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1 Linear operators

In this work we consider linear operators on functions. Such an operator transforms a function f(x)
to another function g(z). We denote this according to

g(z) = Fz[f(x)]. (1)

This linear operator could be differentiation of a function. If D = 1 and K = 1 this will be defined
as

g(z) = Fz[f ] =
∂f(x)

∂x

∣∣∣
x=z

(2a)

which slightly more informal also can be written as

g(x) = Fx[f ] =
∂f(x)

∂x
. (2b)

Also integration of a scalar function f(x) over an interval [z1, z2] is a linear operator

g(z) = Fz[f ] =

∫ z2

z1

f(x)dx, (3)

where g(z) is a scalar-valued function with a two-dimensional input z = [z1, z2]T. Note that in
the two examples given above, the inputs of f and g will not be the same, not even of the same
dimension!

Input wrapping is another way to construct new covariance functions from old ones [4, page 92]. It
utilizes a nonlinear wrapping x = u(z) of the input variables. This wrapping can also be considered
as a linear operator, where

g(z) = Fz[f ] = f(x)|x=u(z). (4)

This operator also changes the function input and possibly also its dimension. Even though the
wrapping itself might be nonlinear, the operator corresponding to this wrapping is in fact linear.

It is straightforward to show that all three operators presented above do fulfill the linearity condition.
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2 Gaussian processes under linear operations

It is well-known that Gaussian distributions are closed under linear transformation. In similar manner,
Gaussian processes are closed under linear operations [3, 4, 2, 1].

By applying the functional Fx on both the mean function and the covariance function, the GP prior
for Fx is given by

Fxf ∼ GP (Fx µ, Cov [Fxf(x), Fx′f(x
′)]) . (5)

The covariance becomes
Cov [Fxf(x), Fx′f(x

′)]

= E
[(
Fxf(x)−Fxµ(x)

)(
Fx′f(x

′)−Fx′µ(x′)
)T]

= FxE
[(
f(x)− µ(x)

)(
f(x′)− µ(x′)

)T]
FT
x′

= FxKFT
x′ , (6)

where by the notation (FxKFT
x′)ij we mean that

(FxKFT
x′)ij = (Fx)ik(Fx′)jlKkl, (7)

and where (Fx)ik and (Fx′)jl act on the first and second argument of Kkl(x,x
′), respectively.

We should point out that some care must be taken when applying this procedure. For example, if we
would like to consider the derivative of a function governed by a GP, we must make sure that this
function is modeled in a way such that the derivative actually exists. This may sound obvious, yet
important to remember since the set of standard covariance functions includes members that are not
differentiable – among those we find Matérn1/2 [4].

3 Generalization of Section 4

In this supplementary material we will generalize the method described in the main paper on how to
solve operator matrix equations on the form

FG= 0,

where we want to find Ggiven F1. If F∈ Rm×n is a real valued matrix, Gcan easily be found by
letting the columns in Gspan the nullspace of F(provided such a nullspace exist). However, if the
elements of Fare operators, the situation is more tricky. This supplementary material generalizes the
parametric approach presented in Section 4 in the main paper for arbitrary operators of any order. The
strategy is to study the vector space of homogeneous polynomials where the operators are interpreted
as the variables of these polynomials.

In Section 3.1, we assume that both Fand Gconsist of first order operators and in Section 3.2 we
generalize this to allow for any order of the operators.

3.1 First order operator equation

Consider the matrix F∈ Pm×n
p , where Pp is a vector space of first order operators

Pp = {a1y1 + . . . apyp|a1, . . . , ap ∈ R}, (8)
where y1, . . . , yp is the basis in that vector space. The basis components yk can for example represent
derivative operators yk = ∂

∂xk
. We want to find the vectors g ∈ Pn

p such that Fg = 0 is fulfilled.
We can write F∈ Pm×n

p and g ∈ Pn
p as

Fij =

p∑
k=1

φijkyk, φijk = {Φ}ijk ∈ R, (9a)

gj =

p∑
k=1

γjkyk, γjk = {Γ}jk ∈ R, (9b)

1In this supplementary material, the argument x is omitted for simplified notation
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where Φ ∈ Rm×n×p and Γ ∈ Rn×p. This gives

Fg = 0⇔
n∑

j=1

p∑
k=1

p∑
l=1

φijkykγjlyl = 0 ∀ i = 1 : m. (10)

For each i, we have a quadratic form

yTΦiΓy = 0, (11)

where Φi ∈ Rp×n with {Φi}kj = φijk and Γ ∈ Rn×p with {Γ}jk = γjk.

The quadratic form is equal to zero for all y if and only if

ΦiΓ + ΓTΦT
i = 0 ∀ i = 1 : m. (12)

Example 1 (divergence free vector field)

We consider the following vector of operators F∈ P1×3
3

F= ∇x =

[
∂

∂x1
,

∂

∂x2
,

∂

∂x3

]
, (13)

where

Fij =

3∑
k=1

φijkyk, ∀ i = 1, j = 1, 2, 3, (14)

where yk = ∂
∂xk

. Following the notation introduced above, for this particular operator matrix we
have

Φ1 =

[
1 0 0
0 1 0
0 0 1

]
. (15)

We now want of find a vector g ∈ P3 that fulfills Fg = 0 for all y. We assume that this operator
vector is in g ∈ P3

3 and can be written

gj =

3∑
k=1

γjkyk j = 1, 2, 3, (16)

where Γ ∈ R3×3 is unknown. Now we have that

Φ1Γ + ΓTΦT
1 = 0 (17a)

⇒

[
γ11 γ12 − γ21 γ13 − γ31

γ21 − γ12 γ22 γ23 − γ32
γ31 − γ13 γ32 − γ23 γ33

]
= 0, (17b)

which in turn gives

γ11 = 0, γ12 + γ21 = 0, (18a)
γ22 = 0, γ13 + γ31 = 0, (18b)
γ33 = 0, γ23 + γ32 = 0. (18c)

The nullspace of (17a) is then spanned by

Γ = λ1

[
0 0 0
0 0 1
0 -1 0

]
+ λ2

[
0 0 -1
0 0 0
1 0 0

]
+ λ3

[
0 1 0
-1 0 0
0 0 0

]
,

which gives

g = λ1

 0
∂

∂x3

- ∂
∂x2

+ λ2

- ∂
∂x3

0
∂

∂x1

+ λ3

 ∂
∂x2

- ∂
∂x1

0

, λ1, λ2, λ3 ∈ R.
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Example 2 (curl free vector field)

We consider the following vector of operators F∈ P3×3
3

F=

 0 ∂
∂x3

− ∂
∂x2

− ∂
∂x3

0 ∂
∂x1

∂
∂x2

− ∂
∂x1

0

 , (19)

where

Fij =

3∑
k=1

φijkyk, ∀ i = 1 : 3, j = 1 : 3, (20)

where yk = ∂
∂xk

. For this particular operator matrix we have

Φ1 =

[
0 0 0
0 0 -1
0 1 0

]
, Φ2 =

[
0 0 1
0 0 0
-1 0 0

]
, Φ3 =

[
0 -1 0
1 0 0
0 0 0

]
.

We now want to find a vector g ∈ P3 which fulfills Fg = 0 for all y. We assume that this operator
vector is in g ∈ P3

3 and can be written

gj =

3∑
k=1

γjkyk j = 1, 2, 3, (21)

where Γ ∈ R3×3 is unknown. Now we have that

Φ1Γ + ΓTΦT
1 = 0⇒

[
0 -γ31 γ21

-γ31 -2γ32 γ22-γ33
γ21 γ22-γ33 2γ23

]
= 0,

Φ2Γ + ΓTΦT
2 = 0⇒

[
2γ31 γ32 γ33-γ11
γ32 0 -γ12

γ33-γ11 -γ12 -2γ13

]
= 0,

Φ3Γ + ΓTΦT
3 = 0⇒

[
2γ21 γ22-γ11 γ23
γ22-γ11 -2γ12 -γ13
γ23 -γ13 0

]
= 0,

which in turn gives

γ22 − γ33 = 0, γ23 = 0, γ32 = 0, (22a)
γ33 − γ11 = 0, γ13 = 0, γ31 = 0, (22b)
γ22 − γ11 = 0, γ12 = 0, γ21 = 0. (22c)

The nullspace of (22a) is then spanned by the single base vector

Γ = λ1

[
1 0 0
0 1 0
0 0 1

]
, λ1 ∈ R, (23)

which gives

g = λ1

 ∂
∂x1
∂

∂x2
∂

∂x3

 , λ1 ∈ R. (24)

The final covariance function becomes

K(x,x′) =


∂2

∂x1∂x′1

∂2

∂x1∂x′2

∂2

∂x1∂x′3

∂2

∂x2∂x′1

∂2

∂x2∂x′2

∂2

∂x2∂x′3

∂2

∂x3∂x′1

∂2

∂x3∂x′2

∂2

∂x3∂x′3

 kg(x,x′). (25)
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Figure 1: Three snapshots from the measurement collection. The senor platform was moved around
by hand during approximately three minutes.

If we use the squared exponential covariance function

kg(x,x′) = σ2
fe
− ‖x−x′‖2

2l2 (26)
we get

K(x,x′) =
σ2
f

l2
e−
‖x−x′‖2

2l2

(
I3−

(
x− x′

l

)(
x− x′

l

)T)
. (27)

This covariance function is used in the real data experiment in Section 5.2 of the main paper. Note,
that the version in the paper does not use l2 in the denominator (which we also would get here if we
would multiply (24) with l2, still providing the same constraints).

3.2 Higher order operator equation

Now, consider the matrix F∈ Pm×n
p,q , where Pp,q is a vector space of all homogeneous polynomials

of degree q in p variables

Pp,q =


p∑
k1

· · ·
p∑
kq

ak1,...,kq
yk1
· · · ykq

Γig|ak1,...,kq
∈ R

 ,

where the nominals yk1
· · · ykq

constitute the basis of that vector space. The components yk can
for example represent derivative operators yk = ∂

∂xk
and Pp,q then contain all qth order derivatives

of x1 . . . xq. We want to find the vectors g ∈ Pn
p,qg such that Fg = 0 is fulfilled. We can write

F∈ Pm×n
p,q and g ∈ Pn

p,qg as

Fij =

p∑
k1

· · ·
p∑
kq

φi,j,k1,...,kq
yk1
· · · ykq

, (28a)

gj =

p∑
k1

· · ·
p∑
kq

γj,k1,...,kqg
yk1 · · · ykqg

, (28b)

where Φ ∈ Rm×n×p×q

and b ∈ Rn×p×q

(here p×q denotes p× · · · × p︸ ︷︷ ︸
q times

). This gives

Fg = 0⇔
n∑
j

p∑
k1

· · ·
p∑
kq

p∑
l1

· · ·
p∑
lq

{

φijk1...kq
yk1
· · · ykq

γjl1...lqg yl1 · · · ylqg

}
= 0 ∀ i = 1 : m.

For each i, this is an algebraic form of order q + qg
n∑
j

∑
k1...kq,l1...lq∈{d1...dq+qg}

φijd1...dqγjdq+1...dq+qg
= 0

∀ i = 1 : m, k1 = 1 : p, . . . , kq = 1 : p,

l1 = 1 : p, . . . , lq = 1 : p,

where the second sum sums over all permutations of k1 . . . kq, l1 . . . lq .
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4 Real data experiment description

This section contains more details about the real data experiment described in Section 5.2.

4.1 Experiment setup

To collect the measurements we made use of a wooden platform, see Figure 2. The plat-
form was equipped with a Trivisio Colibri wireless IMU (TRIVISIO Prototyping GmbH,
http://www.trivisio.com/), sampled at 100 Hz. The sensor includes both an accelerometer, a gy-
roscope, and a magnetometer. For additional validation a Google Nexus 5 smartphone was also
mounted on the platform even tough its data was never used in this experiment.

Figure 2: Platform with magnetic sensors. The sensor to the left is the Trivisio sensor, whose
magnetometer data we used during the experiment. The platform was also equipped with multiple
markers visible to an optical reference system (Vicon).

On the platform, five markers were mounted. An optical reference system (Vicon) with several
cameras mounted in the ceiling measured the 3D position of each marker, and hence also the position
and the orientation of the platform relative to its predefined origin.

4.2 Experiment execution

The sensor platform was moved around by hand up and down in a volume of 4× 4× 2 meters, see
Figure 1. During the experiment, measurements were collected from the sensors on the platform
as well from the optical reference system. The data from the different sensors were collected
asynchronously. The experiment lasted for 187 seconds.

4.3 Pre-processing of data

The position and orientation data from the optical reference system was synchronized with the data
from the Trivisio sensor. The synchronization was performed based on correlation analysis of the
angular velocities measured by both systems.

The position in global coordinates of the Trivisio sensor was computed based on the position data,
the orientation data, and the displacement of the Trivisio sensor relative to the predefined origin of
the platform.
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The magnetometer data from the Trivisio sensor was rotated from sensor-fixed coordinates to global
coordinates using the orientation data from the optical reference system. These rotated measurements
describe the magnetic field in global coordinates at the sensor positions computed above. In Sec-
tion 5.2 of the main paper, these position data and magnetic field data are considered as input and
output data, respectively.
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