
Supplementary Material:
A Greedy Approach for Budgeted Maximum Inner Products Search

A More Details about Existing Approaches for Fast MIPS
A.1 Approaches with Nearest Neighbor Search Reduction
We briefly introduce the concept of the reduction proposed in [2]. First, we consider the relationship
between the Euclidean distance and the inner product:
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With the above relationship, the original k-dimensional MIPS problem is equivalent to the transformed
k + 1 dimensional NNS problem. In Figure 5(b), we show the transformed NNS problem for the
original MIPS problem presented in Figure 5(a).
In [15], another MIPS-to-NNS reduction has been proposed. The high level idea is to apply a
transformation to H such that all the candidate vectors roughly have the same length by appending
additional ¯k dimensions. In the procedure by [15], all the h

j

vectors are assumed (or scaled) to have
kh

j

k  U, 8j, where U < 1 is a positive constant. Then the following transform is applied to reduce
the original k-dimensional MIPS problem to a new NNS problem with (k +
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ˆH and ˆw defined as:
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where 0
¯
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is a zero vector of dimension ¯k. Because U < 1, [15] shows that with the transform
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, with the second term vanishing as ¯k !1. Thus, all the

candidates ˆh
j

approximately have the same length. We can see the idea behind (11) is similar to (10):
transforming H to ˆH such that all the candidates have the same length. Note that (10) achieves this
goal exactly while (11) achieves this goal approximately. Both transforms show a similar empirical
performance in [12].
There are many choices to solve the transformed NNS problem after the MIPS-to-NN reduction
has been applied. In [12, 14, 15], various locality sensitive hashing schemes have been considered.
In [2], a PCA-tree based approach is proposed, and shows better performance than LSH-based
approaches, which is consistent to the empirical observations in [1] and our experimental results
shown in Section 5. In [1], a simple K-means clustering algorithm is proposed to handled the
transformed NNS problem.

A.2 Sampling-based Approaches
The idea of the sampling-based MIPS approach is first proposed in [5] as an approach to perform
approximate matrix-matrix multiplications. Its applicability on MIPS problems is studied very
recently [3]. The idea behind a sampling-based approach called Sample-MIPS, is about to design an
efficient sampling procedure such that the j-th candidate is selected with probability p(j):

p(j) ⇠ h>
j

w.

In particular, Sample-MIPS is an efficient scheme to sample (j, t) 2 [n]⇥ [k] with the probability
p(j, t):

p(j, t) ⇠ h
jt

w
t

.

Each time a pair (j, t) is sampled, we increase the count for the j-th item by one. By the end of the
sampling process, the spectrum of the counts forms an estimation of n inner product values. Due to
the nature of the sampling approach, it can only handle the situation where all the candidate vectors
and query vectors are nonnegative.
Diamond-MSIPS, a diamond sampling scheme proposed in [3], is an extension of Sample-MIPS
to handle the maximum squared inner product search problem (MSIPS) where the goal is to identify
candidate vectors with largest values of

�

h>
j

w
�

2. If both w and H are nonnegative or h>
j

w � 0, 8j,
MSIPS can be used to generate the solutions for MIPS. However, the solutions to MSIPS can be
very different from the solutions to MIPS in general. For example, if all the inner product values are
negative, the ordering for MSIPS is the exactly reverse ordering induced by MIPS. Here we can see
that the applicability of both Sample-MIPS and Diamond-MSIPS to MIPS is very limited.

B More Details about Greedy-MIPS
B.1 A Motivating Example for Greedy-MIPS
We demonstrate that an ideal approach exists for budgeted MIPS when k = 1. It is not hard to
observe that Property 2 holds for any given H = {h

1

, . . . , h
n

| h
j

2 R}:
Property 2. For any nonzero query w 2 R and any budget B > 0, there are only two possible

results for that top B inner products between w and H:

w > 0) Largest B elements in H,

w < 0) Smallest B elements in H.

This property leads to the following simple approach, which is an ideal procedure for the budgeted
MIPS problem when k = 1:
• Query-independent data structure: a sorted list of indices of H: s[r], r = 1, . . . , n such that s[r]

stores the index to the r-th largest candidate. That is

hs[1] � hs[2] � · · · � hs[n],

• Candidate screening phase: for any given w 6= 0 and B > 0, return
⇢

first B elements: {s[1], . . . , s[B]} if w > 0,
last B elements: {s[n], . . . , s[n� B+ 1]} if w < 0

as the indices of the exact largest-B candidates.
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(b) Reduced NNS inR3.

Figure 5: MIPS-to-NN reduction. In 5(a), all the candidate vectors {h
j

} and the query vector w are
in R2. h

2

is the nearest neighbor of w, while h
1

is the vector yielding the maximum value of the
inner product with w. In 5(b), the reduction proposed in [2] is applied to w and {h

j

}: ˆw = [w; 0]

>

and ˆh
j

= [h
j

;

q

M � kh
j

k2]>, 8j, where M = max

j

kh
j

k2. All the transformed vectors are in
the 3-dimensional sphere with radius

p
M . As a result, the nearest neighbor of ˆw in this transformed

3-dimensional NNS problem, ˆh
1

, corresponds to the vector h
1

which yields the maximum inner
product value with w in the original 2-dimensional MIPS problem.

Note that for this simple scenario (k = 1), neither the query dependent pre-processing nor the
candidate ranking is needed. Thus, the overall time complexity per query is T

Q

= O(B). We can see
that Property 2 is the key to the correctness of the above procedure. Nevertheless, it is not clear how
to generalize Property 2 for MIPS problems with k � 2. Fortunately, we can directly utilize the fact
that Property 2 holds for k = 1 to design an efficient greedy procedure for the candidate screening
when k � 2.

B.2 Greedy-MIPS with a Selection Tree
As there are at most k pairs in the max-heap Q, one from each iters[t], the max-heap can be replaced
by a selection tree to achieve a slightly faster implementation as suggested in [8]. In Algorithm 4,
we give a pseudo code for the selection tree with a O(k) time constructor, a O(1) time maximum
element look-up, and a O(log k) time updater. To apply the section tree for our Greedy-MIPS, we
only need to the following modifications:
• In Algorithm 2, remove Q.push((z, t)) from the for-loop and construct Q by Q  
SelectionTree(w, k, iters).

• In Algorithm 3, replace Q.pop() by Q.top() and replace Q.push((z, t)) by Q.updateValue(t, z).
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(a) At the beginning : C(w) = []
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(b) End of iteration-1: C(w) = [6]
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(c) End of iteration-2: C(w) = [6,1]
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(d) End of iteration-3: C(w) = [6, 1,7]

Figure 6: Illustration of Algorithm 3 with w = [1, 1, 0.1]> and B = 3. The left plot for each
sub-figure shows the heap structure in the max-heap Q: the value in each rectangle denotes z, and
each index t is shown in a different color (red for 1, green for 2, and blue for 3). The sorted index
arrays are shown in the upper part of circles on the right plot for each sub-figure; for example,
s

1

[4] = 7, s
2

[1] = 6, and s

3

[5] = 5. The value in lower part of circles is the corresponding h
jt

;
for example, h

71

= �4, h
62

= 7, and h
53

= 29. Three downward triangles denote the current
position of iters[t], t = 1, 2, 3. Figure 6(a) shows the status for each data data structure at the
beginning of Algorithm 3. Three pairs are pushed into Q: (�1 = h

41

w
1

, 1), (7 = h
71

w
2

, 2), and
(6.9 = h

13

w
3

, 3). Figures 6(b)-6(c) show the status in the end of the first and the second iterations
of the outer while-loop in Algorithm 3. In Figure 6(c), we show that at the third iteration, after
(z, t) = (6, 2) Q.pop() is executed and 7 = iters[2].current() is appended into C(w), we need
to advance iters[2] twice because the index j = 1 has been included in C(w). Note that for this
example h

1

is the candidate with the largest inner product value with w.

C More Experimental Results

Figure 7: MIPS comparison on netflix and yahoo-music in terms of precision@1.

Figure 8: MIPS comparison on synthetic datasets with n 2 2

{17,18,19,20} and k = 128 in terms of
precision@1. The datasets used to generate results are created with each entry drawn from a normal
distribution.
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Algorithm 4 A pseudo code of a selection tree used for Greedy-MIPS.
class SelectionTree:

def constructor(w, k, iters) : · · ·O(k)
¯K  min

�

2

i | 2i � k
 

for i = 1, . . . , 2 ¯K:
buf[i] (�1, 0)

for t = 1, . . . , k:
j  iters[t].current()
buf[

¯K + t] (h
jt

w
t

, t)
for i = ¯K, . . . , 1:

if buf[2i].first > buf[2i+ 1].first:
buf[i] buf[2i]

else:
buf[i] buf[2i+ 1]

def top(): return buf[1] · · ·O(1)

def updateValue(t, z): · · ·O(log k)
i ¯K + t
buf[i] (z, t)
while i > 1:

i bi/2c
if buf[2i].first > buf[2i+ 1].first:

buf[i] buf[2i]
else:

buf[i] buf[2i+ 1]

Figure 9: MIPS Comparison on synthetic datasets with n = 2

18 and k 2 2

{2,5,7,10} in terms of
precision@1. The datasets used to generate results on are created with each entry drawn from a
normal distribution.

Figure 10: MIPS comparison on netflix and yahoo-music in terms of precision@10.
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Figure 11: MIPS comparison on synthetic datasets with n 2 2

{17,18,19,20} and k = 128 in terms of
precision@10. The datasets used to generate results are created with each entry drawn from a normal
distribution.

Figure 12: MIPS Comparison on synthetic datasets with n = 2

18 and k 2 2

{2,5,7,10} in terms of
precision@10. The datasets used to generate results on are created with each entry drawn from a
normal distribution.

D Proofs of Theorems
D.1 Proof of Theorem 1
Proof. Let t
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Thus, j
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2

.

D.2 Proof of Theorem 2
Proof. By grouping these first Bk entries by the index t and applying the pigeonhole principle, we
know that there exists a group G such that it contains at least B entries. Because each entry in the
same group has a distinct j index, we know that the group G contains at least B distinct indices
j.

D.3 Proof of Theorem 3
Assumption 1. Z 2 Rn⇥k
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⇠ U [a, b]. Since we can replace each z
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by (z
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is the largest value in matrix Z. Therefore we get the
claim.
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Theorem 4. With Assumption 1, Greedy-MIPS picks up the correct candidate within O(k log(n)n
1
k
)

queries with high probability.

This theorem is equivalent to Theorem 3.

Proof of Theorem 4. Denote E
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as successfully picking up the correct candidate in i-th query, and
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is its negate event. Notice Pr(E
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