
Supplementary materials

Guolin Ke1, Qi Meng2, Thomas Finley3, Taifeng Wang1,
Wei Chen1, Weidong Ma1, Qiwei Ye1, Tie-Yan Liu1

1Microsoft Research 2Peking University 3 Microsoft Redmond
1{guolin.ke, taifengw, wche, weima, qiwye, tie-yan.liu}@microsoft.com;

2qimeng13@pku.edu.cn; 3tfinely@microsoft.com;

This is the supplementary materials for paper "LightGBM: A Highly Efficient Gradient Boosting
Decision Tree", which concludes the proofs of Theorem 3.2, proposition 2.1 and more details in the
experiment section.

1 Theorem 3.2 and its proof

Theorem 3.2 Let ḡjl (d) =
∑

xi∈(A∪Ac)l
|gi|

n
j
l
(d)

and ḡjr(d) =
∑

xi∈(A∪Ac)r
|gi|

nj
r(d)

. With probability at least

1− δ, we have

EA(d) ≤ C2
a,b ln 1/δ ·max

{
1

njl (d)
,

1

njr(d)

}
+ 2DCa,b

√
ln 1/δ

n
, (1)

where Ca,b = 1−a√
b

maxxi∈Ac |gi|, and D = max(ḡjl (d), ḡjr(d)).

Proof: For a fixed d, we have

Ṽj(d)− Vj(d)

=

(
(
∑
xi∈Al

gi + 1−a
b

∑
xi∈Bl

gi)
2

njl (d)
+

(
∑
xi∈Ar

gi + 1−a
b

∑
xi∈Br

gi)
2

njr(d)

)

−

(
(
∑
xi∈Al

gi +
∑
xi∈Ac

l
gi)

2

njl (d)
+

(
∑
xi∈Ar

gi +
∑
xi∈Ac

r
gi)

2

njr(d)

)

=Cl

1− a
b

∑
xi∈Bl

gi −
∑
xi∈Ac

l

gi

+ Cr

1− a
b

∑
xi∈Br

gi −
∑
xi∈Ac

r

gi



where Cl =

(
1−a
b

∑
xi∈Bl

gi+
∑

xi∈Ac
l
gi+2(

∑
xi∈Al

gi)
)

nj
l (d)

,

and Cr =

(
1−a
b

∑
xi∈Br

gi+
∑

xi∈Ac
r
gi+2(

∑
xi∈Ar

gi)
)

nj
r(d)

.

Thus, we have

|Ṽj(d)− Vj(d)| ≤ max{Cl, Cr}
∣∣∣1− a

b

∑
xi∈B

gi −
∑
xi∈Ac

gi

∣∣∣ (2)

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Firstly, we bound Cl and Cr. Let DAc = maxxi∈Ac |gi|, we have

Cl =

(
1−a
b

∑
xi∈Bl

gi +
∑
xi∈Al

gi
)

njl (d)
+

(∑
xi∈Ac

l
gi +

∑
xi∈Al

gi
)

njl (d)
(3)

≤
DAc

∣∣∣ 1−ab ∑
I[xi∈Bl] −

∑
I[xi∈Ac

l
]

∣∣∣
njl (d)

+ 2D (4)

=
DAc(1− a)n

njl (d)

∣∣∣∑ I[xi∈Bl]

bn
−
∑
I[xi∈Ac

l
]

(1− a)n

∣∣∣+ 2D (5)

By Hoeffding’s inequality, we have with probability at least 1− δ,

Cl ≤
DAc(1− a)n

njl (d)

√
ln 2/δ

2bn
+ 2D. (6)

Similarly, we have Cr ≤ DAc (1−a)n
nj
r(d)

√
ln 2/δ
2bn + 2D.

For the term
(

1−a
b

∑
xi∈B gi −

∑
xi∈Ac gi

)
, we have with probability at least 1− δ,

1

n

∣∣∣1− a
b

∑
xi∈B

gi −
∑
xi∈Ac

gi

∣∣∣ ≤ DAc(1− a)

√
ln 2/δ

2bn
. (7)

Thus, we have with probability at least 1− δ

E(d) =
∣∣∣ Ṽj(d)

n
− Vj(d)

n

∣∣∣
≤

(
DAc(1− a) max

{
1

njl (d)
,

1

njr(d)

}√
n ln 1/δ

2b
+ 2D

)
a)

√
ln 1/δ

2bn

≤D
2
Ac(1− a)2 ln 1/δ

2b
·max

{
1

njl (d)
,

1

njr(d)

}
+

2D ·DAc · (1− a)√
2b

√
ln 1/δ

n
.

Putting Ca,b in the above inequality, we can get the result in the theorem. �

Discussions:

(1) The high probability error given in the above theorem is related to n, njl (d), njr(d), Ca,b. The

asymptotic rate of the approximated gain to the original gain is O
(

1

n
j
l
(d)

+ 1

n
j
r(d)

+ 1√
n

)
. If the

number of instances in the two subsets after splitting are relatively balanced (i.e., njl (d) ≥ O(
√
n)

and njr(d) ≥ O(
√
n)), the approximation error will be dominated by the second term of Ineq.(1) and

it will decrease as n becomes large.

(2) For fixed b, as a becomes larger, Ca,b will become smaller because both term 1 − a and term
maxxi∈Ac |gi| will become smaller. For fixed a, as b becomes larger, 1√

b
will become smaller and

the upper bound will become smaller.

(3) Random sampling is a special case for GOSS with a = 0. In many cases, GOSS could outperform
random sampling. More specifically, the condition is C0,β > Ca,β−a, which is equivalent to
αa√
β
> 1−a√

β−a with αa = maxxi∈A∪Ac |gi|/maxxi∈Ac |gi|. Thus the condition for GOSS to achieve
better accuracy is β > 1

1−((1−a)/αa)
2 · a. For fixed β which satisfies the condition, if αa is increasing

rapidly as a is increasing, GOSS prefers a larger a. If αa is increasing smoothly as a is increasing,
GOSS prefers smaller a. For example, if a0, a1, a2 are the smallest a to make αa0 ≥

√
2, αa1 ≥√

3, αa2 ≥ 2, then the condition for β is β > 2a0, β > 1.5a1, β > 1.25a2, respectively. αa is
increasing rapidly means that a2 − a1 and a1 − a0 are small values, which makes 1.25a2 smaller
than 2a0 and 1.5a1. In this case, GOSS prefers a2.

(4) Theorem 3.2 is established for any fixed split point. Thus we can bound |Ṽ (d∗)− V (d∗)|. It is
easier to bound |Ṽj(d̃∗)− Ṽj(d∗)| by using the techniques in [1, 2]. Combining them we can bound
|Ṽj(d̃∗)−V (d∗)|, which is the difference between the largest variance gain calculated by the original
set A ∪Ac and that calculated by the set A ∪B.

2



2 Accuracy guarantee for random polluting

We denote the maximal variance gain for feature j as Vj = maxd Vj(d) and the maximal variance
gain as V = maxj Vj . We denote the maximal variance gain with random polluting with polluting
rate γ as V γ . Assume that the maximal variance gain is achieved at feature j1, i.e., V = Vj1 and the
maximal variance gain with random polluting is achieved at feature j2, i.e., V γ = V γj2 , we have the
following theorem.

Proposition 2.1 The difference of the maximal variance gain calculated between with and without
random polluting can be bounded as below:

|V − V γ | ≤ [(1− γ)n]−
2
3 , (8)

where n is the number of training instances.

Proof: Since V = Vj1 ≥ Vj2 , and V γ = V γj2 ≥ V
γ
j1

, we have

Vj1 − V
γ
j2
≤ Vj1 − V

γ
j1

(9)

V γj2 − Vj1 ≤ V
γ
j2
− Vj2 . (10)

Using the results in [1], we have Vj1 − V
γ
j1
≤ [(1− γ)n]−

2
3 and V γj2 − Vj2 ≤ [(1− γ)n]−

2
3 . Thus

we can get the results in the theorem.

3 More details in experiments

3.1 Detailed parameter settings in experiments

The details of parameter settings used in experiments are listed in Table 1, Table 2 and Table 3. As we
use XGBoost as baseline, we also use the same parameter name in their documents. For meanings of
these parameters, please refer to https://github.com/dmlc/xgboost/blob/master/
doc/parameter.md. For the SGB experiments, as less data are used in training, we need to
reduce the min_child_weight and min_child_data accordingly to avoid under-fitting.

The settings of a and b on the Table 4 of Experiments section in the main paper are listed on Table 4.
We tune the combination of a, b under the overall sampling ratio constraint, and the listed settings
can produce relatively good performance on the model accuracy.

Table 1: Common Settings.

Allstate learning_rate=0.02, min_child_weight=100, num_round=500
Flight Delay learning_rate=0.1, min_child_weight=100, num_round=1000

LETOR learning_rate=0.05, min_child_weight=100, num_round=1000
KDD10 learning_rate=0.1, min_child_weight=3000, num_round=100
KDD12 learning_rate=0.1, min_child_weight=3000, num_round=100

Table 2: Settings for xgb_exa.

Allstate max_depth=12, min_split_gain=0.5
Flight Delay max_depth=12, min_split_gain=60

LETOR max_depth=16
KDD10 max_depth=50, min_split_gain=150
KDD12 max_depth=37, min_split_gain=100

Table 3: Settings for xgb_his, lgb_baseline, SGB and LightGBM.

Allstate num_leaves=127
Flight Delay num_leaves=255

LETOR num_leaves=255
KDD10 num_leaves=255, min_child_data=1000
KDD12 num_leaves=255, min_child_data=1000

Table 4: Settings of GOSS in Table 4 of Experiments section in the main paper.

Sampling ratio 0.1 0.15 0.2 0.25 0.3 0.35 0.4
GOSS a=0.05 b=0.05 a=0.05 b=0.1 a=0.1 b=0.1 a=0.15 b=0.1 a=0.2 b=0.1 a=0.25 b=0.1 a=0.15 b=0.25

3

https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
https://github.com/dmlc/xgboost/blob/master/doc/parameter.md


3.2 Effect of γ in EFB

We evaluate the influence of using different γ in EFB on KDD10 and KDD12 datasets. The results
are shown in Table 5 and Table 6. The accuracy drops if using a relative big γ, e.g. using γ = 0.01
causes the accuracy on KDD2010 dropping from 0.7873 to 0.7858. And the accuracy is almost the
same as baseline if using small γ. This is consistent with our theoretical analysis. We also notice
the speed-up brought by enabling bundling confliction is small. It is because EFB already bundle
many sparse features into very few dense features, and allowing conflict cannot further reduce it
significantly. So, in our main paper, we just set γ = 0. However, this does not affect the effectiveness
of EFB. If the data contains many slightly conflicted sparse features, our algorithm with small γ will
be significantly faster.

Table 5: Effect on accuracy by using different γ in EFB.

baseline γ = 0.01 γ = 0.001 γ = 0.0001 γ = 0.00001
KDD10 0.78735 0.785806 0.787218 0.78738 0.787391
KDD12 0.704854 0.703197 0.704606 0.704612 0.704757

Table 6: Effect on speed by using different γ in EFB.

baseline γ = 0.01 γ = 0.001 γ = 0.0001 γ = 0.00001
KDD10 6.33 5.88 6.12 6.25 6.29
KDD12 20.23 19.06 19.78 20.04 20.18

3.3 Time-accuracy curves for all datasets

In order to conduct end-to-end comparison between all algorithms, we draw the time-accuracy curves
on all experiment datasets. The curves are shown in Fig. 1, Fig.2, Fig.3, Fig.4 and Fig.5.

LightGBM demonstrates good performance on all datasets. It is much faster than the other baselines
while achieving the best accuracy. As KDD10 and KDD12 datasets are too large, other baselines
cannot converge in reasonable time. So, our accuracy results for these two datasets on the Table 3 in
the main paper are the accuracy of 100-th iteration. However, since LightGBM is much faster than
other tools, we did not limit the number of iterations in Fig.4 and Fig.5. So, its convergence points
are better than the values of Table 3 in the main paper.

0 500 1000 1500 2000 2500 3000 3500

Time(s)0
.5
9
0

0
.5
9
5

0
.6
0
0

0
.6
0
5

A
U
C

LightGBM

lgb_baseline

xgb_his

xgb_exa

Figure 1: Time-accuracy on Allstate dataset.

0 200 400 600 800 1000

Time(s)

0
.7
3

0
.7
4

0
.7
5

0
.7
6

0
.7
7

0
.7
8

0
.7
9

A
U
C

LightGBM

lgb_baseline

xgb_his

xgb_exa

Figure 2: Time-accuracy on Flight Delay dataset.

4



0 50 100 150 200 250 300 350 400

Time(s)

0
.4
0

0
.4
2

0
.4
4

0
.4
6

0
.4
8

0
.5
0

0
.5
2

N
D
C
G
@
1
0

LightGBM

lgb_baseline

xgb_his

xgb_exa

Figure 3: Time-accuracy on LETOR dataset.

0 500 1000 1500 2000 2500 3000 3500 4000

Time(s)

0
.7
4

0
.7
5

0
.7
6

0
.7
7

0
.7
8

0
.7
9

0
.8
0

A
U
C

LightGBM

lgb_baseline

xgb_exa

Figure 4: Time-accuracy on KDD10 dataset.

0 2500 5000 7500 10000 12500 15000 17500 20000

Time(s)0
.6
8
0
0
.6
8
5
0
.6
9
0
0
.6
9
5
0
.7
0
0
0
.7
0
5
0
.7
1
0

A
U
C

LightGBM

lgb_baseline

xgb_exa

Figure 5: Time-accuracy on KDD12 dataset.

References
[1] Moulinath Banerjee, Ian W McKeague, et al. Confidence sets for split points in decision trees.

The Annals of Statistics, 35(2):543–574, 2007.

[2] Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, and Tieyan Liu. A
communication-efficient parallel algorithm for decision tree. In Advances in Neural Information
Processing Systems, pages 1271–1279, 2016.

5


	Theorem 3.2 and its proof
	Accuracy guarantee for random polluting
	More details in experiments
	Detailed parameter settings in experiments
	Effect of  in EFB
	Time-accuracy curves for all datasets 


