.

C.3 Alpha-death

In this section we illustrate the usefulness of abstinence as discussed in Section B for experiments
where alpha-death is reached rather quickly. Concretely, we choose the probability of each hypoth-
esis being non-null to be identically and independently p = 0.01. Furthermore, we abstain from
testing if W (t) < ✏w and we reset to initial values if R(t) < ✏r with ✏w = 0.05W

0

and ✏r = 0.1.
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Figure 3: Plots of wealth versus time (left panel) power versus time (right panel), for mem-LORD++
with � = 0.99 and a constant ⇡

1

= 0.01. Once the wealth vanishes, the generic mem-LORD++
cannot make new discoveries for the entire future, whereas the abstinent mem-LORD++ circumvents
this issue and eventually starts anew, allowing new incoming non-nulls to be detected.

Figure 3 depicts both the time development of wealth on the left hand side and the corresponding
mem-power on the right hand side. The red curves representing the generic mem-LORD++ algo-
rithm show that once wealth reaches 0, no discoveries can be made so that mem-power stays at 0
for the entire rest of the experiment. On the other hand, for the exact same experiment, the abstinent
mem-LORD++ in green has a “second chance” after abstaining for a while: the experiment is reset
so that new discoveries can be made even though the wealth had depleted at some previous time.

C.4 Subtleties with the use of prior weights

If one has a high prior belief that a hypothesis is non-null, then the “oracle” strategy of assigning
weights depends on the strength of the underlying signal: (a) if the signal is small, an oracle would
assign a weight that is just high enough to reject the non-null, while earning a small reward, and
(b) if the signal is large, then an oracle would assign a weight as small as possible to just reject the
non-null, earning as large a reward as possible, amassing alpha-wealth to be used for later tests.

Figure 4 suggests that in the aforementioned simulation setup, we happened to be in situation (b),
where most non-nulls had enough signal so that using a weight smaller than one was more beneficial
than a weight larger than one. We used the same setup as the previous subsection, except that we
assign “oracle” weights of 1+a whenever the hypothesis is non-null, and a weight of 1�a whenever
the hypothesis is null, for positive and negative choices of a. We use the word “oracle” since, in
practice, we of course do not know which hypotheses are null and non-null.

Figure 4: Plots of power vs ⇡
1

(left panel) and FDR versus ⇡
1

(right panel), for LORD++ with
weights 1 + a on non-nulls and 1� a on nulls.
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D Proof of Theorem 2

For any time T 2 N, we may infer that mFDR is controlled using the following argument :

E [V (T )] =
X

j2H0,jT

E
⇥

E
⇥

1 {Pj  ↵j}
�

� Fj�1

⇤⇤

(i)


X

j2H0,jT

E [↵j ]

(ii)
 E

2

4

X

jT

↵j

3

5

(iii)
 ↵E [R(T ) _ 1] ,

where inequality (i) follows after taking iterated expectations by conditioning on Fj�1, and then
applying the conditional superuniformity property (6), inequality (ii) follows simply by dropping
the condition j 2 H0, and inequality (iii) follows by the theorem assumption that

P
jT ↵j

R(T )

 ↵.

Rearranging yields the conclusion mFDR(T ) = E[V (T )]

E[R(T )]

·············  ↵, as desired.

When the sequence {↵t} is additionally monotone, we can use the following argument to prove that
the procedure controls FDR at any time T 2 N :

FDR = E


V (T )

R(T )
···········

�

=

X

j2H0,jT

E


1 {Pj  ↵j}
R(T )

························
�

(iv)


X

j2H0,jT

E
h ↵j

R(T )
···········

i

(v)
 E



P

jT ↵j

R(T )
··················

�

(vi)
 ↵,

where inequality (iv) follows after taking iterated expectations by conditioning on Fj�1, and then
applying the conditional superuniformity lemma Lemma 1, and inequalities (v) and (vi) follow for
the same reasons as inequalities (ii) and (iii).

This concludes the proof of both parts of the theorem.

E Proof of Lemma 1

Letting ~P = (P
1

, . . . , PT ) be the original vector of p-values, we define a “hallucinated” vector of
p-values eP�t

: = (

eP
1

, . . . , ePT ) that equals ~P , except that the t-th component is set to zero :

ePi =

⇢

0 if i = t

Pi if i 6= t.

For all i, define eRi = 1
n

ePi  fi( eR1

, . . . , eRi�1

)

o

and let the corresponding vectors of rejections

using ~P and eP�t be ~R = (R
1

, . . . , RT ) and eR�t
= (

eR
1

, . . . , eRT ). By construction, we have
eRi = Ri for all i < t, and eRi � Ri for all i � t, from which we conclude that fi(R1

, . . . , Ri�1

) =

fi( eR1

, . . . , eRi�1

) for all i  t. Also, we know eRt = 1 by construction since ePt = 0 implying that
g( eR�t

) > 0. Hence, on the event {Pt  ft(R1

, . . . , Rt�1

)}, we have Rt =
eRt = 1 and hence also

~R =

eR�t. This allows us to conclude that

1 {Pt  ft(R1

, . . . , Rt�1

)}
g(~R)

···················································· = 1 {Pt  ft(R1

, . . . , Rt�1

)}
g( eR�t

)

····················································.
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Since eR�t is independent of Pt, we may take conditional expectations to obtain

E


1 {Pt  ft(R1

, . . . , Rt�1

)}
g(~R)

····················································
�

�

�

�

F t�1

�

= E


1 {Pt  ft(R1

, . . . , Rt�1

)}
g( eR�t

)

····················································
�

�

�

�

F t�1

�

(i)
 E



ft(R1

, . . . , Rt�1

)

g( eR�t
)

·································
�

�

�

�

F t�1

�

(ii)
 E



ft(R1

, . . . , Rt�1

)

g(~R)

·································
�

�

�

�

F t�1

�

,

where inequality (i) follows by taking expectation only with respect to Pt by invoking the conditional
super-uniformity property (6); and inequality (ii) follows because g(~R)  g( eR�t

) since Ri  eRi

for all i by monotonicity of the online FDR rule. This concludes the proof of the lemma.

F Proof of Theorem 1

Substituting the definitions of V (T ) =
PT

t=1

Rt1
�

t 2 H0

 

and the alpha-wealth

W (T ) = W
0

+

T
X

t=1

(��t +Rt t),

we may use the tower property of conditional expectation to write

E


V (T ) +W (T )

R(T )
····························

�

=

X

t

E


E
 W

0

T +Rt( t + 1
�

t 2 H0

 

)� �t
R(T )

·······························································
�

�

�

�

F t�1

��

| {z }

Lt

.

We tackle the above expression term by term, depending on whether or not t 2 H0.

Case 1. First, suppose that t 2 H0. Substituting  t  �t

↵t
+bt�1 into the expression for Lt yields

Lt  E
"

E
"

W
0

T +Rt(
�t

↵t
+ bt)� �t

R(T )
·············································

�

�

�

�

�

F t�1

##

= E
"

E
"

W
0

T +Rtbt +
�t

↵t
(Rt � ↵t)

R(T )
··················································

�

�

�

�

�

F t�1

##

, (13)

where the equality follows simply by rearrangement. Since t 2 H0, invoking Lemma 1 guarantees
that

E


Rt

R(T )
···········

�

�

�

�

F t�1

�

= E


1 {Pt  ↵t}
R(T )

························
�

�

�

�

F t�1

�

 E
h ↵t

R(T )
···········

�

�

�

F t�1

i

, (14)

since the two mappings (R
1

, . . . , RT ) 7! R(T ) and (R
1

, . . . , Rt�1

) 7! ↵t 2 F t�1 are coordinate-
wise nondecreasing, as required to apply Lemma 1. Since �t,↵t are F t�1-measurable, equation (14)
implies that the last term in the numerator of equation (13) is negative, and hence

Lt  E


E
 W

0

T +Rtbt
R(T )

·····················
�

�

�

�

F t�1

��

.

Case 2. Now suppose that t /2 H0. Substituting  t  �t + bt into the expression for Lt yields

Lt  E


E
 W

0

T +Rt(�t + bt)� �t
R(T )

············································
�

�

�

�

F t�1

��

= E


E
 W

0

T +Rtbt + �t(Rt � 1)

R(T )
···············································

�

�

�

�

F t�1

��

,

where the equality follows simply by rearrangement. Since Rt  1, we may infer that

Lt  E


E
 W

0

T +Rtbt
R(T )

·····················
�

�

�

�

F t�1

��

,

which is the same expression as the bound derived in Case 1.
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Combining both cases. We complete the proof by combining the two cases. Using the same
bound for Lt in both cases yields

E


V (T ) +W (T )

R(T )
····························

�

 E


W
0

+

P

t Rtbt
R(T )

····························
�

. (15)

We now note that bt always equals ↵, except for the very first rejection at time ⌧
1

, in which case
it equals ↵ � W

0

. Hence, we may have
P

t Rtbt =

P

t Rt↵ � W
0

1 {T � ⌧
1

}. Substituting this
expression into the bound (15) yields

E


V (T ) +W (T )

R(T )
····························

�

 E


W
0

+ ↵R(T )�W
0

1 {T � ⌧
1

}
R(T )

···························································
�

 ↵,

which completes the proof of the theorem.

G Proof of Theorem 3

Substituting the definitions of Vu(T ) =
PT

t=1

utRt1
�

t 2 H0

 

and the alpha-wealth

W (T ) = W
0

+

T
X

t=1

(��t +Rt t),

we may use the tower property of conditional expectation to write

E


Vu(T ) +W (T )

Ru(T )
······························

�

=

X

t

E


E
 W

0

T +Rt( t + ut1
�

t 2 H0

 

)� �t
Ru(T )

···································································
�

�

�

�

F t�1

��

| {z }

Lt

.

We tackle the above expression term by term, depending on whether or not t 2 H0.

Case 1. First suppose that t 2 H0. Substituting  t  �t

utwt↵t
+ utbt � ut into the expression for

Lt yields

Lt  E
"

E
"

W
0

T +Rt(
�t

utwt↵t
+ utbt)� �t

Ru(T )
·························································

�

�

�

�

�

F t�1

##

= E
"

E
"

W
0

T +Rtutbt +
�t

utwt↵t
(Rt � ↵twtut)

Ru(T )
·······································································

�

�

�

�

�

F t�1

##

, (16)

where the equality follows simply by rearrangement. Since t 2 H0, by invoking Lemma 1, we may
infer that

E


Rt

Ru(T )
·············

�

�

�

�

F t�1

�

= E


1 {Pt  ↵twtut}
Ru(T )

·································
�

�

�

�

F t�1

�

 E
h↵twtut

Ru(T )
··············

�

�

�

F t�1

i

, (17)

since the four mappings (R
1

, . . . , RT ) 7! Ru(T ) and (R
1

, . . . , Rt�1

) 7! ↵t, wt, ut are all coordi-
natewise nondecreasing, as required to apply Lemma 1. Since �t,↵t, wt, ut are F t�1-measurable,
equation (17) implies that the last term in the numerator of equation (16) is negative, and hence

Lt  E


E
 W

0

T +Rtutbt
Ru(T )

·························
�

�

�

�

F t�1

��

.

Case 2. Now suppose that t /2 H0. Substituting  t  �t + utbt into the expression for Lt yields

Lt  E


E
 W

0

T +Rt(�t + utbt)� �t
Ru(T )

················································
�

�

�

�

F t�1

��

= E


E
 W

0

T +Rtutbt + �t(Rt � 1)

Ru(T )
····················································

�

�

�

�

F t�1

��

,

where the equality follows simply by rearrangement. Since Rt  1, we may infer that

Lt  E


E
 W

0

T +Rtutbt
Ru(T )

·························
�

�

�

�

F t�1

��

,

which is the same expression as the bound derived in Case 1.

17



Combining both cases. Finally, we combine the two cases. Using the same bound for Lt in both
cases, and exchanging the summation and expectation, we may conclude by definition of bt that

E


Vu(T ) +W (T )

Ru(T )
······························

�

 E


W
0

+

P

t Rtutbt
Ru(T )

································
�

. (18)

We now note that bt always equals ↵, except for the very first rejection at time ⌧
1

, in which case it
equals ↵� W

0

u⌧
1

. Hence, we may write
P

t Rtutbt =
P

t Rtut↵�W
0

1 {T � ⌧
1

}. Substituting the
above expression into the bound (18) yields

E


Vu(T ) +W (T )

Ru(T )
······························

�

 E


W
0

+ ↵Ru(T )�W
0

1 {T � ⌧
1

}
Ru(T )

·····························································
�

 ↵,

which completes the proof of the theorem.

H Proof of Theorem 4

Substituting the definitions of V �
u (T ) =

PT
t=1

�T�tutRt1
�

t 2 H0

 

and the alpha-wealth

W (T ) = W
0

�T�min{⌧
1

,T}
+

T
X

t=1

�T�t
(��t +Rt t),

we may use the tower property to write

E


V �
u (T ) +W (T )

R�
u(T )

······························
�

=

X

t

E
"

E
"

W
0

T �T�min{⌧
1

,T}
+ �T�tRt( t + ut1

�

t 2 H0

 

)� �T�t�t

R�
u(T )

··············································································································
�

�

�

�

�

F t�1

##

| {z }

Lt

.

We tackle the above expression term by term, depending on whether or not t 2 H0.

Case 1 First suppose that t 2 H0. Substituting  t  �t

utwt↵t
+ utbt � ut into the expression for

Lt yields

Lt  E
"

E
"

W
0

T �T�min{⌧
1

,T}
+ �T�tRt(

�t

utwt↵t
+ utbt)� �T�t�t

R�
u(T )

····································································································
�

�

�

�

�

F t�1

##

= E
"

E
"

W
0

T �T�min{⌧
1

,T}
+ �T�tRtutbt + �T�t �t

utwt↵t
(Rt � ↵twtut)

R�
u(T )

···················································································································
�

�

�

�

�

F t�1

##

, (19)

where the equality follows simply by rearrangement. Since t 2 H0, by invoking Lemma 1, we may
infer that

E


Rt

R�
u(T )

·············
�

�

�

�

F t�1

�

= E


1 {Pt  ↵twtut}
R�

u(T )
·································

�

�

�

�

F t�1

�

 E
h↵twtut

R�
u(T )

··············
�

�

�

F t�1

i

, (20)

since the four mappings (R
1

, . . . , RT ) 7! R�
u(T ) and (R

1

, . . . , Rt�1

) 7! ↵t, wt, ut are coordi-
natewise nondecreasing, as required to apply Lemma 1. Since �t,↵t, wt, ut are F t�1-measurable,
equation (20) implies that the last term in the numerator of equation (19) is negative, and hence

Lt  E
"

E
"

W
0

T �T�min{⌧
1

,T}
+ �T�tRtutbt

R�
u(T )

···························································
�

�

�

�

�

F t�1

##

.

Case 2 Next, suppose that t /2 H0. Substituting  t  �t + utbt into the expression for Lt yields

Lt  E
"

E
"

W
0

T �T�min{⌧
1

,T}
+ �T�tRt(�t + utbt)� �T�t�t

R�
u(T )

····························································································
�

�

�

�

�

F t�1

##

= E
"

E
"

W
0

T �T�min{⌧
1

,T}
+ �T�tRtutbt + �T�t�t(Rt � 1)

R�
u(T )

·······························································································
�

�

�

�

�

F t�1

##

,

where the equality follows simply by rearrangement. Since Rt  1, we may infer that

Lt  E
"

E
"

W
0

T �T�min{⌧
1

,T}
+ �T�tRtutbt

R�
u(T )

···························································
�

�

�

�

�

F t�1

##

,

which is the same expression as the bound derived in Case 1.
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Combining Cases 1 and 2. Using the same bound for Lt in both cases, and exchanging the sum-
mation and expectation, we may conclude by definition of bt that

E


V �
u (T ) +W (T )

R�
u(T )

······························
�

 E


W
0

�T�min{⌧
1

,T}
+

P

t �
T�tRtutbt

R�
u(T )

···································································
�

. (21)

We now note that bt always equals ↵, except for the very first rejection at time ⌧
1

, in which case it
equals ↵� W

0

u⌧
1

. Hence, we may write
X

t

�T�tRtutbt =
X

t

�T�tRtut↵� �T�⌧
1W

0

1 {T � ⌧
1

}

= ↵R�
u(T )� �T�⌧

1W
0

1 {T � ⌧
1

} .
Resubstituting this expression into bound (21) yields

E


V �
u (T ) +W (T )

R�
u(T )

······························
�

 E


W
0

�T�min{⌧
1

,T}
+ ↵R�

u(T )�W
0

�T�⌧
11 {T � ⌧

1

}
R�

u(T )
·································································································

�

 ↵,

where the last inequality follows by verifying that it holds in the three cases

{T < ⌧
1

= 1, R�
u(T ) = 0}, {T � ⌧

1

, R�
u(T ) < 1}, and {T � ⌧

1

, R�
u(T ) � 1}

separately. This completes the proof of the theorem.
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