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Abstract

Long Short-Term Memory (LSTM) is a popular approach to boosting the ability
of Recurrent Neural Networks to store longer term temporal information. The
capacity of an LSTM network can be increased by widening and adding layers.
However, usually the former introduces additional parameters, while the latter
increases the runtime. As an alternative we propose the Tensorized LSTM in
which the hidden states are represented by tensors and updated via a cross-layer
convolution. By increasing the tensor size, the network can be widened efficiently
without additional parameters since the parameters are shared across different
locations in the tensor; by delaying the output, the network can be deepened
implicitly with little additional runtime since deep computations for each timestep
are merged into temporal computations of the sequence. Experiments conducted on
five challenging sequence learning tasks show the potential of the proposed model.

1 Introduction

We consider the time-series prediction task of producing a desired output yt at each timestep
t∈{1, . . . , T} given an observed input sequence x1:t = {x1,x2, · · · ,xt}, where xt ∈ RR and
yt∈RS are vectors1. The Recurrent Neural Network (RNN) [17, 43] is a powerful model that learns
how to use a hidden state vector ht ∈RM to encapsulate the relevant features of the entire input
history x1:t up to timestep t. Let hcatt−1∈RR+M be the concatenation of the current input xt and the
previous hidden state ht−1:

hcatt−1 = [xt,ht−1] (1)

The update of the hidden state ht is defined as:

at = h
cat
t−1W

h + bh (2)
ht = φ(at) (3)

where W h∈R(R+M)×M is the weight, bh∈RM the bias, at∈RM the hidden activation, and φ(·)
the element-wise tanh function. Finally, the output yt at timestep t is generated by:

yt = ϕ(htW
y + by) (4)

whereW y∈RM×S and by ∈ RS , and ϕ(·) can be any differentiable function, depending on the task.

However, this vanilla RNN has difficulties in modeling long-range dependencies due to the van-
ishing/exploding gradient problem [4]. Long Short-Term Memories (LSTMs) [19, 24] alleviate
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these problems by employing memory cells to preserve information for longer, and adopting gating
mechanisms to modulate the information flow. Given the success of the LSTM in sequence modeling,
it is natural to consider how to increase the complexity of the model and thereby increase the set of
tasks for which the LSTM can be profitably applied.

We consider the capacity of a network to consist of two components: the width (the amount of
information handled in parallel) and the depth (the number of computation steps) [5]. A naive way
to widen the LSTM is to increase the number of units in a hidden layer; however, the parameter
number scales quadratically with the number of units. To deepen the LSTM, the popular Stacked
LSTM (sLSTM) stacks multiple LSTM layers [20]; however, runtime is proportional to the number
of layers and information from the input is potentially lost (due to gradient vanishing/explosion) as it
propagates vertically through the layers.

In this paper, we introduce a way to both widen and deepen the LSTM whilst keeping the parameter
number and runtime largely unchanged. In summary, we make the following contributions:
(a) We tensorize RNN hidden state vectors into higher-dimensional tensors which allow more flexible

parameter sharing and can be widened more efficiently without additional parameters.
(b) Based on (a), we merge RNN deep computations into its temporal computations so that the

network can be deepened with little additional runtime, resulting in a Tensorized RNN (tRNN).
(c) We extend the tRNN to an LSTM, namely the Tensorized LSTM (tLSTM), which integrates a

novel memory cell convolution to help to prevent the vanishing/exploding gradients.

2 Method

2.1 Tensorizing Hidden States

It can be seen from (2) that in an RNN, the parameter number scales quadratically with the size of the
hidden state. A popular way to limit the parameter number when widening the network is to organize
parameters as higher-dimensional tensors which can be factorized into lower-rank sub-tensors that
contain significantly fewer elements [6, 15, 18, 26, 32, 39, 46, 47, 51], which is is known as tensor
factorization. This implicitly widens the network since the hidden state vectors are in fact broadcast to
interact with the tensorized parameters. Another common way to reduce the parameter number is to
share a small set of parameters across different locations in the hidden state, similar to Convolutional
Neural Networks (CNNs) [34, 35].

We adopt parameter sharing to cutdown the parameter number for RNNs, since compared with
factorization, it has the following advantages: (i) scalability, i.e., the number of shared parameters
can be set independent of the hidden state size, and (ii) separability, i.e., the information flow can be
carefully managed by controlling the receptive field, allowing one to shift RNN deep computations to
the temporal domain (see Sec. 2.2). We also explicitly tensorize the RNN hidden state vectors, since
compared with vectors, tensors have a better: (i) flexibility, i.e., one can specify which dimensions
to share parameters and then can just increase the size of those dimensions without introducing
additional parameters, and (ii) efficiency, i.e., with higher-dimensional tensors, the network can be
widened faster w.r.t. its depth when fixing the parameter number (see Sec. 2.3).

For ease of exposition, we first consider 2D tensors (matrices): we tensorize the hidden state ht∈RM
to becomeHt∈RP×M , where P is the tensor size, and M the channel size. We locally-connect the
first dimension ofHt in order to share parameters, and fully-connect the second dimension ofHt to
allow global interactions. This is analogous to the CNN which fully-connects one dimension (e.g.,
the RGB channel for input images) to globally fuse different feature planes. Also, if one compares
Ht to the hidden state of a Stacked RNN (sRNN) (see Fig. 1(a)), then P is akin to the number of
stacked hidden layers, and M the size of each hidden layer. We start to describe our model based on
2D tensors, and finally show how to strengthen the model with higher-dimensional tensors.

2.2 Merging Deep Computations

Since an RNN is already deep in its temporal direction, we can deepen an input-to-output computation
by associating the input xt with a (delayed) future output. In doing this, we need to ensure that the
output yt is separable, i.e., not influenced by any future input xt′ (t′ > t). Thus, we concatenate
the projection of xt to the top of the previous hidden state Ht−1, then gradually shift the input
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Figure 1: Examples of sRNN, tRNNs and tLSTMs. (a) A 3-layer sRNN. (b) A 2D tRNN without (–)
feedback (F) connections, which can be thought as a skewed version of (a). (c) A 2D tRNN. (d) A 2D
tLSTM without (–) memory (M) cell convolutions. (e) A 2D tLSTM. In each model, the blank circles
in column 1 to 4 denote the hidden state at timestep t−1 to t+2, respectively, and the blue region
denotes the receptive field of the current output yt. In (b)-(e), the outputs are delayed by L−1=2
timesteps, where L=3 is the depth.

information down when the temporal computation proceeds, and finally generate yt from the bottom
ofHt+L−1, where L−1 is the number of delayed timesteps for computations of depth L. An example
with L=3 is shown in Fig. 1(b). This is in fact a skewed sRNN as used in [1] (also similar to [48]).
However, our method does not need to change the network structure and also allows different kinds
of interactions as long as the output is separable, e.g, one can increase the local connections and use
feedback (see Fig. 1(c)), which can be beneficial for sRNNs [10]. In order to share parameters, we
updateHt using a convolution with a learnable kernel. In this manner we increase the complexity of
the input-to-output mapping (by delaying outputs) and limit parameter growth (by sharing transition
parameters using convolutions).

To describe the resulting tRNN model, letHcat
t−1∈R(P+1)×M be the concatenated hidden state, and

p∈Z+ the location at a tensor. The channel vector hcatt−1,p∈RM at location p ofHcat
t−1 is defined as:

hcatt−1,p =

{
xtW

x + bx if p = 1

ht−1,p−1 if p > 1
(5)

whereW x ∈ RR×M and bx ∈ RM . Then, the update of tensorHt is implemented via a convolution:

At =H
cat
t−1 ~ {W h, bh} (6)

Ht = φ(At) (7)

whereW h∈RK×Mi×Mo

is the kernel weight of size K, with M i=M input channels and Mo=M
output channels, bh ∈RMo

is the kernel bias, At ∈RP×M
o

is the hidden activation, and ~ is the
convolution operator (see Appendix A.1 for a more detailed definition). Since the kernel convolves
across different hidden layers, we call it the cross-layer convolution. The kernel enables interaction,
both bottom-up and top-down across layers. Finally, we generate yt from the channel vector
ht+L−1,P ∈RM which is located at the bottom ofHt+L−1:

yt = ϕ(ht+L−1,PW
y + by) (8)

whereW y∈RM×S and by∈RS . To guarantee that the receptive field of yt only covers the current
and previous inputs x1:t (see Fig. 1(c)), L, P , and K should satisfy the constraint:

L =
⌈ 2P

K −K mod 2

⌉
(9)

where d·e is the ceil operation. For the derivation of (9), please see Appendix B.

We call the model defined in (5)-(8) the Tensorized RNN (tRNN). The model can be widened by
increasing the tensor size P , whilst the parameter number remains fixed (thanks to the convolution).
Also, unlike the sRNN of runtime complexity O(TL), tRNN breaks down the runtime complexity to
O(T+L), which means either increasing the sequence length T or the network depth L would not
significantly increase the runtime.
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2.3 Extending to LSTMs

To allow the tRNN to capture long-range temporal dependencies, one can straightforwardly extend it
to an LSTM by replacing the tRNN tensor update equations of (6)-(7) as follows:

[Ag
t ,A

i
t,A

f
t ,A

o
t ] =H

cat
t−1 ~ {W h, bh} (10)

[Gt, It,Ft,Ot] = [φ(Ag
t ), σ(A

i
t), σ(A

f
t ), σ(A

o
t )] (11)

Ct = Gt � It +Ct−1 � Ft (12)
Ht = φ(Ct)�Ot (13)

where the kernel {W h, bh} is of size K, with M i=M input channels and Mo=4M output channels,
Ag
t ,A

i
t,A

f
t ,A

o
t ∈RP×M are activations for the new content Gt, input gate It, forget gate Ft, and

output gate Ot, respectively, σ(·) is the element-wise sigmoid function, � is the element-wise
multiplication, and Ct∈RP×M is the memory cell. However, since in (12) the previous memory cell
Ct−1 is only gated along the temporal direction (see Fig. 1(d)), long-range dependencies from the
input to output might be lost when the tensor size P becomes large.

Memory Cell Convolution. To capture long-range dependencies from multiple directions, we
additionally introduce a novel memory cell convolution, by which the memory cells can have a larger
receptive field (see Fig. 1(e)). We also dynamically generate this convolution kernel so that it is
both time- and location-dependent, allowing for flexible control over long-range dependencies from
different directions. This results in our tLSTM tensor update equations:

[Ag
t ,A

i
t,A

f
t ,A

o
t ,A

q
t ] =H

cat
t−1 ~ {W h, bh} (14)

[Gt, It,Ft,Ot,Qt] = [φ(Ag
t ), σ(A

i
t), σ(A

f
t ), σ(A

o
t ), ς(A

q
t )] (15)

W c
t (p) = reshape (qt,p, [K, 1, 1]) (16)

Cconv
t−1 = Ct−1 ~W

c
t (p) (17)

Ct = Gt � It +Cconv
t−1 � Ft (18)

Ht = φ(Ct)�Ot (19)

Figure 2: Illustration of gener-
ating the memory cell convolu-
tion kernel, where (a) is for 2D
tensors and (b) for 3D tensors.

where, in contrast to (10)-(13), the kernel {W h, bh} has additional
〈K〉 output channels2 to generate the activation Aq

t ∈RP×〈K〉 for
the dynamic kernel bankQt∈RP×〈K〉, qt,p∈R〈K〉 is the vectorized
adaptive kernel at the location p of Qt, and W c

t (p)∈RK×1×1 is
the dynamic kernel of size K with a single input/output channel,
which is reshaped from qt,p (see Fig. 2(a) for an illustration). In
(17), each channel of the previous memory cell Ct−1 is convolved
with W c

t (p) whose values vary with p, forming a memory cell
convolution (see Appendix A.2 for a more detailed definition),
which produces a convolved memory cell Cconv

t−1 ∈RP×M . Note
that in (15) we employ a softmax function ς(·) to normalize the
channel dimension ofQt, which, similar to [37], can stabilize the
value of memory cells and help to prevent the vanishing/exploding
gradients (see Appendix C for details).

The idea of dynamically generating network weights has been used
in many works [6, 14, 15, 23, 44, 46], where in [14] location-
dependent convolutional kernels are also dynamically generated to improve CNNs. In contrast to
these works, we focus on broadening the receptive field of tLSTM memory cells. Whilst the flexibility
is retained, fewer parameters are required to generate the kernel since the kernel is shared by different
memory cell channels.

Channel Normalization. To improve training, we adapt Layer Normalization (LN) [3] to our
tLSTM. Similar to the observation in [3] that LN does not work well in CNNs where channel vectors
at different locations have very different statistics, we find that LN is also unsuitable for tLSTM
where lower level information is near the input while higher level information is near the output. We

2The operator 〈·〉 returns the cumulative product of all elements in the input variable.
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therefore normalize the channel vectors at different locations with their own statistics, forming a
Channel Normalization (CN), with its operator CN(·):

CN(Z;Γ,B) = Ẑ � Γ +B (20)

where Z, Ẑ,Γ,B ∈ RP×Mz

are the original tensor, normalized tensor, gain parameter, and bias
parameter, respectively. The mz-th channel of Z, i.e. zmz ∈RP , is normalized element-wisely:

ẑmz = (zmz − zµ)/zσ (21)

where zµ, zσ∈RP are the mean and standard deviation along the channel dimension of Z, respec-
tively, and ẑmz ∈RP is the mz-th channel of Ẑ. Note that the number of parameters introduced by
CN/LN can be neglected as it is very small compared to the number of other parameters in the model.

Using Higher-Dimensional Tensors. One can observe from (9) that when fixing the kernel size
K, the tensor size P of a 2D tLSTM grows linearly w.r.t. its depth L. How can we expand the tensor
volume more rapidly so that the network can be widened more efficiently? We can achieve this goal
by leveraging higher-dimensional tensors. Based on previous definitions for 2D tLSTMs, we replace
the 2D tensors with D-dimensional (D>2) tensors, obtainingHt,Ct∈RP1×P2×...×PD−1×M with the
tensor size P=[P1, P2, . . . , PD−1]. Since the hidden states are no longer matrices, we concatenate
the projection of xt to one corner ofHt−1, and thus (5) is extended as:

hcatt−1,p =


xtW

x + bx if pd = 1 for d = 1, 2, . . . , D − 1

ht−1,p−1 if pd > 1 for d = 1, 2, . . . , D − 1

0 otherwise
(22)

where hcatt−1,p ∈RM is the channel vector at location p ∈ ZD−1+ of the concatenated hidden state
Hcat
t−1∈R(P1+1)×(P2+1)×...×(PD−1+1)×M . For the tensor update, the convolution kernelW h andW c

t (·)
also increase their dimensionality with kernel size K = [K1,K2, . . . ,KD−1]. Note that W c

t (·) is
reshaped from the vector, as illustrated in Fig. 2(b). Correspondingly, we generate the output yt from
the opposite corner ofHt+L−1, and therefore (8) is modified as:

yt = ϕ(ht+L−1,PW
y + by) (23)

For convenience, we set Pd = P and Kd = K for d = 1, 2, . . . , D − 1 so that all dimensions of P
and K can satisfy (9) with the same depth L. In addition, CN still normalizes the channel dimension
of tensors.

3 Experiments

We evaluate tLSTM on five challenging sequence learning tasks under different configurations:
(a) sLSTM (baseline): our implementation of sLSTM [21] with parameters shared across all layers.
(b) 2D tLSTM: the standard 2D tLSTM, as defined in (14)-(19).
(c) 2D tLSTM–M: removing (–) memory (M) cell convolutions from (b), as defined in (10)-(13).
(d) 2D tLSTM–F: removing (–) feedback (F) connections from (b).
(e) 3D tLSTM: tensorizing (b) into 3D tLSTM.
(f) 3D tLSTM+LN: applying (+) LN [3] to (e).
(g) 3D tLSTM+CN: applying (+) CN to (e), as defined in (20).
To compare different configurations, we also use L to denote the number of layers of a sLSTM, and
M to denote the hidden size of each sLSTM layer. We set the kernel size K to 2 for 2D tLSTM–F
and 3 for other tLSTMs, in which case we have L=P according to (9).

For each configuration, we fix the parameter number and increase the tensor size to see if the
performance of tLSTM can be boosted without increasing the parameter number. We also investigate
how the runtime is affected by the depth, where the runtime is measured by the average GPU
milliseconds spent by a forward and backward pass over one timestep of a single example. Next, we
compare tLSTM against the state-of-the-art methods to evaluate its ability. Finally, we visualize the
internal working mechanism of tLSTM. Please see Appendix D for training details.
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3.1 Wikipedia Language Modeling

Figure 3: Performance and run-
time of different configurations
on Wikipedia.

The Hutter Prize Wikipedia dataset [25] consists of 100 million
characters taken from 205 different characters including alpha-
bets, XML markups and special symbols. We model the dataset
at the character-level, and try to predict the next character of the
input sequence.

We fix the parameter number to 10M, corresponding to channel
sizes M of 1120 for sLSTM and 2D tLSTM–F, 901 for other
2D tLSTMs, and 522 for 3D tLSTMs. All configurations are
evaluated with depths L=1, 2, 3, 4. We use Bits-per-character
(BPC) to measure the model performance.

Results are shown in Fig. 3. When L ≤ 2, sLSTM and 2D
tLSTM–F outperform other models because of a larger M . With
L increasing, the performances of sLSTM and 2D tLSTM–M
improve but become saturated when L≥3, while tLSTMs with
memory cell convolutions improve with increasing L and finally
outperform both sLSTM and 2D tLSTM–M. When L= 4, 2D
tLSTM–F is surpassed by 2D tLSTM, which is in turn surpassed
by 3D tLSTM. The performance of 3D tLSTM+LN benefits from
LN only when L ≤ 2. However, 3D tLSTM+CN consistently
improves 3D tLSTM with different L.

Table 1: Test BPC on Wikipedia.
BPC # Param.

MI-LSTM [51] 1.44 ≈17M
mLSTM [32] 1.42 ≈20M
HyperLSTM+LN [23] 1.34 26.5M
HM-LSTM+LN [11] 1.32 ≈35M
Large RHN [54] 1.27 ≈46M
Large FS-LSTM-4 [38] 1.245 ≈47M
2 × Large FS-LSTM-4 [38] 1.198 ≈94M

3D tLSTM+CN (L=6, M=1200) 1.264 50.1M

Whilst the runtime of sLSTM is al-
most proportional to L, it is nearly
constant in each tLSTM configuration
and largely independent of L.

We compare a larger model, i.e. a
3D tLSTM+CN with L=6 and M=
1200, to the state-of-the-art methods
on the test set, as reported in Table 1.
Our model achieves 1.264 BPC with
50.1M parameters, and is competitive
to the best performing methods [38,
54] with similar parameter numbers.

3.2 Algorithmic Tasks

Figure 4: Performance and runtime of different configurations
on the addition (left) and memorization (right) tasks.

(a) Addition: The task is to sum
two 15-digit integers. The network
first reads two integers with one
digit per timestep, and then predicts
the summation. We follow the pro-
cessing of [30], where a symbol
‘-’ is used to delimit the integers
as well as pad the input/target se-
quence. A 3-digit integer addition
task is of the form:

Input: - 1 2 3 - 9 0 0 - - - - -
Target: - - - - - - - - 1 0 2 3 -

(b) Memorization: The goal of this
task is to memorize a sequence of
20 random symbols. Similar to the
addition task, we use 65 different
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symbols. A 5-symbol memorization task is of the form:

Input: - a b c c b - - - - - -
Target: - - - - - - a b c c b -

We evaluate all configurations with L=1, 4, 7, 10 on both tasks, where M is 400 for addition and
100 for memorization. The performance is measured by the symbol prediction accuracy.

Fig. 4 show the results. In both tasks, large L degrades the performances of sLSTM and 2D tLSTM–
M. In contrast, the performance of 2D tLSTM–F steadily improves with L increasing, and is further
enhanced by using feedback connections, higher-dimensional tensors, and CN, while LN helps only
when L=1. Note that in both tasks, the correct solution can be found (when 100% test accuracy is
achieved) due to the repetitive nature of the task. In our experiment, we also observe that for the
addition task, 3D tLSTM+CN with L=7 outperforms other configurations and finds the solution
with only 298K training samples, while for the memorization task, 3D tLSTM+CN with L=10 beats
others configurations and achieves perfect memorization after seeing 54K training samples. Also,
unlike in sLSTM, the runtime of all tLSTMs is largely unaffected by L.

Table 2: Test accuracies on two algorithmic tasks.
Addition Memorization

Acc. # Samp. Acc. # Samp.

Stacked LSTM [21] 51% 5M >50% 900K
Grid LSTM [30] >99% 550K >99% 150K

3D tLSTM+CN (L=7) >99% 298K >99% 115K
3D tLSTM+CN (L=10) >99% 317K >99% 54K

We further compare the best
performing configurations to
the state-of-the-art methods
for both tasks (see Table 2).
Our models solve both tasks
significantly faster (i.e., using
fewer training samples) than
other models, achieving the
new state-of-the-art results.

3.3 MNIST Image Classification

Figure 5: Performance and runtime of different configurations
on sequential MNIST (left) and sequential pMNIST (right).

The MNIST dataset [35] consists
of 50000/10000/10000 handwritten
digit images of size 28×28 for train-
ing/validation/test. We have two
tasks on this dataset:

(a) Sequential MNIST: The goal
is to classify the digit after sequen-
tially reading the pixels in a scan-
line order [33]. It is therefore a
784 timestep sequence learning task
where a single output is produced at
the last timestep; the task requires
very long range dependencies in the
sequence.

(b) Sequential Permuted MNIST:
We permute the original image pix-
els in a fixed random order as in
[2], resulting in a permuted MNIST
(pMNIST) problem that has even longer range dependencies across pixels and is harder.

In both tasks, all configurations are evaluated with M=100 and L=1, 3, 5. The model performance
is measured by the classification accuracy.

Results are shown in Fig. 5. sLSTM and 2D tLSTM–M no longer benefit from the increased depth
when L = 5. Both increasing the depth and tensorization boost the performance of 2D tLSTM.
However, removing feedback connections from 2D tLSTM seems not to affect the performance. On
the other hand, CN enhances the 3D tLSTM and when L≥ 3 it outperforms LN. 3D tLSTM+CN
with L=5 achieves the highest performances in both tasks, with a validation accuracy of 99.1% for
MNIST and 95.6% for pMNIST. The runtime of tLSTMs is negligibly affected by L, and all tLSTMs
become faster than sLSTM when L=5.
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Figure 6: Visualization of the diagonal channel means of the tLSTM memory cells for each task. In
each horizontal bar, the rows from top to bottom correspond to the diagonal locations from pin to
pout, the columns from left to right correspond to different timesteps (from 1 to T+L−1 for the full
sequence, where L−1 is the time delay), and the values are normalized to be in range [0, 1] for better
visualization. Both full sequences in (d) and (e) are zoomed out horizontally.

Table 3: Test accuracies (%) on sequential MNIST/pMNIST.
MNIST pMNIST

iRNN [33] 97.0 82.0
LSTM [2] 98.2 88.0
uRNN [2] 95.1 91.4
Full-capacity uRNN [49] 96.9 94.1
sTANH [53] 98.1 94.0
BN-LSTM [13] 99.0 95.4
Dilated GRU [8] 99.2 94.6
Dilated CNN [40] in [8] 98.3 96.7

3D tLSTM+CN (L=3) 99.2 94.9
3D tLSTM+CN (L=5) 99.0 95.7

We also compare the configura-
tions of the highest test accuracies
to the state-of-the-art methods (see
Table 3). For sequential MNIST, our
3D tLSTM+CN with L=3 performs
as well as the state-of-the-art Dilated
GRU model [8], with a test accu-
racy of 99.2%. For the sequential
pMNIST, our 3D tLSTM+CN with
L= 5 has a test accuracy of 95.7%,
which is close to the state-of-the-art
of 96.7% produced by the Dilated
CNN [40] in [8].

3.4 Analysis

The experimental results of different model configurations on different tasks suggest that the perfor-
mance of tLSTMs can be improved by increasing the tensor size and network depth, requiring no
additional parameters and little additional runtime. As the network gets wider and deeper, we found
that the memory cell convolution mechanism is crucial to maintain improvement in performance.
Also, we found that feedback connections are useful for tasks of sequential output (e.g., our Wikipedia
and algorithmic tasks). Moreover, tLSTM can be further strengthened via tensorization or CN.

It is also intriguing to examine the internal working mechanism of tLSTM. Thus, we visualize the
memory cell which gives insight into how information is routed. For each task, the best performing
tLSTM is run on a random example. We record the channel mean (the mean over channels, e.g., it is
of size P×P for 3D tLSTMs) of the memory cell at each timestep, and visualize the diagonal values
of the channel mean from location pin=[1, 1] (near the input) to pout=[P, P ] (near the output).

Visualization results in Fig. 6 reveal the distinct behaviors of tLSTM when dealing with different tasks:
(i) Wikipedia: the input can be carried to the output location with less modification if it is sufficient
to determine the next character, and vice versa; (ii) addition: the first integer is gradually encoded
into memories and then interacts (performs addition) with the second integer, producing the sum; (iii)
memorization: the network behaves like a shift register that continues to move the input symbol to the
output location at the correct timestep; (iv) sequential MNIST: the network is more sensitive to the
pixel value change (representing the contour, or topology of the digit) and can gradually accumulate
evidence for the final prediction; (v) sequential pMNIST: the network is sensitive to high value pixels
(representing the foreground digit), and we conjecture that this is because the permutation destroys
the topology of the digit, making each high value pixel potentially important.

From Fig. 6 we can also observe common phenomena for all tasks: (i) at each timestep, the values
at different tensor locations are markedly different, implying that wider (larger) tensors can encode
more information, with less effort to compress it; (ii) from the input to the output, the values become
increasingly distinct and are shifted by time, revealing that deep computations are indeed performed
together with temporal computations, with long-range dependencies carried by memory cells.
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Figure 7: Examples of models related to tLSTMs. (a) A single layer cLSTM [48] with vector array
input. (b) A 3-layer sLSTM [21]. (c) A 3-layer Grid LSTM [30]. (d) A 3-layer RHN [54]. (e) A
3-layer QRNN [7] with kernel size 2, where costly computations are done by temporal convolution.

4 Related Work

Convolutional LSTMs. Convolutional LSTMs (cLSTMs) are proposed to parallelize the compu-
tation of LSTMs when the input at each timestep is structured (see Fig. 7(a)), e.g., a vector array
[48], a vector matrix [41, 42, 50, 52], or a vector tensor [9, 45]. Unlike cLSTMs, tLSTM aims to
increase the capacity of LSTMs when the input at each timestep is non-structured, i.e., a single vector,
and is advantageous over cLSTMs in that: (i) it performs the convolution across different hidden
layers whose structure is independent of the input structure, and integrates information bottom-up
and top-down; while cLSTM performs the convolution within each hidden layer whose structure is
coupled with the input structure, thus will fall back to the vanilla LSTM if the input at each timestep
is a single vector; (ii) it can be widened efficiently without additional parameters by increasing the
tensor size; while cLSTM can be widened by increasing the kernel size or kernel channel, which
significantly increases the number of parameters; (iii) it can be deepened with little additional run-
time by delaying the output; while cLSTM can be deepened by using more hidden layers, which
significantly increases the runtime; (iv) it captures long-range dependencies from multiple directions
through the memory cell convolution; while cLSTM struggles to capture long-range dependencies
from multiple directions since memory cells are only gated along one direction.

Deep LSTMs. Deep LSTMs (dLSTMs) extend sLSTMs by making them deeper (see Fig. 7(b)-(d)).
To keep the parameter number small and ease training, Graves [22], Kalchbrenner et al. [30], Mujika
et al. [38], Zilly et al. [54] apply another RNN/LSTM along the depth direction of dLSTMs, which,
however, multiplies the runtime. Though there are implementations to accelerate the deep computation
[1, 16], they generally aim at simple architectures such sLSTMs. Compared with dLSTMs, tLSTM
performs the deep computation with little additional runtime, and employs a cross-layer convolution to
enable the feedback mechanism. Moreover, the capacity of tLSTM can be increased more efficiently
by using higher-dimensional tensors, whereas in dLSTM all hidden layers as a whole only equal to a
2D tensor (i.e., a stack of hidden vectors), the dimensionality of which is fixed.

Other Parallelization Methods. Some methods [7, 8, 28, 29, 36, 40] parallelize the temporal
computation of the sequence (e.g., use the temporal convolution, as in Fig. 7(e)) during training, in
which case full input/target sequences are accessible. However, during the online inference when the
input presents sequentially, temporal computations can no longer be parallelized and will be blocked
by deep computations of each timestep, making these methods potentially unsuitable for real-time
applications that demand a high sampling/output frequency. Unlike these methods, tLSTM can speed
up not only training but also online inference for many tasks since it performs the deep computation
by the temporal computation, which is also human-like: we convert each signal to an action and
meanwhile receive new signals in a non-blocking way. Note that for the online inference of tasks
that use the previous output yt−1 for the current input xt (e.g., autoregressive sequence generation),
tLSTM cannot parallel the deep computation since it requires to delay L−1 timesteps to get yt−1.

5 Conclusion

We introduced the Tensorized LSTM, which employs tensors to share parameters and utilizes the
temporal computation to perform the deep computation for sequential tasks. We validated our model
on a variety of tasks, showing its potential over other popular approaches.
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