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Abstract

In the 1-dimensional multiple changepoint detection problem, we derive a new fast
error rate for the fused lasso estimator, under the assumption that the mean vector
has a sparse number of changepoints. This rate is seen to be suboptimal (compared
to the minimax rate) by only a factor of log log n. Our proof technique is centered
around a novel construction that we call a lower interpolant. We extend our results
to misspecified models and exponential family distributions. We also describe the
implications of our error analysis for the approximate screening of changepoints.

1 Introduction

Consider the 1-dimensional multiple changepoint model
yi = θ0,i + εi, i = 1, . . . , n, (1)

where εi, i = 1, . . . , n are i.i.d. errors, and θ0,i, i = 1, . . . , n is a piecewise constant mean sequence,
having a set of changepoints

S0 =
{
i ∈ {1, . . . , n− 1} : θ0,i 6= θ0,i+1

}
. (2)

This is a well-studied setting, and there is a large body of literature on estimation of the piecewise
constant mean vector θ0 ∈ Rn and its changepoints S0 using various estimators; refer, e.g., to the
surveys Brodsky and Darkhovski (1993); Chen and Gupta (2000); Eckley et al. (2011).

In this work, we consider the 1-dimensional fused lasso (also called 1d fused lasso, or simply fused
lasso) estimator, which, given a data vector y ∈ Rn from a model as in (1), is defined by

θ̂ = argmin
θ∈Rn

1

2

n∑
i=1

(yi − θi)2 + λ

n−1∑
i=1

|θi − θi+1|, (3)

where λ ≥ 0 serves as a tuning parameter. This was proposed and named by Tibshirani et al. (2005),
but the same idea was proposed earlier in signal processing, under the name total variation denoising,
by Rudin et al. (1992). Variants of the fused lasso have been used in biology to detect regions where
two genomic samples differ due to genetic variations (Tibshirani and Wang, 2008), in finance to detect
shifts in the stock market (Chan et al., 2014), and in neuroscience to detect changes in stationary
behaviors of the brain (Aston and Kirch, 2012). Popularity of the fused lasso can be attributed in part
to its computational scalability, the optimization problem in (3) being convex and highly structured.
There has also been plenty of supporting statistical theory developed for the fused lasso, which we
review in Section 2.
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Notation. We will make use of the following quantities that are defined in terms of the mean θ0 in
(1) and its changepoint set S0 in (2). We denote the size of the changepoint set by s0 = |S0|. We
enumerate S0 = {t1, . . . , ts0}, where 1 ≤ t1 < . . . < ts0 < n, and for convenience we set t0 = 0,
ts0+1 = n. The smallest distance between changepoints in θ0 is denoted by

Wn = min
i=0,1...,s0

(ti+1 − ti), (4)

and the smallest distance between consecutive levels of θ0 by

Hn = min
i∈S0

|θ0,i+1 − θ0,i|. (5)

We use D ∈ R(n−1)×n to denote the difference operator

D =


−1 1 0 . . . 0

0 −1 1 . . . 0
...

. . . . . .
0 0 . . . −1 1

 . (6)

Note that s0 = ‖Dθ0‖0. We write DS to extract rows of D indexed by a subset S ⊆ {1, . . . , n− 1},
and D−S to extract the rows in Sc = {1, . . . , n− 1} \ S.

For a vector x ∈ Rn, we use ‖x‖2n = ‖x‖22/n to denote its length-scaled `2 norm. For sequences
an, bn, we use standard asymptotic notation: an = O(bn) to denote that an/bn is bounded for large
enough n, an = Ω(bn) to denote that bn/an is bounded for large enough n, an = Θ(bn) to denote
that both an = O(bn) and an = Ω(bn), an = o(bn) to denote that an/bn → 0, and an = ω(bn)
to denote that bn/an → 0. For random sequences An, Bn, we write An = OP(Bn) to denote that
An/Bn is bounded in probability. A random variable Z is said to have a sub-Gaussian distribution
provided that E(Z) = 0 and P(|Z| > t) ≤ 2 exp(−t2/(2σ2)) for all t ≥ 0, and a constant σ > 0.

Summary of results. Our main focus is on deriving a sharp estimation error bound for the fused
lasso, parametrized by the number of changepoints s0 in θ0. We also study several consequences of
our error bound and its analysis. A summary of our contributions is as follows.

• New error analysis for the fused lasso. In Section 3, we develop a new error analysis for
the fused lasso, in the model (1) with sub-Gaussian errors. Our analysis leverages a novel
quantity that we call a lower interpolant to approximate the fused lasso estimate (once it has
been orthogonalized with respect to the changepoint structure of the mean θ0) with 2s0 + 2
monotonic segments, which allows for finer control of the empirical process term.
When s0 = O(1), and the changepoint locations in S0 are (asymptotically) evenly spaced,
our main result implies E‖θ̂ − θ0‖2n = O(log n(log log n)/n) for the fused lasso estimator
θ̂ in (3). This is slower than the minimax rate by a log log n factor. Our result improves on
previously established results from Dalalyan et al. (2017), and after the completion of this
paper, was itself improved upon by Guntuboyina et al. (2017) (who are able to remove the
extraneous log log n factor).

• Extension to misspecified and exponential family models. In Section 4, we extend our
error analysis to cover a mean vector θ0 that is not necessarily piecewise constant (or in
other words, has potentially many changepoints). In Section 5, we extend our analysis to
exponential family models. The latter extension, especially, is of practical importance, as
many applications, e.g., CNV data analysis, call for changepoint detection on count data.

• Application to approximate screening and recovery. In Section 6, we establish that the
maximum distance between any true changepoint and its nearest estimated changepoint is
OP(log n(log log n)/H2

n) using the fused lasso, when s0 = O(1) and all changepoints are
(asymptotically) evenly spaced. After applying simple post-processing step, we show that
the maximum distance between any estimated changepoint and its nearest true changepoint
is of the same order. Our proof technique relies only on the estimation error rate of the fused
lasso, and therefore immediately generalizes to any estimator of θ0, where the distance (for
approximate changepoint screening and recovery) is a function of the inherent error rate.

The supplementary document gives numerical simulations that support the theory in this paper.
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2 Preliminary review of existing theory

We begin by describing known results on the quantity ‖θ̂ − θ0‖2n, the estimation error between the
fused lasso estimate θ̂ in (3) and the mean θ0 in (1).

Early results on the fused lasso are found in Mammen and van de Geer (1997) (see also Tibshirani
(2014) for a translation to a setting more consistent with that of the current paper). These authors
study what may be called the weak sparsity case, in which it is that assumed ‖Dθ0‖1 ≤ Cn, with D
being the difference operator in (6). Assuming additionally that the errors in (1) are sub-Gaussian,
Mammen and van de Geer (1997) show that for a choice of tuning parameter λ = Θ(n1/3C

−1/3
n ),

the fused lasso estimate θ̂ in (3) satisfies

‖θ̂ − θ0‖2n = OP(n−2/3C2/3
n ). (7)

The weak sparsity setting is not the focus of our paper, but we still recall the above result to give
a sense of the difference between the weak and strong sparsity settings, the latter being the setting
in which we assume control over s0 = ‖Dθ0‖0, as we do in the current paper. Prior to this paper,
the strongest result in the strong sparsity setting was given by Dalalyan et al. (2017), who assume
N(0, σ2) errors in (1), and show that for λ = σ

√
2n log(n/δ), the fused lasso estimate satisfies

‖θ̂ − θ0‖2n ≤ Cσ2 s0 log(n/δ)

n

(
log n+

n

Wn

)
, (8)

with probability at least 1− 2δ, for large enough n, and a constant C > 0, where recall Wn is the
minimum distance between changepoints in θ0, as in (4). Our main result in Theorem 1 improves
upon (8) in two ways: by reducing the first log n term inside the brackets to log s0 + log log n, and
reducing the second n/Wn term to

√
n/Wn.

After our paper was completed, Guntuboyina et al. (2017) gave an even sharper error rate for the
fused lasso (and more broadly, for trend the family of higher-order filtering estimates as defined in
Steidl et al. (2006); Kim et al. (2009); Tibshirani (2014)). Again assuming N(0, σ2) errors in (1),
as well as Wn ≥ cn/(s0 + 1) for some constant c ≥ 1, these authors show that the family of fused
lasso estimates {θ̂λ, λ ≥ 0} (using subscripts here to explicitly denote the dependence on the tuning
parameter λ) satisfies

inf
λ≥0
‖θ̂λ − θ0‖2n ≤ Cσ2 s0 + 1

n
log

(
en

s0 + 1

)
+

4σ2δ

n
, (9)

with probability at least 1− exp(−δ), for large enough n, and a constant C > 0. The above bound is
sharper than ours in Theorem 1 in that (log s0 + log log n) log n+

√
n/Wn is replaced essentially

by logWn. (Also, the result in (9) does not actually require Wn ≥ cn/(s0 + 1), but only requires the
distance between changepoints where jumps alternate in sign to be larger than cn/(s0 + 1), which is
another improvement.) Further comparisons will be made in Remark 1 following Theorem 1.

There are numerous other estimators, e.g., based on segmentation techniques or wavelets, that admit
estimation results comparable to those above. These are described in Remark 2 following Theorem 1.
Lastly, it can be seen the minimax estimation error over the class of signals θ0 with s0 changepoints,
assuming N(0, σ2) errors in (1), satisfies

inf
θ̂

sup
‖Dθ0‖0≤s0

E‖θ̂ − θ0‖2n ≥ Cσ2 s0
n

log

(
n

s0

)
, (10)

for large enough n, and a constant C > 0. This says that one cannot hope to improve the rate in (9).
The minimax result in (10) follows from standard minimax theory for sparse normal means problems,
as in, e.g., Johnstone (2015); for a proof, see Padilla et al. (2016).

3 Sharp error analysis for the fused lasso estimator

Here we derive a sharper error bound for the fused lasso, improving upon the previously established
result of Dalalyan et al. (2017) as stated in (8). Our proof is based on a concept that we call a lower
interpolant, which as far as we can tell, is a new idea that may be of interest in its own right.
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Theorem 1. Assume the data model in (1), with errors εi, i = 1, . . . , n i.i.d. from a sub-Gaussian
distribution. Then under a choice of tuning parameter λ = (nWn)1/4, the fused lasso estimate θ̂ in
(3) satisfies

‖θ̂ − θ0‖2n ≤ γ2c
s0
n

(
(log s0 + log log n) log n+

√
n

Wn

)
,

with probability at least 1− exp(−Cγ), for all γ > 1 and n ≥ N , where c, C,N > 0 are constants
that depend on only σ (the parameter appearing in the sub-Gaussian distribution of the errors).

An immediate corollary is as follows.
Corollary 1. Under the same assumptions as in Theorem 1, we have

E‖θ̂ − θ0‖2n ≤ c
s0
n

(
(log s0 + log log n) log n+

√
n

Wn

)
,

for some constant c > 0.

We give some remarks comparing Theorem 1 to related results in the literature.
Remark 1 (Comparison to Dalalyan et al. (2017); Guntuboyina et al. (2017)). We can see that
the result in Theorem 1 is sharper than that in (8) from Dalalyan et al. (2017) for any s0,Wn, as
log s0 ≤ log n and

√
n/Wn ≤ n/Wn. Moreover, when s0 = O(1) and Wn = Θ(n), the rates are

log2 n/n and log n(log log n)/n from Theorem 1 and (8), respectively.

Comparing the result in Theorem 1 to that in (9) from Guntuboyina et al. (2017), the latter is sharper
in that it reduces the factor of (log s0 + log log n) log n+

√
n/Wn to a single term of logWn. In

the case s0 = O(1) and Wn = Θ(n), the rates are log n(log log n)/n and log n/n from Theorem 1
and (8), respectively, and the latter rate cannot be improved, owing to the minimax lower bound in
(10). Similar to our expectation bound in Corollary 1, Guntuboyina et al. (2017) establish

inf
λ≥0

E‖θ̂λ − θ0‖2n ≤ Cσ2 s0 + 1

n
log

(
en

s0 + 1

)
, (11)

for the family of fused lasso estimates {θ̂λ, λ ≥ 0}, for large enough n, and a constant C > 0. Like
their high probability result in (9), their expectation result in (11) is stated in terms of an infimum
over λ ≥ 0, and does not provide an explicit value of λ that attains the bound. (Inspection of their
proofs suggests that it is not at all easy to make such a value of λ explicit.) Meanwhile, Theorem 1
and Corollary 1 have the advantage this choice is made explicit, as in λ = (nWn)1/4.
Remark 2 (Comparison to other estimators). Various other estimators obtain comparable estima-
tion error rates. In what follows, all results are stated in the case s0 = O(1). The Potts estimator,
defined by replacing the `1 penalty

∑n−1
i=1 |θi − θi+1| in (3) with the `0 penalty

∑n−1
i=1 1{θi 6= θi+1},

and denoted say by θ̂Potts, satisfies a bound ‖θ̂Potts − θ0‖2n = O(log n/n) a.s. as shown by Boysen
et al. (2009). Wavelet denoising (placing weak conditions on the wavelet basis), denoted by θ̂wav,
satisfies E‖θ̂wav − θ0‖2n = O(log2 n/n) as shown by Donoho and Johnstone (1994). Pairing unbal-
anced Haar (UH) wavelets with a basis selection method, Fryzlewicz (2007) developed an estimator
θ̂UH with E‖θ̂UH − θ0‖2n = O(log2 n/n). Though they are not written in this form, the results in
Fryzlewicz (2016) imply that his “tail-greedy” unbalanced Haar (TGUH) estimator, θ̂TGUH, satisfies
‖θ̂TGUH − θ0‖2n = O(log2 n/n) with probability tending to 1.

Here is an overview of the proof of Theorem 1. The full proof is deferred until the supplement, as
with all proofs in this paper. We begin by deriving a basic inequality (stemming from the optimality
of the fused lasso estimate θ̂ in (3)):

‖θ̂ − θ0‖22 ≤ 2ε>(θ̂ − θ0) + 2λ
(
‖Dθ0‖1 − ‖Dθ̂‖1

)
. (12)

To precisely control the empirical process term ε>(θ̂ − θ0), we consider a decomposition

ε>(θ̂ − θ0) = ε>δ̂ + ε>x̂,

where we define δ̂ = P0(θ̂ − θ0) and x̂ = P1θ̂. Here P0 is the projection matrix onto the piecewise
constant structure inherent in θ0, and P1 = I − P0. More precisely, writing S0 = {t1, . . . , ts0} for
the set of ordered changepoints in θ0, we define Bj = {tj + 1, . . . , tj+1}, and denote by 1Bj

∈ Rn
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the indicator of block Bj , for j = 0, . . . , s0. In this notation, P0 is the projection onto the (s0 + 1)-
dimensional linear subspaceR = span{1B0 , . . . ,1Bs0

}. The parameter δ̂ lies in an low-dimensional
subspace, which makes bounding the term ε>δ̂ relatively easy. Bounding the term ε>x̂ requires a
much more intricate argument, which is spelled out in the following lemmas.

Lemma 1 is a deterministic result ensuring the existence of what we call a lower interpolant ẑ to x̂.
This interpolant approximates x̂ using 2s0 + 2 monotonic segments, and its empirical process term
ε>ẑ can be finely controlled, as shown in Lemma 2. The residual from the interpolant approximation,
denoted ŵ = x̂− ẑ, has an empirical process term ε>ŵ that is more crudely controlled, in Lemma 3.
Put together, as in ε>x̂ = ε>ẑ + ε>ŵ, gives the final control on ε>x̂.

Before stating Lemma 1, we define the class of vectors containing the lower interpolant. Given any
collection of changepoints t1 < . . . < ts0 (and t0 = 0, ts0+1 = n), letM be the set of “piecewise
monotonic” vectors z ∈ Rn, with the following properties, for each i = 0, . . . , s0:

(i) there exists a point t′i such that ti + 1 ≤ t′i ≤ ti+1, and such that the absolute value |zj | is
nonincreasing over the segment j ∈ {ti + 1, . . . , t′i}, and nondecreasing over the segment
j ∈ {t′i, . . . , ti+1};

(ii) the signs remain constant on the monotone pieces,

sign(zti) · sign(zj) ≥ 0, j = ti + 1, . . . , t′i,

sign(zti+1
) · sign(zj) ≥ 0, j = t′i + 1, . . . , ti+1.

Now we state our lemma that characterizes the lower interpolant.

Lemma 1. Given changepoints t0 < . . . < ts0+1, and any x ∈ Rn, there exists a vector z ∈M (not
necessarily unique), such that the following statements hold:

‖D−S0
x‖1 = ‖D−S0

z‖1 + ‖D−S0
(x− z)‖1, (13)

‖DS0x‖1 = ‖DS0z‖1 ≤ ‖D−S0z‖1 +
4
√
s0√
Wn

‖z‖2, (14)

‖z‖2 ≤ ‖x‖2 and ‖x− z‖2 ≤ ‖x‖2, (15)

where D ∈ R(n−1)×n is the difference matrix in (6). We call a vector z with these properties a lower
interpolant to x.

Loosely speaking, the lower interpolant ẑ can be visualized by taking a string that lies initially on top
of x̂, is nailed down at the changepoints t0, . . . ts0+1, and then pulled taut while maintaining that it is
not greater (elementwise) than x̂, in magnitude. Here “pulling taut” means that ‖Dẑ‖1 is made small.
Figure 1 provides illustrations of the interpolant ẑ to x̂ for a few examples.

Note that ẑ consists of 2s0 + 2 monotonic pieces. This special structure leads to a sharp concentration
inequality. The next lemma is the primary contributor to the fast rate given in Theorem 1.

Lemma 2. Given changepoints t1 < . . . < ts0 , there exists constants cI , CI , NI > 0 such that when
ε ∈ Rn has i.i.d. sub-Gaussian components,

P

(
sup
z∈M

|ε>z|
‖z‖2

> γcI
√

(log s0 + log log n)s0 log n

)
≤ 2 exp

(
− CIγ2c2I(log s0 + log log n)

)
,

for any γ > 1, and n ≥ NI .

Finally, the following lemma controls the residuals, ŵ = x̂− ẑ.

Lemma 3. Given changepoints t1 < . . . < ts0 , there exists constants cR, CR > 0 such that when
ε ∈ Rn has i.i.d. sub-Gaussian components,

P
(

sup
w∈R⊥

|ε>w|√
‖D−S0w‖1‖w‖2

> γcR(ns0)1/4
)
≤ 2 exp(−CRγ2c2R

√
s0),

for any γ > 1, whereR⊥ is the orthogonal complement ofR = span{1B0
, . . . ,1Bs0

}.
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Figure 1: The lower interpolants for two examples (in the left and right columns), each with n = 800 points. In
the top row, the data y (in gray) and underlying signal θ0 (red) are plotted across the locations 1, . . . , n. Also
shown is the fused lasso estimate θ̂ (blue). In the bottom row, the error vector x̂ = P1θ̂ is plotted (blue) as well
as the interpolant (black), and the dotted vertical lines (red) denote the changepoints t1, . . . ts0 of θ0.

4 Extension to misspecified models

We consider data from the model in (1) but where the mean θ0 is not necessarily piecewise constant
(i.e., where s0 is potentially large). Let us define

θ0(s) = argmin
θ∈Rn

‖θ0 − θ‖22 subject to ‖Dθ‖0 ≤ s, (16)

which we call the best s-approximation to θ0. We now present an extension of Theorem 1.
Theorem 2. Assume the data model in (1), with errors εi, i = 1, . . . , n i.i.d. from a sub-Gaussian
distribution. For any s, consider the best s-approximation θ0(s) to θ0, as in (16), and let Wn(s) be
the minimum distance between the s changepoints in θ0(s). Then under a choice of tuning parameter
λ = (nWn(s))1/4, the fused lasso estimate θ̂ in (3) satisfies

‖θ̂ − θ0‖2n ≤ ‖θ0(s)− θ0‖2n + γ2c
s

n

(
(log s+ log log n) log n+

√
n

Wn(s)

)
, (17)

with probability at least 1− exp(−Cγ), for all γ > 1 and n ≥ N , where c, C,N > 0 are constants
that depend on only σ. Further, if λ is chosen large enough so that ‖Dθ̂‖0 ≤ s on an event E, then

‖θ̂ − θ0(s)‖2n ≤ γ2c
s

n

(
(log s+ log log n) log n+

λ2

Wn(s)
+

n

λ2

)
, (18)

on E intersected with an event of probability at least 1− exp(−Cγ), for all γ > 1, n ≥ N , where
c, C,N > 0 are the same constants as above.

The first result in (17) in Theorem 2 is a standard oracle inequality. It provides a bound on the error
of the fused lasso estimator that decomposes into two parts, the first term being the approximation
error, determined by the proximity of θ0(s) to θ0, and second term being the usual bound we would
encounter if the mean truly had s changepoints.

The second result in (18) in the theorem is a direct bound on the estimation error ‖θ̂ − θ0(s)‖2n. We
see that the estimation error can be small, apparently regardless of the size of ‖θ0(s)− θ0‖2n, if we
take λ to be large enough for θ̂ to itself have s changepoints. But the rate worsens as λ grows larger,
so implicitly, the proximity of θ0(s) to θ0 does play an role (if θ0 were actually far away from a signal
with s changepoints, then we may have to take λ very large to ensure that θ̂ has s changepoints).
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Remark 3 (Comparison to other results). Dalalyan et al. (2017); Guntuboyina et al. (2017) also
provide oracle inequalities and their results could be adapted to take forms as in Theorem 2. It is not
clear to us that previous results on other estimators, such as those from Remark 2, adapt as easily.

5 Extension to exponential family models

We consider data y = (y1, . . . , yn) ∈ Rn with independent components distributed according to

p(yi; θ0,i) = h(yi) exp
(
yiθ0,i − Λ(θ0,i)

)
, i = 1, . . . , n. (19)

Here, for each i = 1, . . . , n, the parameter θ0,i is the natural parameter in the exponential family and
Λ is the cumulant generating function. As before, in the location model, we are mainly interested in
the case in which the natural parameter vector θ0 is piecewise constant (with s0 denoting its number
of changepoints, as before). Estimation is now based on penalization of the negative log-likelihood:

θ̂ = argmin
θ∈Rn

n∑
i=1

(
− yiθi + Λ(θi)

)
+ λ

n∑
i=1

|θi − θi+1|, (20)

Since the cumulant generating function Λ is always convex in exponential families, the above is a
convex optimization problem. We present an estimation error bound the present setting.
Theorem 3. Assume the data model in (19), with a strictly convex, twice continuously differentiable
cumulant generating function Λ. Assume that θ0,i ∈ [l, u], i = 1, . . . , n for constants l, u ∈ R, and
add the constraints θi ∈ [l, u], i = 1, . . . , n in the optimization problem in (20). Finally, assume that
the random variables yi − E(yi), i = 1, . . . , n obey a sub-Gaussian distribution, with parameter σ.
Then under a choice of tuning parameter λ = (nWn)1/4, the exponential family fused lasso estimate
θ̂ in (20) (subject to the additional boundedness constraints) satisfies

‖θ̂ − θ0‖2n ≤ γ2c
s0
n

(
(log s0 + log log n) log n+

√
n

Wn

)
,

with probability at least 1− exp(−Cγ), for all γ > 1 and n ≥ N , where c, C,N > 0 are constants
that depend on only l, u, σ.
Remark 4 (Roles of l, u). The restriction of θ0,i and the optimization parameters in (20) to [l, u],
for i = 1, . . . , n, is used to ensure that the second derivative of Λ is bounded away from zero. (The
same property could be accomplished by instead adding a small squared `2 penalty on θ in (20).) A
more refined analysis could alleviate the need for this bounded domain (or extra squared `2 penalty)
but we do not pursue this for simplicity.
Remark 5 (Sub-Gaussianity in exponential families). When are the random variables yi − E(yi),
i = 1, . . . , n sub-Gaussian, in an exponential family model (19)? A simple sufficient condition (not
specific to exponential families, in fact) is that these centered variates are bounded. This covers the
binomial model yi ∼ Bin(k, µ(θ0,i)), where µ(θ0,i) = 1/(1 + e−θ0,i), i = 1, . . . , n, and k is a fixed
constant. Hence Theorem 3 applies to binomial data.

For Poisson data yi ∼ Pois(µ(θ0,i)), where µ(θ0,i) = eθ0,i , i = 1, . . . , n, we now give two options
for the analysis. The first is to assume a maximum achieveable count (which may be reasonable in
CNV data) and then apply Theorem 3 owing again to boundedness. The second is to invoke the fact
that Poisson random variables have sub-exponential (rather than sub-Gaussian) tails, and then use a
truncation argument, to show that for the Poisson fused lasso estimate θ̂ in (20) (under the additional
boundedness constraints), with λ = log n(nWn)1/4,

‖θ̂ − θ0‖2n ≤ γ2c
s0 log n

n

(
(log s0 + log log n) log n+

√
n

Wn

)
, (21)

with probability at least 1 − exp(−Cγ) − 1/n, for all γ > 1 and n ≥ N , where c, C,N > 0 are
constants depending on l, u. This is slower than the rate in Theorem 3 by a factor of log n.
Remark 6 (Comparison to other results). The results in Dalalyan et al. (2017); Guntuboyina et al.
(2017) assume normal errors. It seems believable to us that the results of Dalalyan et al. (2017) could
be extended to sub-Gaussian errors and hence exponential family data, in a manner similar to what
we have done above in Theorem 3. To us, this is less clear for the results of Guntuboyina et al. (2017),
which rely on some technical calculations involving Gaussian widths. It is even less clear to us how
results from other estimators, as in Remark 2, extend to exponential family data.
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6 Approximate changepoint screening and recovery

In many applications of changepoint detection, one may be interested in estimation of the changepoint
locations in θ0, rather than the mean vector θ0 as a whole. In this section, we show that estimation of
the changepoint locations and of θ0 itself are two very closely linked problems, in the following sense:
any procedure with guarantees on its error in estimating θ0 automatically has certain approximate
changepoint detection guarantees, and not surprisingly, a faster error rate (in estimating θ0) translates
into a stronger statement about approximate changepoint detection. We use this general link to prove
new approximate changepoint screening results for the fused lasso. We also show that in general a
simple post-processing step may be used to discard spurious detected changepoints, and again apply
this to the fused lasso to yield new approximate changepoint recovery results.

It helps to introduce some additional notation. For a vector θ ∈ Rn, we write S(θ) for the set of its
changepoint indices, i.e.,

S(θ) =
{
i ∈ {1, . . . , n− 1} : θi 6= θi+1

}
.

Recall, we abbreviate S0 = S(θ0) for the changepoints of the underlying mean θ0. For two discrete
sets A,B, we define the metrics

d(A|B) = max
b∈B

min
a∈A
|a− b| and dH(A,B) = max

{
d(A|B), d(B|A)}.

The first metric above can be seen as a one-sided screening distance from B to A, measuring the
furthest distance of an element in B to its closest element in A. The second metric above is known as
the Hausdorff distance between A and B.

Approximate changepoint screening. We present our general theorem on changepoint screening.
The basic idea behind the result is quite simple: if an estimator misses a (large) changepoint in θ0,
then its estimation error must suffer, and we can use this fact to bound the screening distance.
Theorem 4. Let θ̃ ∈ Rn be an estimator such that ‖θ̃ − θ0‖2n = OP(Rn). Assume that nRn/H2

n =
o(Wn), where, recall, Hn is the minimum gap between adjacent levels of θ0, defined in (5), and Wn

is the minimum distance between adjacent changepoints of θ0, defined in (4). Then

d
(
S(θ̃) |S0

)
= OP

(
nRn
H2
n

)
.

Remark 7 (Generic setting: no specific data model, and no assumptions on estimator). Impor-
tantly, Theorem 4 assumes no data model whatsoever, and treats θ̃ as a generic estimator of θ0. (Of
course, through the statement ‖θ̃ − θ0‖2n = OP(Rn), one can see that θ̃ is random, constructed from
data that depends on θ0, but no specific data model is required, nor are any specific properties of θ̃,
other than its error rate.) This flexibility allows for the result to be applied in any problem setting in
which one has control of the error in estimating a piecewise constant parameter θ0 (in some cases
this may be easier to obtain, compared to direct analysis of detection properties). A similar idea was
used (concurrently and independently) by Fryzlewicz (2016) in the analysis of the TGUH estimator.

Combining the above theorem with known error rates for the fused lasso estimator—(7) in the weak
sparsity case, and Theorem 1 in the strong sparsity case—gives the following result.
Corollary 2. Assume the data model in (1), with errors εi, i = 1, . . . , n i.i.d. from a sub-Gaussian
distribution. Let Cn = ‖Dθ0‖1, and assume that Hn = ω(n1/6C

1/3
n /
√
Wn). Then the fused lasso

estimator θ̂ in (3) with λ = Θ(n1/3C
−1/3
n ) satisfies

d
(
S(θ̂) |S0

)
= OP

(
n1/3C

2/3
n

H2
n

)
. (22)

Alternatively, assume s0 = O(1), Wn = Θ(n), and Hn = ω(
√

log n(log log n)/n). Then the fused
lasso with λ = Θ(

√
n) satisfies

d
(
S(θ̂) |S0

)
= OP

(
log n(log log n)

H2
n

)
. (23)

Remark 8 (Changepoint detection limit). The restriction Hn = ω(
√

log n(log log n)/n) for (23)
in Corollary 2 is very close to the optimal detection limit of Hn = ω(1/

√
n): Duembgen and Walther

(2008) showed that in Gaussian changepoint model with a single elevated region, and Wn = Θ(n),
there is no test for detecting a changepoint that has asymptotic power 1 unless Hn = ω(1/

√
n).
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Combining Theorem 4 with (21) gives the following (a similar result holds for the binomial model).
Corollary 3. Assume yi ∼ Pois(eθ0,i), independently, for i = 1, . . . , n, and assume ‖θ0‖∞ = O(1),
s0 = O(1), Wn = Θ(n), Hn = ω(log n

√
log log n/n). Then for the Poisson fused lasso estimator

θ̂ in (20) (subject to appropriate boundedness constraints) with λ = Θ(log n
√
n), we have

d
(
S(θ̂) |S0

)
= OP

(
log2 n(log log n)

H2
n

)
.

Approximate changepoint recovery. We present a post-processing procedure for the estimated
changepoints in θ̃, to eliminate changepoints of θ̃ that lie far away from changepoints of θ0. Our
procedure is based on convolving θ̃ with a filter that resembles the mother Haar wavelet. Consider

Fi(θ̃) =
1

bn

i+bn∑
j=i+1

θ̃j −
1

bn

i∑
j=i−bn+1

θ̃j , for i = bn, . . . , n− bn, (24)

for an integral bandwidth bn > 0. By evaluating the filter Fi(θ̃) at all locations i = bn, . . . , n− bn,
and retaining only locations at which the filter value is large (in magnitude), we can approximately
recovery the changepoints of θ0, in the Hausdorff metric.
Theorem 5. Let θ̃ ∈ Rn be such that ‖θ̃ − θ0‖2n = OP(Rn). Consider the following procedure: we
evaluate the filter in (24) with bandwidth bn at locations in

IF (θ̃) =
{
i ∈ {bn, . . . , n− bn} : i ∈ S(θ̃), or i+ bn ∈ S(θ̃), or i− bn ∈ S(θ̃)

}
∪ {bn, n− bn},

and define a set of filtered points SF (θ̃) = {i ∈ IF (θ̃) : |Fi(θ̃)| ≥ τn}, for a threshold level τn. If
bn, τn satisfy bn = ω(nRn/H

2
n), 2bn ≤Wn, and τn/Hn → ρ ∈ (0, 1) as n→∞, then

P
(
dH
(
SF (θ̃), S0

)
≤ 2bn

)
→ 1 as n→∞.

Note that the set of filtered points |SF (θ̃)| in Theorem 5 is not necessarily of a subset of the original
set of estimated changepoints S(θ̃), but it has the property |SF (θ̃)| ≤ 3|S(θ̃)|+ 2.

We finish with corollaries for the fused lasso. For space reasons, remarks comparing them to related
approximate recovery results in the literature are deferred to the supplement.
Corollary 4. Assume the data model in (1), with errors εi, i = 1, . . . , n i.i.d. from a sub-Gaussian
distribution. Let Cn = ‖Dθ0‖1. If we apply the post-processing procedure in Theorem 5 to the fused
lasso estimator θ̂ in (3) with λ = Θ(n1/3C

−1/3
n ), bn = bn1/3C2/3

n ν2n/H
2
nc ≤Wn/2 for a sequence

νn →∞, and τn/Hn → ρ ∈ (0, 1), then

P
(
dH
(
SF (θ̂), S0

)
≤ 2n1/3C

2/3
n ν2n

H2
n

)
→ 1 as n→∞. (25)

Alternatively, assuming s0 = O(1), Wn = Θ(n), if we apply the same post-processing procedure to
the fused lasso with λ = Θ(

√
n), bn = blog n(log log n)ν2n/H

2
nc ≤Wn/2 for a sequence νn →∞,

and τn/Hn → ρ ∈ (0, 1), then

P
(
dH
(
SF (θ̂), S0

)
≤ 2 log n(log log n)ν2n

H2
n

)
→ 1 as n→∞. (26)

Corollary 5. Assume yi ∼ Pois(eθ0,i), independently, for i = 1, . . . , n, and assume ‖θ0‖∞ = O(1),
s0 = O(1), Wn = Θ(n). If we apply the post-processing method in Theorem 5 to the Poisson fused
lasso estimator θ̂ in (20) (subject to appropriate boundedness constraints) with λ = Θ(log n

√
n),

bn = blog2 n(log log n)ν2n/H
2
nc ≤Wn/2 for a sequence νn →∞, and τn/Hn → ρ ∈ (0, 1), then

P
(
dH
(
SF (θ̂), S0

)
≤ 2 log2 n(log log n)ν2n

H2
n

)
→ 1 as n→∞.

7 Summary

We gave a new error analysis for the fused lasso, with extensions to misspecified models and data
from exponential families. We showed that error bounds for general changepoint estimators lead to
approximate changepoint screening results, and after post-processing, approximate recovery results.
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