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1 Proof of Sandwich Theorem

We denote by z the latent variable and x the data. Assume z ∈ RD.

We first show that χ upper bound (CUBO)n is a nondecreasing function of the order n of the
χ-divergence. Denote by the triplet (Ω,F , Q) the probability space induced by the variational
distribution q where Ω is a subspace of RD, F is the corresponding Borel sigma algebra, and Q is
absolutely continuous with respect to the Lebesgue measure µ and is such that dQ(z) = q(z)dz.
Define w = p(x,z)

q(z) . We can rewrite CUBOn as:

CUBOn =
1

n
logEq[w

n] = log
(

(Eq[w
n])

1
n

)
Since log is nondecreasing, it is enough to show
n 7→ (Eq[w

n])
1
n is nondecreasing. This function is the Ln norm in the space defined above:

(Eq[w
n])

1
n =

(∫
Ω

|w|ndQ
) 1

n

=
(∫

Ω

|w|nq(z)dz
) 1

n

This is a nondecreasing function of n by virtue of the Lyapunov inequality.

We now show the second claim in the sandwich theorem, namely that the limit when n → 0 of
CUBOn is the evidence lower bound (ELBO). Since CUBOn is a monotonic function of n and is
bounded from below by ELBO, it admits a limit when n→ 0. Call this limit L. We show L = ELBO.
On the one hand, since CUBOn ≥ ELBO for all n > 0, we have L ≥ ELBO. On the other hand,
since log t ≤ t− 1; ∀t > 0 we have

CUBOn =
1

n
logEq[w

n] ≤ 1

n

[
Eq[w

n]− 1
]

= Eq

[wn − 1

n

]
f : n 7→ wn is differentiable and furthermore
f ′(0) = limn→0

[
wn−1
n

]
= logw. Therefore ∃n0 > 0 such that |w

n−1
n − logw| < 1 ∀n < n0.

Since ||w
n−1
n | − logw| < |w

n−1
n − logw|, we have

|w
n−1
n | < 1 + logw which is Eq-integrable. Therefore by Lebesgue’s dominated convergence the-

orem: limn→0Eq

[
wn−1
n

]
= Eq

[
limn→0

wn−1
n

]
= Eq[logw] = ELBO. Since CUBOn converges
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when n → 0 and CUBOn ≤ Eq

[
wn−1
n

]
∀n, we establish L ≤ limn→0Eq

[
wn−1
n

]
= ELBO. The

conclusion follows.

2 The χ-divergence variational inference (CHIVI) algorithm for small
datasets

In the main text we derived a subsampling version of CHIVI. For very small datasets, the average
likelihood technique is not needed. The algorithm then uses all the data at each iteration and is
summarized in Algorithm 1.

Algorithm 1: CHIVI without average likelihoods

Input: Data x, Model p(x, z), Variational family q(z;λ).

Output: Variational parameters λ.

Initialize λ randomly.

while not converged do

Draw S samples z(1), ..., z(S) from q(z;λ).

Set ρt from a Robbins-Monro sequence.

Set logw(s) = log p(x, z(s))− log q(z(s);λt), s ∈ {1, ..., S}.

Set c = max
s

logw(s).

Set w(s) = exp(logw(s) − c), s ∈ {1, ..., S}.

Update λt+1 = λt − (1−n)·ρt
S

∑S
s=1

[(
w(s)

)n
∇λ log q(z(s);λt)

]
.

end

3 Approximately minimizing an f -divergence with CHIVI

In this section we provide a proof that minimizing an f -divergence can be done by minimizing a sum
of χ-divergencesThese individual χ-divergences can then be optimized via CHIVI. Consider

Df (p ‖ q) =

∫
f
(p(x)

q(x)

)
q(x)dx

Without loss of generality assume f is analytic. The Taylor expansion of f around a given point x0

is

f(x) = f(x0) + f ′(x0)(x− x0) +

∞∑
i=2

f (i)(x0)
(x− x0)i

i!

Therefore

Df (p ‖ q) = f(x0) + f ′(x0)
(
Eq(z |λ)

[p(x)

q(x)

]
− x0

)
+ Eq(z |λ)

[ ∞∑
i=2

f (i)(x0)

i!

(p(x)

q(x)
− x0

)i]
= f(x0) + f ′(x0)(1− x0) +

∞∑
i=2

f (i)(1)

i!
Eq(z |λ)

[(p(x)

q(x)
− 1
)i]

where we switch summation and expectation by invoking Fubini’s theorem. In particular if we take
x0 = 1 the linear terms are zero and we end up with:

Df (p ‖ q) =

∞∑
i=2

f (i)(1)

i!
Eq(z |λ)

[(p(x)

q(x)
− 1
)i]

=

∞∑
i=2

f (i)(1)

i!
Dχi(p ‖ q)

If f is not analytic but k times differentiable for some k then the proof still holds considering the
Taylor expansion of f up to the order k.
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4 Importance sampling

In this section we establish the relationship between χ2-divergence minimization and importance
sampling. Consider estimating the marginal likelihood I with importance sampling:

I = p(x) =

∫
p(x, z)dz =

∫
p(x, z)

q(z;λ)
q(z;λ)dz =

∫
w(z)q(z;λ)dz

The Monte Carlo estimate of I is

Î =
1

B

B∑
b=1

w(z(b))

where z(1), ..., z(B) ∼ q(z;λ). The variance of Î is

Var(Î) =
1

B
[Eq(z;λ)(w(z(b))2)− (Eq(z;λ)(w(z(b))))2] =

1

B

[
Eq(z;λ)

((p(x, z(1))

q(z(1);λ)

)2)
− p(x)2

]
Therefore minimizing this variance is equivalent to minimizing the quantity

Eq(z;λ)

((p(x, z(1))

q(z(1);λ)

)2)
which is equivalent to minimizing the χ2-divergence.

5 General properties of the χ-divergence

In this section we outline several properties of the χ-divergence.

Conjugate symmetry Define

f∗(u) = uf(
1

u
)

to be the conjugate of f . f∗ is also convex and satisfies f∗(1) = 0. Therefore D∗f (p ‖ q) is a valid
divergence in the f -divergence family and:

Df (q ‖ p) =

∫
f
(q(x)

p(x)

)
p(x)dx =

∫
q(x)

p(x)
f∗
(p(x)

q(x)

)
p(x)dx = Df∗(p ‖ q)

Df (q ‖ p) is symmetric if and only if f = f∗ which is not the case here. To symmetrize the divergence
one can use

D(p ‖ q) = Df (p ‖ q) +D∗f (p ‖ q)

Invariance under parameter transformation. Let y = u(x) for some function u. Then by Jacobi
p(x)dx = p(y)dy and q(x)dx = q(y)dy.

Dχn(p(x) ‖ q(x)) =

∫ x1

x0

(p(x)

q(x)

)n
q(x)dx− 1 =

∫ y1

y0

(p(y) dydx
q(y) dydx

)n
q(y)dy − 1

=

∫ y1

y0

(p(y)

q(y)

)n
q(y)dy − 1 = Dχn(p(y) ‖ q(y))

Factorization for independent distributions. Consider taking p(x, y) = p1(x)p2(y) and q(x, y) =
q1(x)q2(y).

Dχn(p(x, y) ‖ q(x, y)) =

∫
p(x, y)n

q(x, y)n−1
dxdy =

∫
p1(x)np2(y)n

q1(x)n−1q2(y)n−1
dxdy

=
(∫ p1(x)n

q1(x)n−1
dx
)
·
(∫ p2(y)n

q2(y)n−1
dy
)

= Dχn(p1(x) ‖ q1(x)) ·Dχn(p2(y) ‖ q2(y))

Therefore χ-divergence is multiplicative under independent distributions while KL is additive.

Other properties. The χ-divergence enjoys some other properties that it shares with all mem-
bers of the f -divergence family namely monotonicity with respect to the distributions and joint
convexity.
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6 Derivation of the CUBOn

In this section we outline the derivation of CUBOn, the upper bound to the marginal likelihood
induced by the minimization of the χ-divergence.
By definition:

Dχn(p(z |x) ‖ q(z;λ)) = Eq(z;λ)

[( p(z|x)

q(z;λ)

)n
− 1
]

Following the derivation of ELBO, we seek an expression of log(p(x)) involving this divergence. We
achieve that as follows:

Eq(z;λ)

[(p(z |x)

q(z;λ)

)n]
= 1 +Dχn(p(z |x) ‖ q(z;λ))Eq(z;λ)

[(p(x, z)

q(z;λ)

)n]
= p(x)n[1 +Dχn(p(z |x) ‖ q(z;λ))]

This gives the relationship

log p(x) =
1

n
logEq(z;λ)

[(p(x, z)

q(z;λ)

)n]
− 1

n
log(1 +Dχn(p(z |x) ‖ q(z;λ)))

log p(x) = CUBOn −
1

n
log(1 +Dχn(p(z|x) ‖ q(z;λ)))

By nonnegativity of the divergence this last equation establishes the upper bound:

log p(x) ≤ CUBOn

7 Black Box Inference

In this section we derive the score gradient and the reparameterization gradient for doing black box
inference with the χ-divergence.

CUBOn(λ) =
1

n
logEq(z;λ)

[(p(x, z)

q(z;λ)

)n]
where λ is the set of variational parameters. To minimize CUBOn(λ) with respect to λ we need
to resort to Monte Carlo. To minimize CUBOn(λ) we consider the equivalent minimization of
exp{n · CUBO(λ)}. This enables unbiased estimation of the noisy gradient used to perform black
box inference with the χ-divergence.

The score gradient The score gradient of our objective function

L = exp{n · CUBO(λ)}
is derived below:

∇λL = ∇λ

∫
p(x, z)nq(z;λ)1−ndz =

∫
p(x, z)n∇λq(z;λ)1−ndz

=

∫
p(x, z)n(1− n)q(z;λ)−n∇λq(z;λ)dz = (1− n)

∫
(
p(x, z)

q(z;λ)
)n∇λq(z;λ)dz

= (1− n)

∫
(
p(x, z)

q(z;λ)
)n∇λ log q(z;λ)q(z;λ)dz = (1− n)Eq(z;λ)

[(p(x, z)

q(z;λ)

)n
∇λ log q(z;λ)

]
where we switched differentiation and integration by invoking Lebesgue’s dominated convergence
theorem. We estimate this gradient with the unbiased estimator:

(1− n)

B

B∑
b=1

[(p(x, z(b))

q(z(b);λ)

)n
∇λ log q(z(b);λ)

]
Reparameterization gradient The reparameterization gradient empirically has lower variance than
the score gradient. We used it in our experiments. Denote by L the quantity exp{n ·CUBO}. Assume
z = g(λ, ε) where ε ∼ p(ε). Then

L̂ =
1

B

B∑
b=1

(p(x, g(λ, ε(b)))

q(g(λ, ε(b));λ)

)n
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is an unbiased estimator of L and its gradient is given by

∇λL̂ =
n

B

B∑
b=1

(p(x, g(λ, ε(b)))

q(g(λ, ε(b));λ)

)n
∇λ log

(p(x, g(λ, ε(b)))

q(g(λ, ε(b));λ)

)
.

8 More illustrations

The following figures are results of various experimentations with the CUBO.
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Figure 1

Figure 2: More sandwich plots via CHIVI and black box variational inference (BBVI). The first
three plots show simulated sandwich gaps when the order of the χ-divergence is n = 4, n = 2, and
n = 1.5 respectively. As we demonstrated theoretically, the gap closes as n decreases. The fourth
plot is a sandwich on synthetic data where we know the log marginal likelihood of the data. Here the
gap tightens after only 100 iterations. The final two plots are sandwiches on real UCI datasets.
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Figure 3: More player profiles. Basketball players shooting profiles as inferred by BBVI (?), CHIVI
(this paper) and Hamiltonian Monte Carlo (HMC). The top row displays the raw data, consisting of
made shots (green) and missed shots (red). The second and third rows display the posterior intensities
inferred by BBVI, CHIVI and HMC for Lebron James and Tim Duncan respectively. Both BBVI
and CHIVI nicely capture the shooting behavior of both players in terms of their posterior mean.The
fourth and fifth rows display the posterior uncertainty inferred by BBVI, CHIVI and HMC for Lebron
James and Tim Duncan respectively. Here CHIVI and BBVI tend to get similar posterior uncertainty
for Lebron James. CHIVI has better uncertainty for Tim Duncan.
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