
Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

1 Hyperparameter Settings1

Throughout all experiments, we use Adam [8] for optimizing the baseline function and the autoen-2

coder. Hyperparameters for rllab experiments are summarized in Table 1. Here the policy takes3

a state s as input, and outputs a Gaussian distribution N (µ(s), σ2), where µ(s) is the output of a4

multi-layer perceptron (MLP) with tanh nonlinearity, and σ > 0 is a state-independent parameter.5

Table 1: TRPO hyperparameters for rllab experiments
Experiment MountainCar CartPoleSwingUp HalfCheetah SwimmerGatherer
TRPO batch size 5k 5k 5k 50k
TRPO step size 0.01
Discount factor γ 0.99
Policy hidden units (32, 32) (32,) (32, 32) (64, 32)
Baseline function linear linear linear MLP: 32 units
Exploration bonus β = 0.01
SimHash dimension k = 32

Hyperparameters for Atari 2600 experiments are summarized in Table 2 and 3. By default, all6

convolutional layers are followed by ReLU nonlinearity.7

Table 2: TRPO hyperparameters for Atari experiments with image input
Experiment TRPO-pixel-SimHash TRPO-BASS-SimHash TRPO-AE-SimHash
TRPO batch size 100k
TRPO step size 0.01
Discount factor 0.995
random seeds 5 5 3
Input preprocessing grayscale; downsampled to 52× 52; each pixel rescaled to [−1, 1]

4 previous frames are concatenated to form the input state
Policy structure 16 conv filters of size 8× 8, stride 4

32 conv filters of size 4× 4, stride 2
fully-connect layer with 256 units

linear transform and softmax to output action probabilities
(use batch normalization[7] at every layer)

Baseline structure (same as policy, except that the last layer is a single scalar)
Exploration bonus β = 0.01
Hashing parameters k = 256 cell size C = 20 b(s) size: 256 bits

B = 20 bins downsampled to 64 bits

The autoencoder architecture was shown in Figure 1 of Section 2.3. Specifically, uniform noise8

U(−a, a) with a = 0.3 is added to the sigmoid activations. The loss function Eq.(3) (in the main9

Submitted to 31st Conference on Neural Information Processing Systems (NIPS 2017). Do not distribute.

Table 3: TRPO hyperparameters for Atari experiments with RAM input
Experiment TRPO-RAM-SimHash
TRPO batch size 100k
TRPO step size 0.01
Discount factor 0.995
random seeds 10
Input preprocessing vector of length 128 in the range [0, 255]; downsampled to [−1, 1]
Policy structure MLP: (32, 32, number_of_actions), tanh
Baseline structure MLP: (32, 32, 1), tanh
Exploration bonus β = 0.01
SimHash dimension k = 256

text), using λ = 10, is updated every jupdate = 3 iterations. The architecture looks as follows: an10

input layer of size 52 × 52, representing the image luminance is followed by 3 consecutive 6 × 611

convolutional layers with stride 2 and 96 filters feed into a fully connected layer of size 1024, which12

connects to the binary code layer. This binary code layer feeds into a fully-connected layer of 102413

units, connecting to a fully-connected layer of 2400 units. This layer feeds into 3 consecutive 6× 614

transposed convolutional layers of which the final one connects to a pixel-wise softmax layer with 6415

bins, representing the pixel intensities. Moreover, label smoothing is applied to the different softmax16

bins, in which the log-probability of each of the bins is increased by 0.003, before normalizing. The17

softmax weights are shared among each pixel.18

In addition, we apply counting Bloom filters [5] to maintain a small hash table. Details can be found19

in Appendix 4.20

2 Description of the Adapted rllab Tasks21

This section describes the continuous control environments used in the experiments. The tasks are22

implemented as described in [4], following the sparse reward adaptation of [6]. The tasks have the23

following state and action dimensions: CartPoleSwingup, S ⊆ R4, A ⊆ R; MountainCar S ⊆ R3,24

A ⊆ R1; HalfCheetah, S ⊆ R20, A ⊆ R6; SwimmerGather, S ⊆ R33, A ⊆ R2. For the sparse25

reward experiments, the tasks have been modified as follows. In CartPoleSwingup, the agent receives26

a reward of +1 when cos(β) > 0.8, with β the pole angle. In MountainCar, the agent receives27

a reward of +1 when the goal state is reached, namely escaping the valley from the right side.28

Therefore, the agent has to figure out how to swing up the pole in the absence of any initial external29

rewards. In HalfCheetah, the agent receives a reward of +1 when xbody > 5. As such, it has to figure30

out how to move forward without any initial external reward. The time horizon is set to T = 500 for31

all tasks.32

3 Analysis of Learned Binary Representation33

Figure 1 shows the downsampled codes learned by the autoencoder for several Atari 2600 games34

(Frostbite, Freeway, and Montezuma’s Revenge). Each row depicts 50 consecutive frames (from 0 to35

49, going from left to right, top to bottom). The pictures in the right column depict the binary codes36

that correspond with each of these frames (one frame per row). Figure 2 shows the reconstructions37

of several subsequent images according to the autoencoder. Some binaries stay consistent across38

frames, and some appear to respond to specific objects or events. Although the precise meaning of39

each binary number is not immediately obvious, the figure suggests that the learned hash code is a40

reasonable abstraction of the game state.41

4 Counting Bloom Filter/Count-Min Sketch42

We experimented with directly building a hashing dictionary with keys φ(s) and values the state43

counts, but observed an unnecessary increase in computation time. Our implementation converts the44

integer hash codes into binary numbers and then into the “bytes” type in Python. The hash table is a45

dictionary using those bytes as keys.46

2

Figure 1: Frostbite, Freeway, and Montezuma’s Revenge: subsequent frames (left) and corresponding
code (right); the frames are ordered from left (starting with frame number 0) to right, top to bottom;
the vertical axis in the right images correspond to the frame number.

3

However, an alternative technique called Count-Min Sketch [3], with a data structure identical47

to counting Bloom filters [5], can count with a fixed integer array and thus reduce computation48

time. Specifically, let p1, . . . , pl be distinct large prime numbers and define φj(s) = φ(s) mod pj .49

The count of state s is returned as min1≤j≤l n
j
(
φj(s)

)
. To increase the count of s, we increment50

nj
(
φj(s)

)
by 1 for all j. Intuitively, the method replaces φ by weaker hash functions, while it reduces51

the probability of over-counting by reporting counts agreed by all such weaker hash functions. The52

final hash code is represented as
(
φ1(s), . . . , φl(s)

)
.53

Throughout all experiments above, the prime numbers for the counting Bloom filter are 999931,54

999953, 999959, 999961, 999979, and 999983, which we abbreviate as “6M”. In addition, we55

experimented with 6 other prime numbers, each approximately 15M, which we abbreviate as “90M”.56

As we can see in Figure 3, counting states with a dictionary or with Bloom filters lead to similar57

performance, but the computation time of latter is lower. Moreover, there is little difference between58

direct counting and using a very larger table for Bloom filters, as the average bonus rewards are59

almost the same, indicating the same degree of exploration-exploitation trade-off. On the other hand,60

Bloom filters require a fixed table size, which may not be known beforehand.61

Theory of Bloom Filters Bloom filters [2] are popular for determining whether a data sample s′62

belongs to a dataset D. Suppose we have l functions φj that independently assign each data sample63

to an integer between 1 and p uniformly at random. Initially 1, 2, . . . , p are marked as 0. Then every64

s ∈ D is “inserted” through marking φj(s) as 1 for all j. A new sample s′ is reported as a member65

of D only if φj(s) are marked as 1 for all j. A bloom filter has zero false negative rate (any s ∈ D is66

reported a member), while the false positive rate (probability of reporting a nonmember as a member)67

decays exponentially in l.68

Though Bloom filters support data insertion, it does not allow data deletion. Counting Bloom filters69

[5] maintain a counter n(·) for each number between 1 and p. Inserting/deleting s corresponds70

to incrementing/decrementing n
(
φj(s)

)
by 1 for all j. Similarly, s is considered a member if71

∀j : n
(
φj(s)

)
= 0.72

Count-Min sketch is designed to support memory-efficient counting without introducing too many73

over-counts. It maintains a separate count nj for each hash function φj defined as φj(s) = φ(s)74

mod pj , where pj is a large prime number. For simplicity, we may assume that pj ≈ p ∀j and φj75

assigns s to any of 1, . . . , p with uniform probability.76

We now derive the probability of over-counting. Let s be a fixed data sample (not necessarily77

inserted yet) and suppose a dataset D of N samples are inserted. We assume that pl � N . Let78

n := min1≤j≤l n
j
(
φj(s)

)
be the count returned by the Bloom filter. We are interested in computing79

Prob(n > 0|s /∈ D). Due to assumptions about φj , we know nj(φ(s)) ∼ Binomial
(
N, 1p

)
.80

Therefore,81

Prob(n > 0|s /∈ D) = Prob(n > 0, s /∈ D)
Prob(s 6∈ D)

=
Prob(n > 0)− Prob(s ∈ D)

Prob(s /∈ D)

≈ Prob(n > 0)

Prob(s /∈ D)

=

∏l
j=1 Prob(n

j(φj(s)) > 0)

(1− 1/pl)N

=
(1− (1− 1/p)N)l

(1− 1/pl)N

≈ (1− e−N/p)l

e−N/pl

≈ (1− e−N/p)l.

(1)

In particular, the probability of over-counting decays exponentially in l. We refer the readers to [3]82

for other properties of the Count-Min sketch.83

4

5 Robustness Analysis84

5.1 Granularity85

While our proposed method is able to achieve remarkable results without requiring much tuning,86

the granularity of the hash function should be chosen wisely. Granularity plays a critical role in87

count-based exploration, where the hash function should cluster states without under-generalizing88

or over-generalizing. Table 4 summarizes granularity parameters for our hash functions. In Table 589

we summarize the performance of TRPO-pixel-SimHash under different granularities. We choose90

Frostbite and Venture on which TRPO-pixel-SimHash outperforms the baseline, and choose as reward91

bonus coefficient β = 0.01× 256
k to keep average bonus rewards at approximately the same scale.92

k = 16 only corresponds to 65536 distinct hash codes, which is insufficient to distinguish between93

semantically distinct states and hence leads to worse performance. We observed that k = 512 tends94

to capture trivial image details in Frostbite, leading the agent to believe that every state is new and95

equally worth exploring. Similar results are observed while tuning the granularity parameters for96

TRPO-BASS-SimHash and TRPO-AE-SimHash.97

Table 4: Granularity parameters of various hash functions

SimHash k: size of the binary code
BASS C: cell size

B: number of bins for each color channel
AE k: downstream SimHash parameter

λ: binarization parameter
SmartHash s: grid size agent (x, y) coordinates

Table 5: Average score at 50M time steps achieved by TRPO-pixel-SimHash

k 16 64 128 256 512

Frostbite 3326 4029 3932 4683 1117

Venture 0 218 142 263 306

The best granularity depends on both the hash function and the MDP. While adjusting granularity98

parameter, we observed that it is important to lower the bonus coefficient as granularity is increased.99

This is because a higher granularity is likely to cause lower state counts, leading to higher bonus100

rewards that may overwhelm the true rewards.101

Apart from the experimental results shown in Table 1 in the main text and Table 5, additional102

experiments have been performed to study several properties of our algorithm.103

5.2 Hyperparameter sensitivity104

To study the performance sensitivity to hyperparameter changes, we focus on evaluating TRPO-105

RAM-SimHash on the Atari 2600 game Frostbite, where the method has a clear advantage over the106

baseline. Because the final scores can vary between different random seeds, we evaluated each set of107

hyperparameters with 30 seeds. To reduce computation time and cost, RAM states are used instead108

of image observations.109

The results are summarized in Table 6. Herein, k refers to the length of the binary code for hashing110

while β is the multiplicative coefficient for the reward bonus, as defined in Section 2.2 of the main111

text. This table demonstrates that most hyperparameter settings outperform the baseline (β = 0)112

significantly. Moreover, the final scores show a clear pattern in response to changing hyperparameters.113

Small β-values lead to insufficient exploration, while large β-values cause the bonus rewards to114

overwhelm the true rewards. With a fixed k, the scores are roughly concave in β, peaking at around115

0.2. Higher granularity k leads to better performance. Therefore, it can be concluded that the116

proposed exploration method is robust to hyperparameter changes in comparison to the baseline, and117

that the best parameter settings can be obtained from a relatively coarse-grained grid search.118

5

Table 6: TRPO-RAM-SimHash performance robustness to hyperparameter changes on Frostbite

β

k 0 0.01 0.05 0.1 0.2 0.4 0.8 1.6

– 397 – – – – – – –

64 – 879 2464 2243 2489 1587 1107 441

128 – 1475 4248 2801 3239 3621 1543 395

256 – 2583 4497 4437 7849 3516 2260 374

Table 7: Average score at 50M time steps achieved by TRPO-SmartHash on Montezuma’s Revenge
(RAM observations)

s 1 5 10 20 40 60

score 2598 2500 3533 3025 2500 1921

Table 8: Interpretation of particular RAM entries in Montezuma’s Revenge

ID Group Meaning

3 room room number
42 agent x coordinate
43 agent y coordinate
52 agent orientation (left/right)
27 beams on/off
83 beams beam countdown (on: 0, off: 36→ 0)
0 counter counts from 0 to 255 and repeats
55 counter death scene countdown
67 objects Doors, skull, and key in 1st room
47 skull x coordinate (1st and 2nd room)

5.3 A Case Study of Montezuma’s Revenge119

Montezuma’s Revenge is widely known for its extremely sparse rewards and difficult exploration120

[1]. While our method does not outperform [1] on this game, we investigate the reasons behind this121

through various experiments. The experiment process below again demonstrates the importance of a122

hash function having the correct granularity and encoding relevant information for solving the MDP.123

Our first attempt is to use game RAM states instead of image observations as inputs to the policy,124

which leads to a game score of 2500 with TRPO-BASS-SimHash. Our second attempt is to manually125

design a hash function that incorporates domain knowledge, called SmartHash, which uses an126

integer-valued vector consisting of the agent’s (x, y) location, room number and other useful RAM127

information as the hash code. The best SmartHash agent is able to obtain a score of 3500. Still128

the performance is not optimal. We observe that a slight change in the agent’s coordinates does129

not always result in a semantically distinct state, and thus the hash code may remain unchanged.130

Therefore we choose grid size s and replace the x coordinate by b(x − xmin)/sc (similarly for y).131

The bonus coefficient is chosen as β = 0.01
√
s to maintain the scale relative to the true reward1 (see132

Table 7). Finally, the best agent is able to obtain 6600 total rewards after training for 1000 iterations133

(1000M time steps), with a grid size s = 10.134

1The bonus scaling is chosen by assuming all states are visited uniformly and the average bonus reward
should remain the same for any grid size.

6

Table 9: Performance comparison between state counting (left of the slash) and state-action counting
(right of the slash) using TRPO-RAM-SimHash on Frostbite

β

k 0.01 0.05 0.1 0.2 0.4 0.8 1.6

64 879 / 976 2464 / 1491 2243 / 3954 2489 / 5523 1587 / 5985 1107 / 2052 441 / 742

128 1475 / 808 4248 / 4302 2801 / 4802 3239 / 7291 3621 / 4243 1543 / 1941 395 / 362

256 2583 / 1584 4497 / 5402 4437 / 5431 7849 / 4872 3516 / 3175 2260 / 1238 374 / 96

Table 8 lists the semantic interpretation of certain RAM entries in Montezuma’s Revenge. SmartHash,135

as described in Section 5.3, makes use of RAM indices 3, 42, 43, 27, and 67. “Beam walls” are136

deadly barriers that occur periodically in some rooms.137

During our pursuit, we had another interesting discovery that the ideal hash function should not138

simply cluster states by their visual similarity, but instead by their relevance to solving the MDP. We139

experimented with including enemy locations in the first two rooms into SmartHash (s = 10), and140

observed that average score dropped to 1672 (at iteration 1000). Though it is important for the agent141

to dodge enemies, the agent also erroneously “enjoys” watching enemy motions at distance (since142

new states are constantly observed) and “forgets” that his main objective is to enter other rooms. An143

alternative hash function keeps the same entry “enemy locations”, but instead only puts randomly144

sampled values in it, which surprisingly achieves better performance (3112). However, by ignoring145

enemy locations altogether, the agent achieves a much higher score (5661) (see Figure 4). In retrospect,146

we examine the hash codes generated by BASS-SimHash and find that codes clearly distinguish147

between visually different states (including various enemy locations), but fails to emphasize that the148

agent needs to explore different rooms. Again this example showcases the importance of encoding149

relevant information in designing hash functions.150

5.4 State and state-action counting151

Continuing the results in Table 6, the performance of state-action counting is studied using the same152

experimental setup, summarized in Table 9. In particular, a bonus reward r+(s, a) = β√
n(s,a)

instead153

of r+(s) = β√
n(s)

is assigned. These results show that the relative performance of state counting154

compared to state-action counting depends highly on the selected hyperparameter settings. However,155

we notice that the best performance is achieved using state counting with k = 256 and β = 0.2.156

References157

[1] Bellemare, Marc G, Srinivasan, Sriram, Ostrovski, Georg, Schaul, Tom, Saxton, David, and158

Munos, Remi. Unifying count-based exploration and intrinsic motivation. In Advances in Neural159

Information Processing Systems 29 (NIPS), pp. 1471–1479, 2016.160

[2] Bloom, Burton H. Space/time trade-offs in hash coding with allowable errors. Communications161

of the ACM, 13(7):422–426, 1970.162

[3] Cormode, Graham and Muthukrishnan, S. An improved data stream summary: the count-min163

sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.164

[4] Duan, Yan, Chen, Xi, Houthooft, Rein, Schulman, John, and Abbeel, Pieter. Benchmarking165

deep reinforcement learning for continous control. In Proceedings of the 33rd International166

Conference on Machine Learning (ICML), pp. 1329–1338, 2016.167

[5] Fan, Li, Cao, Pei, Almeida, Jussara, and Broder, Andrei Z. Summary cache: A scalable wide-area168

web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281–293, 2000.169

[6] Houthooft, Rein, Chen, Xi, Duan, Yan, Schulman, John, De Turck, Filip, and Abbeel, Pieter.170

VIME: Variational information maximizing exploration. In Advances in Neural Information171

Processing Systems 29 (NIPS), pp. 1109–1117, 2016.172

7

[7] Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training173

by reducing internal covariate shift. In Proceedings of the 32nd International Conference on174

Machine Learning (ICML), pp. 448–456, 2015.175

[8] Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. In Proceedings176

of the International Conference on Learning Representations (ICLR), 2015.177

8

Figure 2: Freeway: subsequent frames and corresponding code (top); the frames are ordered from left
(starting with frame number 0) to right, top to bottom; the vertical axis in the right images correspond
to the frame number. Within each image, the left picture is the input frame, the middle picture the
reconstruction, and the right picture, the reconstruction error.

0 100 200 300 400 500
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

direct count

Bloom 6M

Bloom 90M

(a) Mean average undiscounted re-
turn

0 100 200 300 400 500
0.000

0.002

0.004

0.006

0.008

0.010

0.012

direct count

Bloom 6M

Bloom 90M

(b) Average bonus reward

Figure 3: Statistics of TRPO-pixel-SimHash (k = 256) on Frostbite. Solid lines are the mean, while
the shaded areas represent the one standard deviation. Results are derived from 10 random seeds.
Direct counting with a dictionary uses 2.7 times more computations than counting Bloom filters (6M
or 90M).

9

0 200 400 600 800 1000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

exact enemy locations

ignore enemies

random enemy locations

Figure 4: SmartHash results on Montezuma’s Revenge (RAM observations): the solid line is the
mean average undiscounted return per iteration, while the shaded areas represent the one standard
deviation, over 5 seeds.

10

	Hyperparameter Settings
	Description of the Adapted rllab Tasks
	Analysis of Learned Binary Representation
	Counting Bloom Filter/Count-Min Sketch
	Robustness Analysis
	Granularity
	Hyperparameter sensitivity
	A Case Study of Montezuma's Revenge
	State and state-action counting

