
Multi-Modal Imitation Learning from Unstructured
Demonstrations using Generative Adversarial Nets

Karol Hausman∗†, Yevgen Chebotar∗†‡, Stefan Schaal†‡, Gaurav Sukhatme†, Joseph J. Lim†

†University of Southern California, Los Angeles, CA, USA
‡Max-Planck-Institute for Intelligent Systems, Tübingen, Germany
{hausman, ychebota, sschaal, gaurav, limjj}@usc.edu

Abstract

Imitation learning has traditionally been applied to learn a single task from demon-
strations thereof. The requirement of structured and isolated demonstrations
limits the scalability of imitation learning approaches as they are difficult to
apply to real-world scenarios, where robots have to be able to execute a mul-
titude of tasks. In this paper, we propose a multi-modal imitation learning
framework that is able to segment and imitate skills from unlabelled and un-
structured demonstrations by learning skill segmentation and imitation learning
jointly. The extensive simulation results indicate that our method can efficiently
separate the demonstrations into individual skills and learn to imitate them us-
ing a single multi-modal policy. The video of our experiments is available at
http://sites.google.com/view/nips17intentiongan.

1 Introduction

One of the key factors to enable deployment of robots in unstructured real-world environments is
their ability to learn from data. In recent years, there have been multiple examples of robot learning
frameworks that present promising results. These include: reinforcement learning [31] - where a
robot learns a skill based on its interaction with the environment and imitation learning [2, 5] - where
a robot is presented with a demonstration of a skill that it should imitate. In this work, we focus on
the latter learning setup.

Traditionally, imitation learning has focused on using isolated demonstrations of a particular skill [29].
The demonstration is usually provided in the form of kinesthetic teaching, which requires the user to
spend sufficient time to provide the right training data. This constrained setup for imitation learning
is difficult to scale to real world scenarios, where robots have to be able to execute a combination
of different skills. To learn these skills, the robots would require a large number of robot-tailored
demonstrations, since at least one isolated demonstration has to be provided for every individual skill.

In order to improve the scalability of imitation learning, we propose a framework that can learn to
imitate skills from a set of unstructured and unlabeled demonstrations of various tasks.

As a motivating example, consider a highly unstructured data source, e.g. a video of a person cooking
a meal. A complex activity, such as cooking, involves a set of simpler skills such as grasping,
reaching, cutting, pouring, etc. In order to learn from such data, three components are required: i) the
ability to map the image stream to state-action pairs that can be executed by a robot, ii) the ability to
segment the data into simple skills, and iii) the ability to imitate each of the segmented skills. In this
work, we tackle the latter two components, leaving the first one for future work. We believe that the
capability proposed here of learning from unstructured, unlabeled demonstrations is an important
step towards scalable robot learning systems.
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In this paper, we present a novel imitation learning method that learns a multi-modal stochastic
policy, which is able to imitate a number of automatically segmented tasks using a set of unstructured
and unlabeled demonstrations. Our results indicate that the presented technique can separate the
demonstrations into sensible individual skills and imitate these skills using a learned multi-modal
policy. We show applications of the presented method to the tasks of skill segmentation, hierarchical
reinforcement learning and multi-modal policy learning.

2 Related Work

Imitation learning is concerned with learning skills from demonstrations. Approaches that are suitable
for this setting can be split into two categories: i) behavioral cloning [27], and ii) inverse reinforcement
learning (IRL) [24]. While behavioral cloning aims at replicating the demonstrations exactly, it
suffers from the covariance shift [28]. IRL alleviates this problem by learning a reward function that
explains the behavior shown in the demonstrations. The majority of IRL works [16, 35, 1, 12, 20]
introduce algorithms that can imitate a single skill from demonstrations thereof but they do not readily
generalize to learning a multi-task policy from a set of unstructured demonstrations of various tasks.

More recently, there has been work that tackles a problem similar to the one presented in this paper,
where the authors consider a setting where there is a large set of tasks with many instantiations [10].
In their work, the authors assume a way of communicating a new task through a single demonstration.
We follow the idea of segmenting and learning different skills jointly so that learning of one skill
can accelerate learning to imitate the next skill. In our case, however, the goal is to separate the
mix of expert demonstrations into single skills and learn a policy that can imitate all of them, which
eliminates the need of new demonstrations at test time.

The method presented here belongs to the field of multi-task inverse reinforcement learning. Examples
from this field include [9] and [4]. In [9], the authors present a Bayesian approach to the problem,
while the method in [4] is based on an EM approach that clusters observed demonstrations. Both of
these methods show promising results on relatively low-dimensional problems, whereas our approach
scales well to higher dimensional domains due to the representational power of neural networks.

There has also been a separate line of work on learning from demonstration, which is then iteratively
improved through reinforcement learning [17, 6, 23]. In contrast, we do not assume access to the
expert reward function, which is required to perform reinforcement learning in the later stages of the
above algorithms.

There has been much work on the problem of skill segmentation and option discovery for hierarchical
tasks. Examples include [25, 19, 14, 33, 13]. In this work, we consider a possibility to discover
different skills that can all start from the same initial state, as opposed to hierarchical reinforcement
learning where the goal is to segment a task into a set of consecutive subtasks. We demonstrate,
however, that our method may be used to discover the hierarchical structure of a task similarly to the
hierarchical reinforcement learning approaches. In [13], the authors explore similar ideas to discover
useful skills. In this work, we apply some of these ideas to the imitation learning setup as opposed to
the reinforcement learning scenario.

Generative Adversarial Networks (GANs) [15] have enjoyed success in various domains including
image generation [8], image-image translation [34, 18] and video prediction [22]. More recently, there
have been works connecting GANs and other reinforcement learning and IRL methods [26, 11, 16].
In this work, we expand on some of the ideas presented in these works and provide a novel framework
that exploits this connection.

The works that are most closely related to this paper are [16], [7] and [21]. In [7], the authors show
a method that is able to learn disentangled representations and apply it to the problem of image
generation. In this work, we provide an alternative derivation of our method that extends their
work and applies it to multi-modal policies. In [16], the authors present an imitation learning GAN
approach that serves as a basis for the development of our method. We provide an extensive evaluation
of the hereby presented approach compared to the work in [16], which shows that our method, as
opposed to [16], can handle unstructured demonstrations of different skills. A concurrent work [21]
introduces a method similar to ours and applies it to detecting driving styles from unlabelled human
data.
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3 Preliminaries

LetM = (S,A, P,R, p0, γ, T ) be a finite-horizon Markov Decision Process (MDP), where S and A
are state and action spaces, P : S ×A× S → R+ is a state-transition probability function or system
dynamics, R : S ×A→ R a reward function, p0 : S → R+ an initial state distribution, γ a reward
discount factor, and T a horizon. Let τ = (s0, a0, . . . , sT , aT ) be a trajectory of states and actions and
R(τ) =

∑T
t=0 γ

tR(st, at) the trajectory reward. The goal of reinforcement learning methods is to
find parameters θ of a policy πθ(a|s) that maximizes the expected discounted reward over trajectories
induced by the policy: Eπθ [R(τ)] where s0 ∼ p0, st+1 ∼ P (st+1|st, at) and at ∼ πθ(at|st).
In an imitation learning scenario, the reward function is unknown. However, we are given a set of
demonstrated trajectories, which presumably originate from some optimal expert policy distribution
πE1 that optimizes an unknown reward function RE1 . Thus, by trying to estimate the reward function
RE1 and optimizing the policy πθ with respect to it, we can recover the expert policy. This approach
is known as inverse reinforcement learning (IRL) [1]. In order to model a variety of behaviors, it is
beneficial to find a policy with the highest possible entropy that optimizes RE1

. We will refer to this
approach as the maximum-entropy IRL [35] with the optimization objective

min
R

(
max
πθ

H(πθ) + EπθR(s, a)
)
− EπE1

R(s, a), (1)

where H(πθ) is the entropy of the policy πθ.

Ho and Ermon [16] showed that it is possible to redefine the maximum-entropy IRL problem with
multiple demonstrations sampled from a single expert policy πE1 as an optimization of GANs [15]. In
this framework, the policy πθ(a|s) plays the role of a generator, whose goal is to make it difficult for a
discriminator network Dw(s, a) (parameterized by w) to differentiate between imitated samples from
πθ (labeled 0) and demonstrated samples from πE1 (labeled 1). Accordingly, the joint optimization
goal can be defined as

max
θ

min
w

E(s,a)∼πθ [log(Dw(s, a))] + E(s,a)∼πE1
[log(1−Dw(s, a))] + λHH(πθ). (2)

The discriminator and the generator policy are both represented as neural networks and optimized by
repeatedly performing alternating gradient updates. The discriminator is trained on the mixed set of
expert and generator samples and outputs probabilities that a particular sample has originated from
the generator or the expert policies. This serves as a reward signal for the generator policy that tries
to maximize the probability of the discriminator confusing it with an expert policy. The generator can
be trained using the trust region policy optimization (TRPO) algorithm [30] with the cost function
log(Dw(s, a)). At each iteration, TRPO takes the following gradient step:

E(s,a)∼πθ [∇θ log πθ(a|s) log(Dw(s, a))] + λH∇θH(πθ), (3)

which corresponds to minimizing the objective in Eq. (2) with respect to the policy πθ.

4 Multi-modal Imitation Learning

The traditional imitation learning scenario described in Sec. 3 considers a problem of learning to
imitate one skill from demonstrations. The demonstrations represent samples from a single expert
policy πE1. In this work, we focus on an imitation learning setup where we learn from unstructured
and unlabelled demonstrations of various tasks. In this case, the demonstrations come from a
set of expert policies πE1 , πE2 , . . . , πEk , where k can be unknown, that optimize different reward
functions/tasks. We will refer to this set of unstructured expert policies as a mixture of policies πE .
We aim to segment the demonstrations of these policies into separate tasks and learn a multi-modal
policy that will be able to imitate all of the segmented tasks.

In order to be able to learn multi-modal policy distributions, we augment the policy input with a
latent intention i distributed by a categorical or uniform distribution p(i), similar to [7]. The goal of
the intention variable is to select a specific mode of the policy, which corresponds to one of the skills
presented in the demonstrations. The resulting policy can be expressed as:

π(a|s, i) = p(i|s, a)π(a|s)
p(i)

. (4)
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We augment the trajectory to include the latent intention as τi = (s0, a0, i0, ...sT , aT , iT ). The
resulting reward of the trajectory with the latent intention is R(τi) =

∑T
t=0 γ

tR(st, at, it). R(a, s, i)
is a reward function that depends on the latent intention i as we have multiple demonstrations that
optimize different reward functions for different tasks. The expected discounted reward is equal to:
Eπθ [R(τi)] =

∫
R(τi)πθ(τi)dτi where πθ(τi) = p0(s0)

∏T−1
t=0 P (st+1|st, at)πθ(at|st, it)p(it).

Here, we show an extension of the derivation presented in [16] (Eqs. (1, 2)) for a policy π(a|s, i)
augmented with the latent intention variable i, which uses demonstrations from a set of expert policies
πE , rather than a single expert policy πE1 . We are aiming at maximum entropy policies that can be
determined from the latent intention variable i. Accordingly, we transform the original IRL problem
to reflect this goal:

min
R

(
max
π

H(π(a|s))−H(π(a|s, i)) + EπR(s, a, i)
)
− EπER(s, a, i), (5)

where π(a|s) =
∑
i

π(a|s, i)p(i), which results in the policy averaged over intentions (since the

p(i) is constant). This goal reflects our objective: we aim to obtain a multi-modal policy that has a
high entropy without any given intention, but it collapses to a particular task when the intention is
specified. Analogously to the solution for a single expert policy, this optimization objective results in
the optimization goal of the generative adversarial imitation learning network, with the exception that
the state-action pairs (s, a) are sampled from a set of expert policies πE :

max
θ

min
w

Ei∼p(i),(s,a)∼πθ [log(Dw(s, a))] + E(s,a)∼πE [1− log(Dw(s, a))] (6)

+λHH(πθ(a|s))− λIH(πθ(a|s, i)),

where λI , λH correspond to the weighting parameters on the respective objectives. The resulting
entropy H(πθ(a|s, i)) term can be expressed as:

H(πθ(a|s, i)) = Ei∼p(i),(s,a)∼πθ (− log(πθ(a|s, i)) (7)

= −Ei∼p(i),(s,a)∼πθ log
(
p(i|s, a)πθ(a|s)

p(i)

)
= −Ei∼p(i),(s,a)∼πθ log(p(i|s, a))− Ei∼p(i),(s,a)∼πθ log πθ(a|s) + Ei∼p(i) log p(i)
= −Ei∼p(i),(s,a)∼πθ log(p(i|s, a)) +H(πθ(a|s))−H(i),

which results in the final objective:

max
θ

min
w

Ei∼p(i),(s,a)∼πθ [log(Dw(s, a))] + E(s,a)∼πE [1− log(Dw(s, a))] (8)

+(λH − λI)H(πθ(a|s)) + λIEi∼p(i),(s,a)∼πθ log(p(i|s, a)) + λIH(i),

where H(i) is a constant that does not influence the optimization. This results in the same
optimization objective as for the single expert policy (see Eq. (2)) with an additional term
λIEi∼p(i),(s,a)∼πθ log(p(i|s, a)) responsible for rewarding state-action pairs that make the latent
intention inference easier. We refer to this cost as the latent intention cost and represent p(i|s, a) with
a neural network. The final reward function for the generator is:

Ei∼p(i),(s,a)∼πθ [log(Dw(s, a))] + λIEi∼p(i),(s,a)∼πθ log(p(i|s, a)) + λH′H(πθ(a|s)). (9)

4.1 Relation to InfoGAN

In this section, we provide an alternative derivation of the optimization goal in Eq. (8) by extending
the InfoGAN approach presented in [7]. Following [7], we introduce the latent variable c as a means
to capture the semantic features of the data distribution. In this case, however, the latent variables
are used in the imitation learning scenario, rather than the traditional GAN setup, which prevents us
from using additional noise variables (z in the InfoGAN approach) that are used as noise samples to
generate the data from.

Similarly to [7], to prevent collapsing to a single mode, the policy optimization objective is augmented
with mutual information I(c;G(πcθ, c)) between the latent variable and the state-action pairs generator
G dependent on the policy distribution πcθ. This encourages the policy to produce behaviors that are
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interpretable from the latent code, and given a larger number of possible latent code values leads to an
increase in the diversity of policy behaviors. The corresponding generator goal can be expressed as:

Ec∼p(c),(s,a)∼πcθ [log(Dw(s, a))] + λII(c;G(π
c
θ, c)) + λHH(πcθ) (10)

In order to compute I(c;G(πcθ, c)), we follow the derivation from [7] that introduces a lower bound:

I(c;G(πcθ, c)) = H(c)−H(c|G(πcθ, c)) (11)

= E(s,a)∼G(πcθ,c)
[Ec′∼P (c|s,a)[logP (c

′|s, a)]] +H(c)

= E(s,a)∼G(πcθ,c)
[DKL(P (·|s, a)||Q(·|s, a)) + Ec′∼P (c|s,a)[logQ(c′|s, a)]] +H(c)

≥ E(s,a)∼G(πcθ,c)
[Ec′∼P (c|s,a)[logQ(c′|s, a)]] +H(c)

= Ec∼P (c),(s,a)∼G(πcθ,c)
[logQ(c|s, a)] +H(c)

By maximizing this lower bound we maximize I(c;G(πcθ, c)). The auxiliary distribution Q(c|s, a)
can be parametrized by a neural network.

The resulting optimization goal is

max
θ

min
w

Ec∼p(c),(s,a)∼πcθ [log(Dw(s, a))] + E(s,a)∼πE [1− log(Dw(s, a))] (12)

+ λIEc∼P (c),(s,a)∼G(πcθ,c)
[logQ(c|s, a)] + λHH(πcθ)

which results in the generator reward function:

Ec∼p(c),(s,a)∼πcθ [log(Dw(s, a))] + λIEc∼P (c),(s,a)∼G(πcθ,c)
[logQ(c|s, a)] + λHH(πcθ). (13)

This corresponds to the same objective that was derived in Section 4. The auxiliary distribution over
the latent variables Q(c|s, a) is analogous to the intention distribution p(i|s, a).

5 Implementation

In this section, we discuss implementation details that can alleviate instability of the training procedure
of our model. The first indicator that the training has become unstable is a high classification accuracy
of the discriminator. In this case, it is difficult for the generator to produce a meaningful policy as
the reward signal from the discriminator is flat and the TRPO gradient of the generator vanishes.
In an extreme case, the discriminator assigns all the generator samples to the same class and it is
impossible for TRPO to provide a useful gradient as all generator samples receive the same reward.
Previous work suggests several ways to avoid this behavior. These include leveraging the Wasserstein
distance metric to improve the convergence behavior [3] and adding instance noise to the inputs of
the discriminator to avoid degenerate generative distributions [32]. We find that adding the Gaussian
noise helped us the most to control the performance of the discriminator and to produce a smooth
reward signal for the generator policy. During our experiments, we anneal the noise similar to [32],
as the generator policy improves towards the end of the training.

An important indicator that the generator policy distribution has collapsed to a uni-modal policy is a
high or increasing loss of the intention-prediction network p(i|s, a). This means that the prediction
of the latent variable i is difficult and consequently, the policy behavior can not be categorized into
separate skills. Hence, the policy executes the same skill for different values of the latent variable. To
prevent this, one can increase the weight of the latent intention cost λI in the generator loss or add
more instance noise to the discriminator, which makes its reward signal relatively weaker.

In this work, we employ both categorical and continuous latent variables to represent the latent
intention. The advantage of using a continuous variable is that we do not have to specify the number
of possible values in advance as with the categorical variable and it leaves more room for interpolation
between different skills. We use a softmax layer to represent categorical latent variables, and use a
uniform distribution for continuous latent variables as proposed in [7].

6 Experiments

Our experiments aim to answer the following questions: (1) Can we segment unstructured and
unlabelled demonstrations into skills and learn a multi-modal policy that imitates them? (2) What
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Figure 1: Left: Walker-2D running forwards, running backwards, jumping. Right: Humanoid running
forwards, running backwards, balancing.

Figure 2: Left: Reacher with 2 targets: random initial state, reaching one target, reaching another
target. Right: Gripper-pusher: random initial state, grasping policy, pushing (when grasped) policy.

is the influence of the introduced intention-prediction cost on the resulting policies? (3) Can we
autonomously discover the number of skills presented in the demonstrations, and even accomplish
them in different ways? (4) Does the presented method scale to high-dimensional policies? (5)
Can we use the proposed method for learning hierarchical policies? We evaluate our method on
a series of challenging simulated robotics tasks described below. We would like to emphasize
that the demonstrations consist of shuffled state-action pairs such that no temporal information
or segmentation is used during learning. The performance of our method can be seen in our
supplementary video2.

6.1 Task setup

Reacher The Reacher environment is depicted in Fig. 2 (left). The actuator is a 2-DoF arm attached
at the center of the scene. There are several targets placed at random positions throughout the
environment. The goal of the task is, given a data set of reaching motions to random targets, to
discover the dependency of the target selection on the intention and learn a policy that is capable of
reaching different targets based on the specified intention input. We evaluate the performance of our
framework on environments with 1, 2 and 4 targets.

Walker-2D The Walker-2D (Fig. 1 left) is a 6-DoF bipedal robot consisting of two legs and feet
attached to a common base. The goal of this task is to learn a policy that can switch between three
different behaviors dependent on the discovered intentions: running forward, running backward and
jumping. We use TRPO to train single expert policies and create a combined data set of all three
behaviors that is used to train a multi-modal policy using our imitation framework.

Humanoid Humanoid (Fig. 1 right) is a high-dimensional robot with 17 degrees of freedom. Similar
to Walker-2D the goal of the task is to be able to discover three different policies: running forward,
running backward and balancing, from the combined expert demonstrations of all of them.

Gripper-pusher This task involves controlling a 4-DoF arm with an actuated gripper to push a sliding
block to a specified goal area (Fig. 2 right). We provide separate expert demonstrations of grasping
the object, and pushing it towards the goal starting from the object already being inside the hand. The
initial positions of the arm, block and the goal area are randomly sampled at the beginning of each
episode. The goal of our framework is to discover both intentions and the hierarchical structure of the
task from a combined set of demonstrations.

6.2 Multi-Target Imitation Learning

Our goal here is to analyze the ability of our method to segment and imitate policies that perform
the same task for different targets. To this end, we first evaluate the influence of the latent intention
cost on the Reacher task with 2 and 4 targets. For both experiments, we use either a categorical
intention distribution with the number of categories equal to the number of targets or a continuous,

2http://sites.google.com/view/nips17intentiongan
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Figure 3: Results of the imitation GAN with (top row) and without (bottom row) the latent intention
cost. Left: Reacher with 2 targets(crosses): final positions of the reacher (circles) for categorical (1)
and continuous (2) latent intention variable. Right: Reacher with 4 targets(crosses): final positions of
the reacher (circles) for categorical (3) and continuous (4) latent intention variable.

Figure 4: Left: Rewards of different Reacher policies for 2 targets for different intention values over
the training iterations with (1) and without (2) the latent intention cost. Right: Two examples of a
heatmap for 1 target Reacher using two latent intentions each.

uniformly-distributed intention variable, which means that the network has to discover the number of
intentions autonomously. Fig. 3 top shows the results of the reaching tasks using the latent intention
cost for 2 and 4 targets with different latent intention distributions. For the continuous latent variable,
we show a span of different intentions between -1 and 1 in the 0.2 intervals. The colors indicate
the intention “value”. In the categorical distribution case, we are able to learn a multi-modal policy
that can reach all the targets dependent on the given latent intention (Fig. 3-1 and Fig. 3-3 top). The
continuous latent intention is able to discover two modes in case of two targets (Fig. 3-2 top) but
it collapses to only two modes in the four targets case (Fig. 3-4 top) as this is a significantly more
difficult task.

As a baseline, we present the results of the Reacher task achieved by the standard GAN imitation
learning presented in [16] without the latent intention cost. The obtained results are presented in
Fig. 3 bottom. Since the network is not encouraged to discover different skills through the intention
learning cost, it collapses to a single target for 2 targets in both the continuous and discrete latent
intention variables. In the case of 4 targets, the network collapses to 2 modes, which can be explained
by the fact that even without the latent intention cost the imitation network tries to imitate most of
the presented demonstrations. Since the demonstration set is very diverse in this case, the network
learned two modes without the explicit instruction (latent intention cost) to do so.

To demonstrate the development of different intentions, in Fig. 4 (left) we present the Reacher
rewards over training iterations for different intention variables. When the latent intention cost is
included, (Fig. 4-1), the separation of different skills for different intentions starts to emerge around
the 1000-th iteration and leads to a multi-modal policy that, given the intention value, consistently
reaches the target associated with that intention. In the case of the standard imitation learning GAN
setup (Fig. 4-2), the network learns how to imitate reaching only one of the targets for both intention
values.

In order to analyze the ability to discover different ways to accomplish the same task, we use our
framework with the categorical latent intention in the Reacher environment with a single target.
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Figure 5: Top: Rewards of Walker-2D policies for different intention values over the training iterations
with (left) and without (right) the latent intention cost. Bottom: Rewards of Humanoid policies for
different intention values over the training iterations with (left) and without (right) the latent intention
cost.

Since we only have a single set of expert trajectories that reach the goal in one, consistent manner,
we subsample the expert state-action pairs to ease the intention learning process for the generator.
Fig. 4 (right) shows two examples of a heatmap of the visited end-effector states accumulated for
two different values of the intention variable. For both cases, the task is executed correctly, the robot
reaches the target, but it achieves it using different trajectories. These trajectories naturally emerged
through the latent intention cost as it encourages different behaviors for different latent intentions. It
is worth noting that the presented behavior can be also replicated for multiple targets if the number of
categories in the categorical distribution of the latent intention exceeds the number of targets.

6.3 Multi-Task Imitation Learning

We also seek to further understand whether our model extends to segmenting and imitating policies
that perform different tasks. In particular, we evaluate whether our framework is able to learn a
multi-modal policy on the Walker-2D task. We mix three different policies – running backwards,
running forwards, and jumping – into one expert policy πE and try to recover all of them through
our method. The results are depicted in Fig. 5 (top). The additional latent intention cost results in
a policy that is able to autonomously segment and mimic all three behaviors and achieve a similar
performance to the expert policies (Fig. 5 top-left). Different intention variable values correspond to
different expert policies: 0 - running forwards, 1 - jumping, and 2 - running backwards. The imitation
learning GAN method is shown as a baseline in Fig. 5 (top-right). The results show that the policy
collapses to a single mode, where all different intention variable values correspond to the jumping
behavior, ignoring the demonstrations of the other two skills.

To test if our multi-modal imitation learning framework scales to high-dimensional tasks, we evaluate
it in the Humanoid environment. The expert policy is constructed using three expert policies: running
backwards, running forwards, and balancing while standing upright. Fig. 5 (bottom) shows the
rewards obtained for different values of the intention variable. Similarly to Walker-2D, the latent
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Figure 6: Time-lapse of the learned Gripper-pusher policy. The intention variable is changed manually
in the fifth screenshot, once the grasping policy has grasped the block.

intention cost enables the neural network to segment the tasks and learn a multi-modal imitation
policy. In this case, however, due to the high dimensionality of the task, the resulting policy is able
to mimic running forwards and balancing policies almost as well as the experts, but it achieves a
suboptimal performance on the running backwards task (Fig. 5 bottom-left). The imitation learning
GAN baseline collapses to a uni-modal policy that maps all the intention values to a balancing
behavior (Fig. 5 bottom-right).

Finally, we evaluate the ability of our method to discover options in hierarchical IRL tasks. In order
to test this, we collect expert policies in the Gripper-pusher environment that consist of grasping and
pushing when the object is grasped demonstrations. The goal of this task is to check whether our
method will be able to segment the mix of expert policies into separate grasping and pushing-when-
grasped skills. Since the two sub-tasks start from different initial conditions, we cannot present the
results in the same form as for the previous tasks. Instead, we present a time-lapse of the learned
multi-modal policy (see Fig. 6) that presents the ability to change in the intention during the execution.
The categorical intention variable is manually changed after the block is grasped. The intention
change results in switching to a pushing policy that brings the block into the goal region. We present
this setup as an example of extracting different options from the expert policies that can be further
used in an hierarchical reinforcement learning task to learn the best switching strategy.

7 Conclusions

We present a novel imitation learning method that learns a multi-modal stochastic policy, which is
able to imitate a number of automatically segmented tasks using a set of unstructured and unlabeled
demonstrations. The presented approach learns the notion of intention and is able to perform different
tasks based on the policy intention input. We evaluated our method on a set of simulation scenarios
where we show that it is able to segment the demonstrations into different tasks and to learn a
multi-modal policy that imitates all of the segmented skills. We also compared our method to a
baseline approach that performs imitation learning without explicitly separating the tasks.

In the future work, we plan to focus on autonomous discovery of the number of tasks in the given
pool of demonstrations as well as evaluating this method on real robots. We also plan to learn an
additional hierarchical policy over the discovered intentions as an extension of this work.
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