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1 HeartSteps feature list

Figure 1 shows the features available to the bandit in the HeartSteps study dataset, and Figure 2
shows the estimated average regret results with errorbars.

Feature Description Purpose Interaction Baseline Model
Number of messages sent Total number of messages sent

to user in prior week
Modeling habituation to inter-
vention

Y Y

Location indicator 1 1 if not at home or work, 0 o.w. Location relevant to availabil-
ity to walk

Y Y

Location indicator 2 1 if at work, 0 o.w. Y Y
Step count variability Historical standard deviation

of step counts in 60 minute
window surrounding decision
point, taken over prior 7 days

Responsiveness in different
times of day

Y Y

Steps in prior 30 minutes Step count in 30 minutes prior
to decision point

Measure of recent activity Y

Square root of steps yesterday Square root of the total step
count yesterday

Recent commitment/ engage-
ment

Y

Outdoor Temperature Degrees Celsius Cold weather potentially less
appealing

Y

Figure 1: List of features available to the bandit in the HeartSteps experiment. The features available
to model the action interaction (effect of sending an anti-sedentary message) and to model the baseline
(reward under no action) are denoted via a “Y” in the corresponding column.

1.1 Simulation model

Figure 3 shows the coefficients θ used in the main text simulations. The coefficients shown in the
figure associated with the first action are obtained via a linear regression analysis of the binary action
(sending or not sending a message) HeartSteps intervention data, and the coefficients for the second
action are a simple modification of those.

For the time varying simulation, Gaussian processes were used to generate the reward coefficient
sequence ηt and the state sequence s̄t. We used Gaussian processes since if ηt is IID, then the baseline
reward becomes an IID random variable, making the baseline reward not time varying.

We used the Gaussian process
ηt =

√
1− ρ2ηt−1 + ρnt

where η0 = 17, nt ∼ N (0, I7), and ρ = 0.1. The state sequence s̄t was generated in the same
manner.
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Figure 2: Unbiased estimates of the average reward received by the benchmark Thompson sampling
contextual bandit and the proposed action-centered Thompson sampling contextual bandit, relative
to the reward received under the pre-specified HeartSteps randomization policy. Also shown are
one standard deviation error bars for the computed estimates. The superior performance of the
action-centering approach is indicative of its robustness to the high complexity of the baseline subject
behavior.

Feature Action 1 coef. Action 2 coef.
Number of messages sent .116 .116
Location indicator 1 -.275 .275
Location indicator 2 -.233 -.233
Step count variability .0425 .0425

Figure 3: Effect coefficients, based on HeartSteps data, used for simulation reward model.

2 Definitions

In order to proceed with the proof of Theorem 1, we make the following definitions.
Definition 1. Define a filtration Ft−1 = {Ht−1, s̄t} as the union of the history and current context.
Definition 2. Let

zt,a =
√
sTt,aB(t)−1st,a,

for all a = 1, . . . , N .

Definition 3. Define `(T ) = R
√
d log(T 3) log(1/δ) + 1, v = R

√
24
ε d log(1/δ), and g(T ) =√

4d log(Td)v + `(T ).

We divide the arms ā > 0 into saturated and unsaturated actions.
Definition 4 (Saturated vs. unsaturated actions). Any arm ā > 0 for which g(T )zt,ā < `(T )zt,ā∗t is
called a saturated arm. If an arm is not saturated, it is called unsaturated. Let C(t) ⊆ {1, . . . , N} be
the subset of saturated arms at time t.

Observe that the optimal arm ā∗ is unsaturated by definition.

We can now state the required concentration events and present bounds on the probability they occur.

2.1 Concentration events

Definition 5. Let Eµ(t) be the event that for all ā = 1, . . . , N

|sTt,āθ̂t − sTt,āθ| ≤ `(T )zt,ā.
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Similarly, let Eθ(t) be the event that for all ā = 1, . . . , N

|sTt,āθ′t − sTt,āθ̂t| ≤
√

4d log(Td)vzt,ā

and Eθ0(t) be the corresponding event that for all ā = 1, . . . , N

|sTt,āθ̃t − sTt,āθ̂t| ≤
√

4d log(Td)vzt,ā

We can bound the probabilities of the events Eθ(t), Eθ(t)0, and Eµ(t) in the following lemmas.
Observe that by definition P(Eθ(t)|Ft−1) = P(Eθ(t)0|Ft−1).

Lemma 1 (Agrawal & Goyal (2013)). For all t, and possible filtrations Ft−1, P(Eθ(t)|Ft−1) ≥
1− 1

T 2 .

For Eµ(t) we have

Lemma 2. For all t, 0 < δ < 1, P(Eµ(t)) ≥ 1− δ
T 2 .

The proof is given in Section 7.

2.2 Supermartingales

Definition 6 (Supermartingale). A sequence of random variables (Yt; t ≥ 0) is called a supermartin-
gale corresponding to a filtration Ft if, for all t, Yt is Ft-measurable, and

E[Yt − Yt−1|Ft−1] ≤ 0

for all t ≥ 1.

Lemma 3 (Azuma-Hoeffding inequality). If for all t = 1, . . . , T a supermartingale (Yt; t ≥ 0)
corresponding to filtration Ft satisfies |Yt − Yt−1| ≤ ct for some constants ct, then for any a ≥ 0

P(YT − Y0 ≥ 0) ≤ e
− a2

2
∑T
t=1 c

2
t .

3 Preliminary results

3.1 Lemma 5: Probability of choosing a saturated action āt ∈ C(t)

Lemma 4 (Agrawal & Goyal (2013) Lemma 2). For any filtration Ft−1 such that Eµ(t) is true,

P(sTt,ā∗t θ
′ > sTt,ā∗t θ + `(T )zt,ā∗t |Ft−1) ≥ 1

4e
√
πT ε

.

We can now prove the following.

Lemma 5. For any filtration Ft−1 such that Eµ(t) is true,

P(āt ∈ C(t)|Ft−1) ≤ 1

p
P(āt /∈ C(t)|Ft−1) +

1

pT 2
,

where p = 1
4e
√
πT ε

.

Proof. Recall that āt is the action with the largest value of sTt,iθ
′. Hence, if sTt,ā∗t θ

′ is larger than
sTt,iθ

′ for all i ∈ C(t), then āt is one of the unsaturated actions. Hence

P(āt /∈ C(t)|Ft−1) ≥ P(sTt,ā∗t θ
′ > sTt,iθ

′,∀i ∈ C(t)|Ft−1. (1)

We know that by definition all saturated arms i ∈ C(t) have g(T )zt,j < `(T )zt,ā∗t . Given an Ft−1

such that Eµ(t) holds, we have that either Eθ(t) is false or for all i ∈ C(t)

sTt,iθ
′ ≤ sTt,iθ + g(T )zt,i ≤ sTt,ā∗t θ + `(T )zt,ā∗t
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implying

P(sTt,ā∗t θ
′ > sTt,iθ

′,∀j ∈ C(t)|Ft−1)

≥ P(sTt,ā∗t θ
′ > sTt,ā∗t θ + `(T )zt,ā∗t |Ft−1)− P(Eθ(t)|Ft−1)

≥ p− 1

T 2
.

where we have used the definitions of Eµ(t), Eθ(t), and the last inequality follows from Lemma 4
and Lemma 2. Substituting into (1) gives

P(āt /∈ C(t)|Ft−1) +
1

T 2
≥ p,

and
P(āt ∈ C(t)|Ft−1)

P(āt /∈ C(t)|Ft−1) + 1
T 2

≤ 1

p
.

3.2 Lemma 7 - Bound on
∑
t zt,āt

Lemma 6. For zt,a =
√
sTt,aB(t)−1st,a, we have that

T∑
t=1

zt,āt ≤
5

Cπ

√
dT log T ,

where Cπ =
√

min(πmin(1− πmax), πmax(1− πmin) is a contant.

Proof. We apply the following lemma from Auer et al. (2002) and Chu et al. (2011).

Lemma 7. Let At = I +
∑T
t=1 xtx

T
t , where xt ∈ Rd is a sequence of vectors. Then, defining

σt =
√
xTt A

−1
t xt, we have

T∑
t=1

σt ≤ 5
√
dT log T .

To apply this to
∑
t zt,āt , let xt =

√
πt(1− πt)st,āt . Then At = I +

∑T
t=1(πt(1−πt))st,ātsTt,āt =

Bt, and we have

σt =

√
xTt A

−1
t xt =

√
πt(1− πt)

√
sTt,ātBtst,āt =

√
πt(1− πt)zt,āt .

Applying Lemma 7 we thus have

T∑
t=1

zt,āt ≤ max
t

(
1√

πt(1− πt)

)
T∑
t=1

σt ≤
5

Cπ

√
dT log T ,

where Cπ =
√

min(πmin(1− πmax), πmax(1− πmin) is a constant.

4 Proof of Lemma 1 - term I

Proof. We know that by definition of the optimal policy, (π∗t − πt)sTt,ātθ ≥ 0. Hence under event
Eµ(t),

(π∗t − πt)sTt,ātθ ≤ P
(
sign(sTt,ātθ

′) 6= sign(sTt,ātθ)
)
|sTt,ātθ|

≤ min
[
|sTt,ātθ|,P(sign(sTt,ātθ

′) 6= sign(sTt,ātθ))
]

≤ (`(T ) +
√

4d log(Td)v)zt,āt + 1− P(Eθ0(t)).
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Substituting in the definitions of `(T ), v and the bound in Lemma 1 on P(Eθ0(t)), we have

(π∗t − πt)sTt,ātθ ≤

(
R
√
d log(T 3) log(1/δ) + 1 +

√
4d log(Td)R

√
24

ε
d log(1/δ)

)
zt,āt +

1

T 2

≤ C
√
d2

ε
log(1/δ)zt,āt +

1

T 2
.

Summing over t and recalling that by Lemma 7
∑T
t=1 zt,āt ≤

5
Cπ

√
dT log T , we have that under

event Eµ(t)

I =

T∑
t=1

(π∗t − πt)sTt,ātθ

≤ C

Cπ

√
d3T log(Td) log(1/δ).

Since the probability that Eµ(t) holds is at least 1− δ
T 2 by Lemma 2, the lemma results.

5 Proof of Lemma 2: Bound on term II

Before commencing the proof, we first state the following result from Abbasi-Yadkori et al. (2011).

Lemma 8 (Abbasi-Yadkori et al. (2011)). Let (F ′t; t ≥ 0) be a filtration, (mt; t ≥ 1) be an Rd-valued
stochastic process such that mt is (F ′t−1)- measurable, (ηt; t ≥ 1) be a real-valued martingale
difference process such that ηt is (F ′t)-measurable. For t ≥ 0, define ξt =

∑t
τ=1mτητ and

Mt = Id +
∑t
τ=1mτm

T
τ , where Id is the d-dimensional identity matrix. Assume ηt is conditionally

R-sub-Gaussian.

Then, for any δ′ > 0, t ≥ 0, with probability at least 1− δ′,

‖ξt‖M−1
t
≤ R

√
d log

(
t+ 1

δ′

)
,

where ‖ξt‖M−1
t

=
√
ξTt M

−1
t ξt.

We now prove Lemma 2.

Proof. Defining regret′(t) = (sTt,ā∗t θ − s
T
t,ātθ)I(Eµ(t)), we have the following lemma, which we

prove in Section 6.

Lemma 9. Let, for p = 1
4e
√
πT ε

,

Xt = regret′(t)− g(T )

p
I(a(t) /∈ C(t))zt,ā∗t (2)

Yt =

t∑
w=1

Xw. (3)

Then (Yt; t = 0, . . . , T ) is a super-martingale process with respect to filtration Ft.

Given our results in Section 7.1 and our concentration bounds, the proof is closely related to Agrawal
& Goyal (2013) and is listed in Section 6.

5



Using the definition of Xt, we have that |Yt−Yt−1| ≤ |Xt| ≤ 1 + g(T )
p + 2g(T )2

`(T ) + 2g(T )
pT 2 ≤ 8

p
g(T )2

`(T ) .
This allows us to apply the Azuma-Hoeffding inequality listed in Section 2.2, giving that
T∑
t=1

regret′(t) ≤
T∑
t=1

(
g(T )

p
I(āt /∈ C(t))zt,ā∗t

)
+

2g(T )

pT
+

2g(T )2

`(T )

T∑
t=1

zt,āt +
8

p

g(T )2

`(T )

√
2T log

2

δ

≤
T∑
t=1

(
g(T )2

`(T )

1

p
I(āt /∈ C(t))zt,āt

)
+

2g(T )

pT
+

2g(T )2

`(T )

T∑
t=1

zt,āt +
8

p

g(T )2

`(T )

√
2T log

2

δ

≤ g(T )2

`(T )

3

p

T∑
t=1

zt,āt +
2g(T )

pT
+

8

p

g(T )2

`(T )

√
2T log

2

δ
.

with probability at least 1− δ/2, where we recall that if āt /∈ C(t), then g(T )zt,āt ≥ `(T )zt,ā∗t .

Substituting in the bound
∑T
t=1 zt,āt ≤

5
Cπ

√
dT log T from Lemma 7 and the definitions of

g(T ), p, `(T ), we obtain that
T∑
t=1

regret′(t) ≤ C ′

Cπ

(
d2

ε

√
T 1+ε log

1

δ
log(Td)

)
with probability at least 1− δ

2 , where C ′ is a constant. Recall that by Lemma 2, Eµ(t) holds for all t
with probability at least 1− δ/2, and that regret′(t) = (sTt,ā∗t θ − s

T
t,ātθ) whenever Eµ(t) holds. By

the union bound we then have that

II =

T∑
t=1

(sTt,ā∗t θ − s
T
t,ātθ) ≤

C ′

Cπ

(
d2

ε

√
T 1+ε log

1

δ
log(Td)

)
with probability at least 1− δ. The lemma results.

6 Proof of Lemma 9

Proof. To prove that Yt is a super-martingale by the definition above, we need to prove that for all
1 ≤ t ≤ T and any Ft−1, E[Yt − Yt−1|Ft−1] ≤ 0.

We first consider filtrations Ft−1 for which Eµ(t) holds. By the definition of āt, sTt,ātθ
′ ≥ sTt,a∗∗t θ

′.
Under Eθ(t) and Eµ(t) we then must have that for all i = 1, . . . , N

sTt,iθ ≥ sTt,iθ′ − g(T )zt,i

≥ sTt,a∗∗t θ
′ − g(T )zt,i

≥ sTt,a∗∗t θ − g(T )zt,ā∗t − g(T )zt,i.

Hence sTt,ā∗t θ − s
T
t,ātθ ≤ g(T )(zt,āt + zt,ā∗t ).

For Ft−1 such that Eµ(t) holds, we then can write

E[regret′(t)|Ft−1] = E[(sTt,ā∗t θ − s
T
t,ātθ)|Ft−1]

≥ E[g(T )(zt,āt + zt,ā∗t )|Ft−1] + P(Eθ(t))

= g(T )zt,ā∗t P(āt ∈ C(t)|Ft−1) + g(T )E
[
(
g(T )

`(T )
zt,ātI(āt /∈ C(t))|Ft−1

]
+ g(T )E[zt,āt |Ft−1] +

1

T 2
.

where we have used the facts that regret′(t) ≤ 1, the definition of unsaturated arms, and Lemma 2.
Applying Lemma 5 and noting that since min eig(B(t)) ≤ 1, zt,i ≤ ‖st,i‖2 ≤ 1, we can show that

E[regret′(t)|Ft−1] ≤ g(T )

p
P(āt /∈ C(t)|Ft−1)zt,ā∗t +

2g(T )

pT 2
. (4)
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By definition, regret′(t) = (sTt,ā∗t θ−s
T
t,ātθ)I(Eµ(t)) is zero and the above inequality holds whenever

Eµ(t) is not true. Since we have considered both cases, the lemma is proved.

7 Proof of Lemma 2

Proof. We can apply Lemma 8 with mt =
√
πt(1− πt)st,āt ,

ηt =
r̂t(āt)√
πt(1− πt)

−
√
πt(1− πt)sTt,ātθ,

and with the filtration F ′t = (s̄τ+1,mτ+1, ητ : τ ≤ t) effectively containing all the available
information up to the current time. F ′t−1 is measurable by definition, and in Section 7.1 we show

Lemma 10. Suppose that nt is R sub-Gaussian. Then ηt is a F ′t-measurable, R′-sub-Gaussian,
martingale difference process where R′ = R+2√

πmin(1−πmax)
+
√
πmax(1− πmin).

We then have

Mt = Id +

t∑
τ=1

mτm
T
τ = Id +

t∑
τ=1

πτ (1− πτ )sτ,āτ s
T
τ,āτ ,

ξt =

t∑
τ=1

mτητ =

t∑
τ=1

sτ,āτ
(
r̂t(āt)− πt(1− πt)sTt,ātθ

)
.

Observe that these are the two primary components of the contextual bandit, specifically, Bt = Mt−1

and bt − E[bt] = ξt. Hence, θ̂t − θ = M−1
t−1(ξt−1 − θ). Letting ‖y‖A =

√
yTAy for any vector y

and matrix A ∈ Rd×d, for all ā > 0 we have that since Mt is positive definite,

|sTā,tθ̂ − sTā,tθ| = |sTā,tM−1
t−1(ξt−1 − θ)|

≤ ‖sā,t‖M−1
t−1
‖ξt−1 − θ‖M−1

t−1

= ‖sā,t‖B−1
t
‖ξt−1 − θ‖B−1

t
.

Applying Lemma 8, we have that for any δ′ > 0, t ≥ 1,

‖ξt−1‖M−1
t−1
≤ R′

√
d log

t

δ′
.

Then ‖ξt−1 − θ‖M−1
t−1
≤ R′

√
d log t

δ′ + ‖θ‖M−1
t−1
≤ R′

√
d log T

δ′ + 1. Setting δ′ = δ/T 2 implies

that with probability 1− δ/T 2, for all ā,

|sTā,tθ̂ − sTā,tθ| ≤ ‖sā,t‖B−1
t

(
R′
√
d log(T 3) log

1

δ
+ 1

)
= `(T )zt,ā.
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7.1 Proof of Lemma 10: Martingale analysis of ηt

Proof. Recall

|ηt| =

∣∣∣∣∣ r̂t(āt)√
πt(1− πt)

−
√
πt(1− πt)sTt,ātθ

∣∣∣∣∣
=

∣∣∣∣∣ (I(at > 0)− πt)rt(at)√
πt(1− πt)

−
√
πt(1− πt)sTt,ātθ

∣∣∣∣∣
=

∣∣∣∣∣ (I(at > 0)− πt)(sTt,atθI(at > 0) + nt + f̄t(s̄t))√
πt(1− πt)

−
√
πt(1− πt)sTt,ātθ

∣∣∣∣∣
≤
√
πt(1− πt) +

∣∣∣∣∣ 2 + nt√
πt(1− πt)

∣∣∣∣∣ .
since the rewards are all bounded by one and the πmin ≤ πt ≤ πmax are bounded. We have assumed
that nt is R sub-Gaussian. Since a bounded random variable |X| < b is b sub-Gaussian and the
sum of independent b1 and b2 sub-Gaussian random variables is b1 + b2 sub-Gaussian, we have that
ηt is R′ = R+2√

πmax(1−πmin)
+
√
πmin(1− πmax) conditionally sub-Gaussian. Since πmin, πmax are

bounded away from 0 and 1 by constants, R′ is a constant.

Additionally, for all āt

E[ηt|Ht−1, āt, s̄t] =
E[r̂t(āt)|Ht−1, āt, s̄t]√

πt(1− πt)
−
√
πt(1− πt)sTt,ātθ

=
E[(I(at > 0)− πt)rt(at)|Ht−1, āt, s̄t]√

πt(1− πt)
−
√
πt(1− πt)sTt,ātθ

=
πt(1− πt)sTt,ātθ√

πt(1− πt)
−
√
πt(1− πt)sTt,ātθ

= 0,

where the third equality follows from (4). Thus E[ηt|Ht−1, s̄t] = 0 and ηt is a martingale difference
process.
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