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1 HeartSteps feature list

Figure [] shows the features available to the bandit in the HeartSteps study dataset, and Figure 2]
shows the estimated average regret results with errorbars.

Feature Description Purpose Interaction | Baseline Model
Number of messages sent Total number of messages sent | Modeling habituation to inter- Y Y
to user in prior week vention
Location indicator 1 1 if not at home or work, 0 o.w. | Location relevant to availabil- Y Y
ity to walk
Location indicator 2 1 if at work, 0 o.w. Y Y
Step count variability Historical standard deviation | Responsiveness in different Y Y
of step counts in 60 minute | times of day
window surrounding decision
point, taken over prior 7 days
Steps in prior 30 minutes Step count in 30 minutes prior | Measure of recent activity Y
to decision point
Square root of steps yesterday Square root of the total step | Recent commitment/ engage- Y
count yesterday ment
Outdoor Temperature Degrees Celsius Cold weather potentially less Y
appealing

Figure 1: List of features available to the bandit in the HeartSteps experiment. The features available
to model the action interaction (effect of sending an anti-sedentary message) and to model the baseline
(reward under no action) are denoted via a “Y” in the corresponding column.

1.1 Simulation model

Figure 3| shows the coefficients # used in the main text simulations. The coefficients shown in the
figure associated with the first action are obtained via a linear regression analysis of the binary action
(sending or not sending a message) HeartSteps intervention data, and the coefficients for the second
action are a simple modification of those.

For the time varying simulation, Gaussian processes were used to generate the reward coefficient
sequence 7); and the state sequence 5;. We used Gaussian processes since if 7; is IID, then the baseline
reward becomes an IID random variable, making the baseline reward not time varying.

ne=1—p*n_1+ pny

where g = 17, ny ~ N(0,I7), and p = 0.1. The state sequence 5; was generated in the same
manner.

We used the Gaussian process
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Figure 2: Unbiased estimates of the average reward received by the benchmark Thompson sampling
contextual bandit and the proposed action-centered Thompson sampling contextual bandit, relative
to the reward received under the pre-specified HeartSteps randomization policy. Also shown are
one standard deviation error bars for the computed estimates. The superior performance of the
action-centering approach is indicative of its robustness to the high complexity of the baseline subject
behavior.

Feature Action 1 coef. Action 2 coef.
Number of messages sent 116 116

Location indicator 1 -275 275
Location indicator 2 -.233 -.233

Step count variability .0425 0425

Figure 3: Effect coefficients, based on HeartSteps data, used for simulation reward model.

2 Definitions

In order to proceed with the proof of Theorem 1, we make the following definitions.
Definition 1. Define a filtration Fy—1 = {H;—1, 5¢ } as the union of the history and current context.
Definition 2. Let
Zta = \/S5taB(t) " st
foralla=1,...,N.
Definition 3. Define ((T) = Ry/dlog(T?)log(1/8) + 1, v = R/ #dlog(1/6), and g(T) =

Adlog(Td)v + £(T).

We divide the arms a > 0 into saturated and unsaturated actions.

Definition 4 (Saturated vs. unsaturated actions). Any arm a > 0 for which g(T)z¢a < €(T)z,az is
called a saturated arm. If an arm is not saturated, it is called unsaturated. Let C(t) C {1,..., N} be
the subset of saturated arms at time t.

Observe that the optimal arm a* is unsaturated by definition.

We can now state the required concentration events and present bounds on the probability they occur.

2.1 Concentration events

Definition 5. Let E*(t) be the event that foralla = 1,..., N

|5t 20 — st 0] < UT)ze.q.



Similarly, let E?(t) be the event that foralla = 1,..., N

|s;£at9)’5 — sg:aét| < V4dlog(Td)vz 4

and E{(t) be the corresponding event that foralla = 1,..., N
|s§a§t — szjaéﬂ < V/4dlog(Td)vza

We can bound the probabilities of the events E?(t), E?(t)o, and E*(t) in the following lemmas.
Observe that by definition P(E? (t)|F;_1) = P(E% (t)o|Fi_1)-

Lemma 1 (Agrawal & Goyal (2013)). For all t, and possible filtrations F;_1, P(E®(t)|F;—1) >
1— 4.

For E*(t) we have

Lemma 2. Forallt, 0 <6 <1, P(EX(t)) > 1— 2.

The proof is given in Section

2.2 Supermartingales

Definition 6 (Supermartingale). A sequence of random variables (Yi;t > 0) is called a supermartin-
gale corresponding to a filtration F if, for all t, Yy is Fy-measurable, and

E[Y; = Yi—1|Fi-1] <0

forallt > 1.

Lemma 3 (Azuma-Hoeffding inequality). If for all t = 1,...,T a supermartingale (Y;t > 0)
corresponding to filtration F; satisfies |Yy — Yi_1| < ¢ for some constants c;, then for any a > 0

a2

P(Yr — Yy >0)<e 25a1<F,

3 Preliminary results

3.1 Lemmal5;: Probability of choosing a saturated action a, € C(t)

Lemma 4 (Agrawal & Goyal|(2013) Lemma 2). For any filtration F;_1 such that E*(t) is true,

1

P(Sz:a: 0’ > Stjjﬁ.fg + E(T)Zna: r\/ﬁ

Fio1) >

We can now prove the following.
Lemma 5. For any filtration Fy_1 such that EV(t) is true,

P(a, € Ct)|Fi-1) < %P(at ¢ C(t)|Fi1) + Z%,

_ 1
where p= W.

Proof. Recall that @, is the action with the largest value of sf ;,0'. Hence, if sfﬁj 0" is larger than
st ;0 forall i € C(t), then @ is one of the unsaturated actions. Hence
P(a; ¢ C(t)|Fi1) > P(si:0' > s/,0',Vi € C(t)|Fi1. (1)

We know that by definition all saturated arms i € C'(t) have g(T")2¢,; < £(T')2t,a;. Givenan F;_;
such that E#(t) holds, we have that either E(¢) is false or for all i € C(t)

st < sLi0+g(T)zi < st g0+ UT) 2 a:



implying
(Sta 0' > si,0',Yj € C(t)|Fm1)
> P(s{4:0' > 57 3:0 + L(T) 20,37 Fi1) — P(E° ()| Fia)
>p— T2
where we have used the definitions of F*(t), E?(t), and the last inequality follows from Lemma
and Lemmal[2] Substituting into (T) gives

1
P(a; ¢ C(t)|Fi—1) + T2 > p,

and
Pla, € CO)Fe-1) 1
Pa; ¢ C(t)|Fer)+ 72 — p

3.2 Lemmal[7)- Bound on }_, z; 5,

_ T
Lemma 6. For zt o = 1/s; ,

B(t)~1s4,q, we have that

T
Z Zpa, < Ci\/dTlog T,

t=1 4

where C, = \/min(ﬂ'min(l — Tmax)s Tmax (1 — Tmin) IS @ contant.

Proof. We apply the following lemma from |Auer et al.|(2002) and (Chu et al.| (201 IJ).

Lemma 7. Let A, = I + Zthl zixl, where z; € R? is a sequence of vectors. Then, defining

oy = \/xT A ay, we have

T
> oy <5\/dTlogT.

t=1

To apply this to Zt Zt,ass let Tt = y/ 7Tt(1 — T‘—t)st,dt- Then At = I+ Z;T:l(’ﬂ't(l — Ft))st’at Szjt_zt =

B;, and we have

o = \/thAt_lsct =+/m(l— Wt)\/sza,,BtSt,&t =vm(l — 7))z 5,

Applying Lemma (7] we thus have

T
w < = \/dTlog T,
;zmt _mtaX< F =y )Zat o VdTlog

where Cr = /min(mmin (1 — Tmax)s Tmax (1 — Tmin) iS a constant. O

4 Proof of Lemmal[l] - term I
Proof. We know that by definition of the optimal policy, (7} — m;)s?. .a,0 = 0. Hence under event
ER(t),
(7 — 7Tt)st a0 <P (sign(st ar ) # Slgn(st Jas )) |Sg:at9|
< min [|s} 5, 60|, P(sign(s{ q,0") # sign(si 5,9))]
< (UT) + v/4dlog(Td)v)zra, +1 — P(EY(t)).



Substituting in the definitions of £(7"), v and the bound in Lemma|[l|on P(E§(t)), we have

(m; — )8 4,0 < (R\/dlog(T3) log(1/6) + 1+ +/4dlog(Td)R 24dlog(1/5)> Zt,a, T %
: \V ¢ :

d? 1
é C ? 1Og(1/5)2t7at + ﬁ

Summing over ¢ and recalling that by Lemma Zle Zta, < Ci\/ dT'logT', we have that under
event E#(t)

T

I=> (af —m)sis,0

t=1

< CE \/d3T log(Td) log(1/5).

Since the probability that E#(t) holds is at least 1 — % by Lemma the lemma results. O

5 Proof of Lemma[2: Bound on term /7

Before commencing the proof, we first state the following result from|Abbasi-Yadkori et al.| (201 I}).
Lemma 8 (Abbasi-Yadkori et al.| (2011)). Let (F/;t > 0) be a filtration, (my;t > 1) be an R%-valued
stochastic process such that my is (F,_,)- measurable, (n:;t > 1) be a real-valued martingale
difference process such that 1 is (F})-measurable. For t > 0, define & = Zizl m,n, and
My =1+ Zizl mez, where 1 is the d-dimensional identity matrix. Assume 1 is conditionally
R-sub-Gaussian.

Then, for any 6’ > 0, t > 0, with probability at least 1 — &',

t+1
||§tHM;1§R dlog( 5 >’

where H§t||M;1 = tTMt_lft-

We now prove Lemma 2]

Proof. Defining regret/(t) = (s{ ;.0 — s{;,0)I(E*(t)), we have the following lemma, which we

7a/t
prove in Section [6]
Lemma9. Let, for p = ﬁ,
T
X; = regret’(t) — MI((JL(t) ¢ C(t))z,a ()
p
t
V=) Xu. (3)
w=1
Then (Yy;t =0,...,T) is a super-martingale process with respect to filtration Jr.

Given our results in Section[7.T]and our concentration bounds, the proof is closely related to[Agrawal
& Goyal|(2013) and is listed in Section@



Using the definition of X;, we have that |[Y; —Y;_1| < |X;| <1+ @ + 22(5))2 + Qg(TE) < %ge((?;.

This allows us to apply the Azuma-Hoeffding inequality listed in Section giving that

2 T 2
Zregret Z <g(pT)I(¢‘zt ¢ C(t))z, ) + % i 2?((;)) Zztv‘it + ]8)‘(2((1% 2Tlog§
T T
g1, L)L 2 2T ST [
S pot < E(T) pI( t ¢ C(t)) t,(lf,) + pT [(T) ; t,a + p K(T) 2T'1 g

g T) 8g(T)* | 2
oT szt p 0(T) 2T10g5.

with probability at least 1 — 6/2, where we recall that if a; ¢ C(t), then g(T)z¢,a, > (T')2¢ax

Substituting in the bound Zthl Zta, < C%\/dT log 7" from Lemma |7| and the definitions of
g(T),p, ¢(T), we obtain that

d C' (& 1
Z regret’ (t) < o (\/TH‘€ log 5 10g(Td)>
'+ \ €
t=1
with probability at least 1 — g, where C' is a constant. Recall that by Lemmal E“ ) holds for all ¢
with probability at least 1 — §/2, and that regret’(¢) = (smzﬂ st 4,0) whenever E“( ) holds. By

the union bound we then have that
o C (& 1
IT = ;(st a:0 —si5,0) < o (E\/THG log = log(Td))
with probability at least 1 — §. The lemma results.

6 Proof of Lemmal9

Proof. To prove that Y; is a super-martingale by the definition above, we need to prove that for all
1<t<Tandany F;_1, E[Y; — Y;_1|F:-1] < 0.

We first consider filtrations 7;_; for which E*(t) holds. By the definition of a, s{ ;,0" > Stj:a,** 0.
Under E(t) and E*(t) we then must have that forall i = 1,..., N

5219 > StTﬁ/ —9(T)zt,
> sz:a:*G' —9(T)z
> stj:a**a —9(T)ztar — 9(T)z -
Hence s{ .0 — 57,0 < g(T)(21,a, + 21,37 )
For F;_1 such that E#(t) holds, we then can write
Elregret’(t)|Fi—1] = E[(s{ 5;0 — 51 4,0)|Fe—1]
2 E[Q(T)(th + zia: )| Fi1] + P(EO(1))

= 0(T) 15 B(ow € COIFi) +9(T)E | (G 2 € CO)I

1
ﬁ .
where we have used the facts that regret’ (¢ ) < 1, the definition of unsaturated arms, and Lemmal
Applying Lemma [5|and noting that since min eig(B(t)) < 1, z¢; < [|s,i[l2 < 1, we can show that
29(T)

pT?

+9(T)E[2t a, | Ft—1] +

Blregret (01 7i1] < LV B(an ¢ COIF)za; + @



By definition, regret’ () = (s{ ;.0 —s{ 5,0)I(E*(t)) is zero and the above inequality holds whenever

b t,as
E*(t) is not true. Since we have considered both cases, the lemma is proved.

O

7 Proof of Lemmal[2

Proof. We can apply Lemmawith me = /7 (1 — 7)se.a,,

P(ay
= 7"( ! —y/m(l = ﬂt)sz:atﬁ,
7Tt(1 —7Tt)

and with the filtration 7, = (8,41, mr41,7, : T < t) effectively containing all the available
information up to the current time. F;_, is measurable by definition, and in Sectionwe show

Lemma 10. Suppose that n; is R sub-Gaussian. Then n; is a F|-measurable, R'-sub-Gaussian,

martingale difference process where R' = —(—2+2 1+ /7 . (1 — Tin)-
Vmin (1= Tmax)

‘We then have

t t
M, =1;+ ZmeZ =1+ Zﬂ'T(l - 71'7—)87}5782’&7,
T=1

=1

t t
& = Zmﬂ?r = Z St,a, (ft(@t) —m(l— Wt)stjjat@ :
=1

=1
Observe that these are the two primary components of the contextual bandit, specifically, By = M;_

and b, — E[b,] = &. Hence, 6, — 0 = M, % (&,_1 — 0). Letting ||y]l 4 = \/yT Ay for any vector y
and matrix A € R%¥? for all @ > 0 we have that since M, is positive definite,

|5§,t0 - S§t9| = |S§tMt__11(€t—1 - 9)|
< lsaellyros Ne — Olys

= Hsd,t”Bt—l €1 — QHB;L

Applying Lemma(8] we have that for any 6’ > 0, ¢ > 1,

t
Hgt—1‘|M;11 S R/ dlog y

Then [[§—1 — 0]l < R'\/dlog & + 10l 572 < R'y/dlog L + 1. Setting 6’ = 6/T? implies
that with probability 1 — 6 /72, for all a,

« . 1
|saT’t0 — s£t9| < ”3?1-,75“3;1 (R’ dlog(T?)log 5 + 1) =0T)za-



7.1 Proof of Lemma [I0} Martingale analysis of 1,
Proof. Recall

| = | == — V/m(1 — m)si 4,
Tt 1-— 7'(',5)

(I((lt >0)— Ft)(Sg?atGI(at > 0) + Ny + ,]‘Tt(gt)) T
= — V(1 —7)s; 4,0
7Tt(]. - 7Tt) ’

=

2+nt

<Vm(l = m) + |——|.
7Tt(1—7Tt)

since the rewards are all bounded by one and the m,;, < 7 < Tyax are bounded. We have assumed
that n; is R sub-Gaussian. Since a bounded random variable | X | < b is b sub-Gaussian and the

sum of independent b; and by sub-Gaussian random variables is b; + bs sub-Gaussian, we have that

Ny is R/ = % + v/Tmin(1 — Tmax) conditionally sub-Gaussian. Since mmin, Tmax are
Tmax —Tmin

bounded away from 0 and 1 by constants, R’ is a constant.

Additionally, for all a,

o E[fi(a:)|Hi—1, ¢, 5
EllHoor, 1,50 = Sot@Mevan sl om—n o

7Tt(1 — 7Tt)

_ Bl > 0) = mra) P an s e Tt)5¢.,0
ﬂ't(l — 7Tt) ’

_ml o m)sial s g
_ t,a;

(1 — )
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where the third equality follows from @). Thus E[n:|H:—1, 5:] = 0 and 7, is a martingale difference
process.

O
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