
Supplement to “Near-linear time approximation
algorithms for optimal transport via Sinkhorn

iteration”

Jason Altschuler
MIT

jasonalt@mit.edu

Jonathan Weed
MIT

jweed@mit.edu

Philippe Rigollet
MIT

rigollet@mit.edu

1 Proof of Lemma 3

The proof of the first inequality is similar to the proof of Lemma 2:

f(0, 0)− f(x(1), y(1)) = 〈r, x(1)〉+ 〈c, y(1)〉 =
∑
ij

A
(1)
ij log

A
(1)
ij

A
(0)
ij

= K(A(1)‖A(0)) ≥ 0 ,

where K(A(1)‖A(0)) denotes the divergence between A(1) and A(0) viewed as elements of ∆n2 .

We now prove the second claim. Note that A(0) satisfies ‖A(0)‖1 = 1 and has smallest entry
`/s. Since A(0) is positive, [Sin67] shows that ΠS(A(0)) exists and is unique. Let (x∗, y∗) be
corresponding scaling factors. Then

f(0, 0)− f(x∗, y∗) = 〈r, x∗〉+ 〈c, y∗〉 .
Now since

A
(0)
ij e

x∗
i +y∗

j ≤
∑
ij

A
(0)
ij e

x∗
i +y∗

j = 1 ,

we have
x∗i + y∗j ≤ log

s

`
,

for all i, j ∈ [n]. Thus because r and c are both probability vectors,

〈r, x∗〉+ 〈c, y∗〉 ≤ log
s

`
.

2 Proof of Lemma 5

We prove only the case where a row was updated, since the column case is exactly the same.

By definition,

f(x′, y′)− f(x′′, y′′) =
∑
ij

(A′ij −A′′ij) + 〈r, x′′ − x′〉+ 〈c, y′′ − y′〉 .

Observe that A′ and A′′ differ only in the Ith row, and x′′ and x′ differ only in the Ith entry, and
y′′ = y′. Hence

f(x′, y′)− f(x′′, y′′) = rI(A′)− rI(A′′) + rI(x′′I − x′I)

= ρ(rI , rI(A′)) ,

where we have used the fact that rI(A′′) = rI and x′′I − x′I = log(rI/rI(A′)).

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

3 Proof of Lemma 6

Let s =
∑

i βi, and write β̄ = β/s. The definition of ρ implies

ρ(α, β) =
∑
i

(βi − αi) + αi log
αi

βi

= s− 1 +
∑
i

αi log
αi

sβ̄i

= s− 1− (log s)
∑
i

αi +K(α‖β̄)

= s− 1− log s+K(α‖β̄) .

Note that both s − 1 − log s and K(α‖β̄) are nonnegative. If ρ(α, β) ≤ 1, then in particular
s−1− log s ≤ 1, and it can be seen that s−1− log s ≥ (s−1)2/5 in this range. Applying Lemma 4
(Pinsker’s inequality) yields

ρ(α, β) ≥ 1

5
(s− 1)2 +

1

2
‖α− β̄‖21 .

By the triangle inequality and convexity,

‖α− β‖21 ≤ (‖β̄ − β‖1 + ‖α− β̄‖1)2 = (|s− 1|+ ‖α− β̄‖1)2 ≤ 7

5
(s− 1)2 +

7

2
‖α− β̄‖21 .

The claim follows from the above two displays.

4 Proof of Lemma 7

Let G be the output of ROUND(F,Ur,c). The entries of F ′′ are nonnegative, and at the end of the
algorithm errr and errc are both nonnegative, with ‖errr‖1 = ‖errc‖1 = 1− ‖F ′′‖1. Therefore the
entries of G are nonnegative and

r(G) = r(F ′′) + r(errrerr>c /‖errr‖1) = r(F ′′) + errr = r ,

and likewise c(G) = c. This establishes that G ∈ Ur,c.

Now we prove the `1 bound between the original matrix F and G. Let ∆ = ‖F‖1 − ‖F ′′‖1 be the
total amount of mass removed from F by rescaling the rows and columns. In the first step, we remove
mass from a row of F when ri(F) ≥ ri, and in the second step we remove mass from a column when
cj(F

′) ≥ cj . We therefore have

∆ =

n∑
i=1

(ri(F)− ri)+ +

n∑
j=1

(cj(F
′)− cj)+ . (1)

Let us analyze both of the sums in (1). First, a simple calculation shows
n∑

i=1

(ri(F)− ri)+ =
1

2

[
‖r(F)− r‖1 + ‖F‖ − 1

]
.

Next, upper bound the second sum in (1) using the fact that the vector c(F) is entrywise larger than
c(F ′)

n∑
j=1

(cj(F
′)− cj)+ ≤

n∑
j=1

(cj(F)− cj)+ ≤ ‖c(F)− c‖1

Therefore we conclude
‖G− F‖1 ≤ ∆ + ‖errrerr>c ‖1/‖errr‖1

= ∆ + 1− ‖F ′′‖1
= 2∆ + 1− ‖F‖1
≤ ‖r(F)− r‖1 + 2‖c(F)− c‖1 (2)

≤ 2
[
‖r(F)− r‖1 + ‖c(F)− c‖1

]
Finally, we prove the O(n2) runtime bound follows by observing that each rescaling and computing
the matrix errrerr>c /‖errr‖1 both require at most O(n2) time.

2

5 Randomized variant of rounding algorithm (Algorithm 2)

In the section, we describe a simple randomized variant of Algorithm 2 that achieves a slightly better
guarantee. Let us first recall the guarantee we get for Algorithm 2. By equation (2) in the proof of
Lemma 7, the `1 difference between the original matrix F and rounded matrix G is upper bounded by

‖G− F‖1 ≤ ‖r(F)− r‖1 + 2‖c(F)− c‖1 .

This asymmetry between ‖r(F)− r‖1 and ‖c(F)− c‖1 arises because Algorithm 2 creates F ′′ by
first removing mass from rows of F , and then from columns. Consider modifying Algorithm 2 to
create F ′′ by first removing mass from columns of F , and then from rows. Then a symmetrical
argument gives the bound

‖G− F‖1 ≤ 2‖r(F)− r‖1 + ‖c(F)− c‖1 .

Together the above two displays suggest the following simple randomized variant of Algorithm 2:
with probability 1/2, perform Algorithm 2; otherwise, perform the above-described column-then-row
version of Algorithm 2. Combining the above two displays then gives the following improved bound
for this randomized algorithm

IE‖G− F‖1 ≤
3

2

[
‖r(F)− r‖1 + ‖c(F)− c‖1

]
.

6 Comparison with [GCPB16]

In this Section, we present an empirical comparison of the performance of GREENKHORN with the
stochastic algorithm proposed by [GCPB16]. Their algorithm—which we call Stochastic Sinkhorn
for convenience—uses a Stochastic Averaged Gradient (SAG) algorithm to optimize a dual version
of the entropic penalty program (2).

We have noted in the main text that GREENKHORN and Stochastic Sinkhorn both attempt to solve
the scaling problem via coordinate descent in the dual problem. Stochastic Sinkhorn does so via the
method proposed in [SLRB17], whereas GREENKHORN greedily chooses a good coordinate to update,
and then leverages an explicit closed form to perform an exact line search on this coordinate. One
difference between our algorithms is their starting point: GREENKHORN is initialized with A/‖A‖1,
whereas the starting primal solution corresponding to the initialization of Stochastic Sinkhorn is the
matrix obtained by first multiplying each column of A by the corresponding entry of c and then
scaling the rows of the resulting matrix so they agree with r. This is equivalent to performing a full
update step of SINKHORN on the matrix AD(c) at the beginning of this algorithm. In simulations,
this starting point is of better quality than the matrix A/‖A‖1 which GREENKHORN uses as its first
iterate; however, this advantage quickly disappears. Since our goal is to compare GREENKHORN and
Stochastic Sinkhorn in terms of the number of required row or column updates, we also initialize
GREENKHORN at this point instead of at A/‖A‖1 to facilitate an apples-to-apples comparison.

To compare the performance of GREENKHORN with Stochastic Sinkhorn, we use an experiment on
random images with 20% foreground pixels, as in Section 5.2. We initialize both algorithms with the
same primal solution and used Algorithm 2 to round iterates of each algorithm to the feasible polytope
Ur,c. Implementing Stochastic Sinkhorn requires choosing a step size, denoted by C in [GCPB16].
That papers suggests choosing C = 1/(Ln), 3/(Ln), or 5/(Ln), where L is an upper bound on the
Lipschitz constant of the semi-dual problem they consider.1 We compare all three choices of step
size with our implementation of the GREENKHORN algorithm in Figure 1 with two different values
of the parameter η.

1In fact, they propose the step sizes C = 1/L, 3/L, 5/L in the main text, but the extra factor of n is present
in the simulation code posted online, so we have opted to retain it in our experiments. Our experimental results
indicate that without the factor of n, the resulting algorithm is quite unstable.

3

Figure 1: Comparison of GREENKHORN and Stochastic Sinkhorn

References
[GCPB16] A. Genevay, M. Cuturi, G. Peyré, and F. Bach. Stochastic optimization for large-scale optimal

transport. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems 29, pages 3440–3448. Curran Associates, Inc., 2016.

[Sin67] R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American
Mathematical Monthly, 74(4):402–405, 1967.

[SLRB17] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient.
Math. Program., 162(1-2, Ser. A):83–112, 2017.

4

	Proof of Lemma 3
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Randomized variant of rounding algorithm (Algorithm 2)
	Comparison with GenCutPey16

