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Abstract
Categorical models are a natural fit for many problems. When learning the dis-
tribution of categories from samples, high-dimensionality may dilute the data.
Minimax optimality is too pessimistic to remedy this issue. A serendipitously
discovered estimator, absolute discounting, corrects empirical frequencies by sub-
tracting a constant from observed categories, which it then redistributes among the
unobserved. It outperforms classical estimators empirically, and has been used ex-
tensively in natural language modeling. In this paper, we rigorously explain the
prowess of this estimator using less pessimistic notions. We show that (1) ab-
solute discounting recovers classical minimax KL-risk rates, (2) it is adaptive to
an effective dimension rather than the true dimension, (3) it is strongly related to
the Good–Turing estimator and inherits its competitive properties. We use power-
law distributions as the cornerstone of these results. We validate the theory via
synthetic data and an application to the Global Terrorism Database.

1 Introduction
Many natural problems involve uncertainties about categorical objects. When modeling language,
we reason about words, meanings, and queries. When inferring about mutations, we manipulate
genes, SNPs, and phenotypes. It is sometimes possible to embed these discrete objects into continu-
ous spaces, which allows us to use the arsenal of the latest machine learning tools that often (though
admittedly not always) need numerically meaningful data. But why not operate in the discrete space
directly? One of the main obstacles to this is the dilution of data due to the high-dimensional aspect
of the problem, where dimension in this case refers to the number k of categories.

The classical framework of categorical distribution estimation, studied at length by the information
theory community, involves a fixed small k, [BS04]. Add-contant estimators are sufficient for this
purpose. Some of the impetus to understanding the large k regime came from the neuroscience
world, [Pan04]. But this extended the pessimistic worst-case perspective of the earlier framework,
resulting in guarantees that left a lot to be desired. This is because high-dimension often also comes
with additional structure. In particular, if a distribution produces only roughly d distinct categories
in a sample of size n, then we ought to think of d (and not k) as the effective dimension of the
problem. There are also some ubiquitous structures, like power-law distributions. Natural language
is a flagship example of this, which was observed as early as by Zipf in [Zip35]. Species and genera,
rainfall, terror incidents, to mention just a few all obey power-laws [SLE+03, CSN09, ADW13].

Are there estimators that mold to both dimension and structure? It turns out we don’t need to
search far. In natural language processing (NLP) it was first discovered that an estimator proposed
by Good and Turing worked very well [Goo53]. Only recently did we start understanding why
and how [OSZ03, OD12, AJOS13, OS15]. And the best explanation thus far is that it implicitly
competes with the best estimator in a very small neighborhood of the true distribution. But NLP
researchers [NEK94, KN95, CG96] have long realized that another simpler estimator, absolute dis-
counting, is equally good. But why and how this is the case was never properly determined, save
some mention in [OD12] and in [FNT16], where the focus is primarily on form.
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In this paper, we first show that absolute discounting, defined in Section 3, recovers pessimistic min-
imax optimality in both the low- and high-dimensional regimes. This is an immediate consequence
of an upper bound that we provide in Section 5. We then study lower bounds with classes defined
by the number of distinct categories d and also power-law structure in Section 6. This reveals that
absolute discounting in fact adapts to the family of these classes. We further unravel the relationship
of absolute discounting with the Good–Turing estimator, for power-law distributions. Interestingly,
this leads to a further refinement of this estimator’s performance in terms of competitivity. Lastly, we
give some synthetic experiments in Section 8 and then explore forecasting global terror incidents on
real data [LDMN16], which showcases very well the “all-dimensional” learning power of absolute
discounting. These contributions are summarized in more detail in Section 4. We start out in Section
2 with laying out what we mean by these notions of optimality.

2 Optimal distribution learning
In this section we concretely formulate the optimal distribution learning framework and take the
opportunity to point out related work.

Problem setting Let p = (p1, p2, . . . , pk) be a distribution over [k] := {1, 2, . . . , k} categories.
Let [k]∗ be the set of finite sequences over [k]. An estimator q is a mapping that assigns to every
sequence xn ∈ [k]∗ a distribution q(xn) over [k]. We model p as being the underlying distribution
over the categories. We have access to data consisting of n samplesXn = X1, X2, ..., Xn generated
i.i.d. from p. Intuitively, our goal is to find a choice of q that is guaranteed to be as close as any other
estimator can be to p, in average. We first need to quantify how performance is measured.

General notation: Let (µj : j = 1, · · · , k) denote the empirical counts, i.e. the number of
times symbol j appears in Xn and let D be the number of distinct categories appearing in Xn,
i.e. D =

∑
j 1{µj > 0}. We denote by d := E[D] its expectation. Let (Φµ : µ = 0, · · · , n),

be the total number of categories appearing exactly µ times, Φµ :=
∑
j 1{µj = µ}. Note that

D =
∑
µ>0 Φµ. Also let (Sµ : µ = 0, · · · , n), be the total probability within each such group,

Sµ :=
∑
j pj1{µj = µ}. Lastly, denote the empirical distribution by q+0

j := µj/n.

KL-Risk We adopt the Kullback-Leibler (KL) divergence as a measure of loss between two dis-
tributions. When a distribution p is approximated by another q, the KL divergence is given by
KL(p||q) :=

∑k
j=1 pj log

pj
qj

. We can then measure the performance of an estimator q that depends
on data in terms of the KL-risk, the expectation of the divergence with respect to the samples. We
use the following notation to express the KL-risk of q after observing n samples Xn:

rn(p, q) := E
Xn∼pn

[KL(p||q(Xn))].

An estimator that is identical to p regardless of the data is unbeatable, since rn(p, q) = 0. Therefore
it is important to model our ignorance of p and gauge the optimality of an estimator q accordingly.
This can be done in various ways. We elaborate the three most relevant such perspectives: minimax,
adaptive, and competitive distribution learning.

Minimax In the minimax setting, p is only known to belong to some class of distributions P , but
we don’t know which one. We would like to perform well, no matter which distribution it is. To
each q corresponds a distribution p ∈ P (assuming the class is finite or closed) on which q has its
worst performance:

rn(P, q) := max
p∈P

rn(p, q).

The minimax risk is the least worst-case KL-risk achieved by any estimator q,
rn(P) := min

q
rn(P, q).

The minimax risk depends only on the class P . It is a lower bound: no estimator can beat it for all p,
i.e. it’s not possible that rn(p, q) < rn(P) for all p ∈ P . An estimator q that satisfies an upper bound
of the form rn(P, q) = (1 + o(1))rn(P) is said to be minimax optimal “even to the constant” (an
informal but informative expression that we adopt in this paper). If instead rn(P, q) = O(1)rn(P),
we say that q is rate optimal. Near-optimality notions are also possible, but we don’t dwell on
them. As an aside, note that universal compression is minimax optimality using cumulative risk.
See [FJO+15] for such related work on universal compression for power laws.
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Adaptive The minimax perspective captures our ignorance of p in a pessimistic fashion. This is
because rn(P) may be large, but for a specific p ∈ P we may have a much smaller rn(p, q). How
can we go beyond this pessimism? Observe that when a class is smaller, then rn(P) is smaller.
This is because we’d be maximizing on a smaller set. In the extreme case noted earlier, when P
contains only a single distribution, we have rn(P) = 0. The adaptive learning setting finds an
intermediate ground where we have a family of distribution classes F = {Ps : s ∈ S} indexed
by a (not necessarily countable) index set S. For each s, we have a corresponding rn(Ps) which is
often much smaller than rn

(⋃
s∈S Ps

)
, and we would like the estimator to achieve the risk bound

corresponding to the smaller class. We say that an estimator q is adaptive to the family F if for all
s ∈ S:

rn(p, q) ≤ Os(1) rn(Ps) ∀p ∈ Ps ⇐⇒ rn(Ps, q) ≤ Os(1) rn(Ps)
There often is a price to adaptivity, which is a function of the granularity of F and is paid in the
form of varying/large leading constants per class. This framework has been particularly successful
in density estimation with smoothness classes [Tsy09] and has been recently used in the discrete
setting for universal compression [BGO15].

Competitive The adaptive perspective can be tightened by demanding that, rather than a multi-
plicative constant, the KL-risk tracks the risk up to a vanishingly small additive term:

rn(p, q) = rn(Ps) + εn(Ps, q) ∀p ∈ Ps.
Ideally, we would like the competitive loss εn(Ps, q) to be negligible compared to the risk of
each class rn(Ps). If εn(Ps, q) = Os(1)rn(Ps) for all s, then we recover adaptivity. And when
εn(Ps, q) = os(1)rn(Ps) for all s ∈ S, we have minimax optimality even to the constant within
each class, which is a much stronger form of adaptivity. We then say that the estimator is competitive
with respect to the family F . We may also evaluate the worst-case competitive loss, over S.

This formulation was recently introduced in [OS15] in the context of distribution learning. This work
shows that the celebrated Good–Turing estimator [Goo53], combined with the empirical estimator,
has small worst-case competitive loss over the family of classes defined by any given distribution and
all its permutations. Most importantly, this loss was shown to stay bounded, even as the dimension
increases. This provided a rigorous theoretical explanation for the performance of the Good–Turing
estimator in high-dimensions. A similar framework is also studied for `1-loss in [VV15].

3 Absolute discounting
One of the first things to observe is that the empirical distribution is particularly ill-suited to handle
KL-risk. This is most easily seen by the fact that we’d have infinite blow-up when any µj = 0,
which will happen with positive probability. Instead, one could resort to an add-constant estimator,
which for a positive β is of the form q+β

j := (µj + β)/(n+ kβ).

The most widely-studied class of distributions is the one that includes all of them: the
k−dimensional simplex, ∆k := {(p1, p2, . . . , pk), :

∑
i

pi = 1, pi ≥ 0 ∀i ∈ [k]}. In the low-

dimensional scaling, when n/k →∞ (the “dimension” here being the support size k), the minimax
risk is

rn(∆k) = (1 + o(1))
k − 1

2n
,

In [BS04], a variant of the add-constant estimator is shown to achieve this risk even to the constant.
Furthermore, any add-constant estimator is rate optimal when k is fixed. But in the very high-
dimensional setting, when k/n→∞, [Pan04] showed that the minimax risk behaves as

rn(∆k) = (1 + o(1)) log
k

n
,

achieved by an add-constant estimator, but with a constant that depends on the ratio of k and n.

Despite these classical results on minimax optimal estimators, in practice people often use other
estimators that have better empirical performance. This was a long-running mystery in the lan-
guage modeling community [CG96], where variants of the Good–Turing estimator were shown to
perform the best [JM85, GS95]. The gap in performance was only understood recently, using the
notion of competitivity [OS15]. In essence, the Good–Turing estimator works well in both low- and
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high-dimensional regimes, and in-between. Another estimator, absolute discounting, unlike add-
constant estimators, simply subtracts a positive constant from the empirical counts and redistributes
the subtracted amount to unseen categories. For a discount parameter δ ∈ [0, 1), it is defined as:

q−δj :=

{
µj−δ
n if µj > 0,
Dδ

n(k−D) if µj = 0.
(1)

Starting with the work of [NEK94], absolute discounting soon supplanted the Good–Turing estima-
tor, due to both its simplicity and comparable performance. Kneser-Ney smoothing [KN95], which
uses absolute discounting at its core was long held as the preferred way to train N -gram models.
Even to this day, the state-of-the-art language models are combined systems where one usually inter-
polates between recurrent neural networks and Kneser-Ney smoothing [JVS+16]. Can this success
be explained?

Kneser-Ney is for the most part a principled implementation of the notion of back-off, which we only
touch upon in the conclusion. The use of absolute discounting is critical however, as performance
deteriorates if we back-off with care but use a more naı̈ve add-constant or even Katz-style smoothing
[Kat87], which switches from the Good–Turing to the empirical distribution at a fixed frequency
point. It is also important to mention the Bayesian approach of [Teh06] that performs similarly
to Kneser-Ney, called the Hierarchical Pitman-Yor language model. The hierarchies in this model
reprise the role of back-off, while the two-parameter Poisson-Dirichlet prior proposed by Pitman
and Yor [PY97] results in estimators that are very similar to absolute discounting. The latter is not
a surprise because this prior almost surely generates a power law distribution, which is intimately
related to absolute discounting as we study in this paper. Though our theory applies more generally,
it can in fact be straightforwardly adapted to give guarantees to estimators built upon this prior.

4 Contributions

We investigate the reason behind the auspicious behavior of the absolute discounting estimator. We
achieve this by demonstrating the adaptivity and competitivity of this estimator for many relevant
families of distribution classes. In summary:

• We analyze the performance of the absolute discounting estimator by upper bounding the KL-
risk for each class in a family of distribution classes defined by the expected number of distinct
categories. [Section 5, Theorem 1] This result implies that absolute discounting achieves classical
minimax rate-optimality in both the low- and high-dimensional regimes over the whole simplex
∆k, as outlined in Section 2.

• We provide a generic lower bound to the minimax risk of classes defined by a single distribution
and all of its permutations. We then show that if the defining distribution is a truncated (possibly
perturbed) power-law, then this lower bound matches the upper bound of absolute discounting, up
to a constant factor. [Section 6, Corollaries 3 and 4]

• This implies that absolute discounting is adaptive to the family of classes defined by a truncated
power-law distribution and its permutations. Also, since classes defined by the expected number
of distinct categories necessarily includes a power-law, absolute discounting is also adaptive to
this family. This is a strict refinement of classical minimax rate-optimality.

• We give an equivalence between the absolute discounting and Good–Turing estimators in the
high-dimensional setting, whenever the distribution is a truncated power-law. This is a finite-
sample guarantee, as compared to the asymptotic version of [OD12]. As a consequence, absolute-
discounting becomes competitive with respect to the family of classes defined by permutations of
power-laws, inheriting Good–Turing’s behavior [OS15]. [Section 7, Lemma 5 and Theorem 6]

We corroborate the theoretical results with synthetic experiments that reproduce the theoretical mini-
max risk bounds. We also show that the prowess of absolute discounting on real data is not restricted
only to language modeling. In particular, we explore a striking application to forecasting global ter-
ror incidents and show that, unlike naive estimators, absolute discounting gives accurate predictions
simultaneously in all of low-, medium-, and high-activity zones. [Section 8]
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5 Upper bound and classical minimax optimality

We now give an upper bound for the risk of the absolute discounting estimator and show that it
recovers classical minimax rates in the low- and high-dimensional regimes. Recall that d := E[D]
is the expected number of distinct categories in the samples. The upper bound that we derive can be
written as function of only d, k, and n, and is non-decreasing in d. For a given n and k, let Pd be the
set of all distributions for which E[D] ≤ d. The upper bound is thus also a worst-case bound overPd.

Theorem 1 (Upper bound). Consider the absolute discounting estimator q = q−δ , defined in (1).
Let p be such that E[D] = d. Given a discount 0 < δ < 1, there exists a constant c that may depend
on δ and only δ, such that

rn(p, q) ≤


d

n
log

k − d
2

d
2

+ c
d

n
if d ≥ 10 log log k,

d

n
log k + c

d

n
if d < 10 log log k.

(2)

The same bound holds for rn(Pd, q).

We defer the proof the theorem to the supplementary material. Here are the immediate implications.
For the low-dimensional regime n

k → ∞ and the class ∆k, the largest d can be once n > k is
k. The risk of absolute discounting is thus bounded by c(1 + o(1)) kn = O(1) kn . This is minimax
rate-optimal [BS04]. For the high-dimensional regime k

n → ∞ and the class ∆k, the largest d can
be when k > n is n. The risk of absolute discounting is thus dominated by the first term, which
reduces to (1 + o(1)) log k

n . This is the optimal risk for the class ∆k [Pan04], even to the constant.

Therefore on the two extreme ranges of k and n absolute discounting recovers the best performance,
either as rate-optimal or optimal even to the constant. These results are for the entire k−dimensional
simplex ∆k. Furthermore, for smaller classes, it characterizes the worst-case risk of the class by the
d, the expected number of distinct categories. Is this characterization tight?

6 Lower bounds and adaptivity
In order to lower bound the minimax risk of a given class P , we use a finer granularity than the
Pd classes described in Section 5. In particular, let Pp be the permutation class of distributions
consisting of a single distribution p and all of its permutations. Note that the multiset of probabilities
is the same for all distributions in Pp, and since the expected number of distinct categories only
depends on the multiset (d =

∑
j [1 − (1 − pj)n]) it follows that Pp ⊂ Pd1. To find a good lower

bound for Pd, we need a p that is “worst case”. We first give the following generic lower bound.
Theorem 2 (Generic lower bound). Let Pp be a permutation class defined by a distribution p and
let γ > 1. Then for k > γd, the minimax risk is bounded by:

rn(Pp) ≥
(

1− 1

γ

) k∑
j=γd

pj

 log
k − γd∑k
j=γd pj

+
∑
i=γd

pj log pj (3)

Equation (3) can be used as a starting point for more concrete lower bounds on various distribution
classes. We illustrate this for two cases. First, let us choose p to be a truncated power-law distribution
with power α: pj ∝ j−α, for j = 1, · · · , k. We always assume α ≥ α0 > 1. This leads to the
following lower bound.
Corollary 3. Let P be all permutations of a single power-law distribution with power α truncated
over k categories. Then there exists a constant c > 0 and large enough n0 such that when n > n0

and k > max{n, 1.2
1

α−1n
1
α },

rn(P) ≥ c d
n

log
k − 2d

2d
.

Next, we use a different choice of p for Pp to provide a lower bound whenever d grows linearly with
n. This essentially closes the gap of the previous corollary when α approaches 1.

1We abuse notation by distinguishing the classes by the letter used, while at the same time using the letters
to denote actual quantities. From the context we understand that d is the expected number of distinct categories
for p, at the given n.
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Corollary 4. Let ρ ∈ (1, 1.75) and let P be all permutations of a single uniform distribution over
a subset k′ = n

ρ out of k categories. Then d ∼ (1− e−ρ)n/ρ and there exists a constant c > 0 and
large enough n0 such that when n > n0 and k > n5,

rn(P) ≥ c d
n

log
k − 1.2d

d
.

We defer the proofs of the theorem and its corollaries to the supplementary material. The upper
bound of Theorem 1 and the lower bounds of Corollaries 3 and 4 are within constant factors of
each other. The immediate consequence is that absolute discounting is adaptive with respect to the
families of classes of the Corollaries. Furthermore, over the family of classes Pd where we can
write d as n

1
α for some α > 1 or d ∝ n, we can select a distribution from the Corollaries among

each class and use the corresponding lower bound to match the upper bound of Theorem 1 up to
a constant factor. Therefore absolute discounting is adaptive to this family of classes. Intuitively,
adaptivity to these classes establishes optimality in the intermediate range between low- and high-
dimensional settings in a distribution-dependent fashion and governed by the expected number of
distinct categories d, which we may regard as the effective dimension of the problem.

7 Relationship to Good–Turing and competitivity
We now establish a relationship between the absolute discounting and Good–Turing estimators and
refine the adaptivity results of the previous section into competitivity results. When [OS15] intro-
duced the notion of competitive optimality, they showed that a variation of the Good–Turing estima-
tor is worst-case competitive with respect to the family of distribution classes defined by any given
probability distribution and its permutations. In light of the results of Sections 5 and 6, it is natural
to ask whether absolute discounting enjoys the same kind of competitive properties. Not only that,
but it was observed empirically by [NEK94] and shown theoretically in [OD12] that asymptotically
Good–Turing behaves exactly like absolute discounting, when the underlying distribution is a (pos-
sibly perturbed) power-law. We therefore choose this family of classes to prove competitivity for.
We first make the aforementioned equivalence concrete by establishing a finite sample version. We
use the following idealized version of the Good–Turing estimator [Goo53]:

qGTj :=


µj+1
n

E[Φµj+1]

E[Φµj ] if µj > 0,
E[Φ1]
n(k−D) if µj = 0.

(4)

Lemma 5. Let p be a power law with power α truncated over k categories. Then for k >

max{n, n
1

α−1 }, we have the equivalence:

qGTj =
µj − 1

α

n

(
1 +O

(
n−

1
2

3
2α+1

))
∼
µj − 1

α

n
∀ µj ∈

{
1, · · · , n

1
2α+1

}
.

An interesting outcome of the equivalence of Lemma 5 is that it suggests a choice of the discount δ
in terms of the power, 1/α. To give a data-driven version of 1/α, we will use a robust version of the
ratio Φ1/D proposed in [OD12, BBO17], which is a strongly consistent estimator when k =∞.
Theorem 6. Let P be all permutations of a truncated power law p with power α. Let q be the
absolute discounting estimator with δ = min

{
max{Φ1,1}

D , δmax

}
, for a suitable choice of δmax.

Then for k > max{n, n
1

α−1 }, the competitive loss is

εn(Pp, q) = O
(
n−

2α−1
2α+1

)
.

The implications are as follows. For the union of all such classes above a given α, we find that we
beat the n−1/3 rate of the worst-case competitive loss obtained for the estimator in [OS15]. Theorem
6 and the bounds of Sections 5 and 6, together imply that absolute discounting is not only worst-case
competitive, but also class-by-class competitive with respect to the power-law permutation family.
In other words, it in fact achieves minimax optimality even to the constant. One of the advantages
of absolute discounting is that it gradually transitions between values that are close to the empirical
distribution for abundant categories (since µ then dominates the discount δ), to a behavior that
imitates the Good–Turing estimator for rare categories (as established by Lemma 5). In contrast, the
estimator proposed in [OS15], and its antecedents starting from [Kat87], have to carefully choose a
threshold where they switch abruptly from one estimator to the other.
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8 Experiments
We now illustrate the theory with some experimental results. Our purpose is to (1) validate the func-
tional form of the risk as given by our lower and upper bounds and (2) compare absolute discounting
on both synthetic and real data to estimators that have various optimality guarantees. In all synthetic
experiments, we use 500 Monte Carlo iterations. Also, we set the discount value based on data,
δ = min{max(Φ1,1)

D , 0.9}. This is as suggested in Section 7, assuming δmax = 0.9 is sufficient.
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Figure 1: Risk of absolute discounting in different ranges of k and n for a power-law with α = 2

Validation For our first goal, we consider absolute discounting in isolation. Figure 1(a) shows the
decay of KL-risk with the number of samples n for a power-law distribution. The dependence of the
risk on the number of categories k is captured in Figures 1(b) (linear x-axis) and 1(c) (logarithmic
x-axis). Note the linear growth when k is small and the logarithmic growth when k is large. For the
last plot we give 95% confidence intervals for the simulations, by performing 100 restarts.

Synthetic data For our second goal, we start with synthetic data. In Figure 2, we pit absolute
discounting against a number of distributions related to power-laws. The estimators used for our
comparisons are: empirical q+0(x) = µx

n , add-beta q+β(x) =
µx+βµx

N , and its two variants:

• Braess and Sauer, qBS [BS04] q+β with β0 = 0.5, β1 = 1, and βi = 0.75 ∀i ≥ 2

• Paninski, qPan [Pan04] q+β with βi = n
k log k

n ∀i,

absolute discounting, q−δ , described in 1, Good–Turing + empirical qGT in [OS15], and an oracle-
aided estimator where Sµ is known.

In Figures 2(a) and 2(b), samples are generated according to a power-law distribution with power
α = 2 over k = 1, 000 categories. However, the underlying distribution in Figure 2(c) is a piece-
wise power-law. It consists of three equal-length pieces, with powers 1.3, 2, and 1.5. Paninski’s
estimator is not shown in Figures 2(b) and 2(c) since it is not well-defined in this range (it is designed
for the case k > n only). Unsurprisingly, absolute discounting dominates these experiments. What
is more interesting is that it does not seem to need a pure power-law (similar results hold for other
kinds of perturbations, such as mixtures and noise). Also Good–Turing is a tight second.
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Figure 2: Comparing estimators for power-law variants with power α = 2 and k = 1000.
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Real data One of the chief motivations to investigate absolute discounting is natural language
modeling. But there have been such extensive empirical studies that have verified over and over
the power of absolute discounting (see the classical survey of [CG96]) that we chose to use this
space for something new. We use the START Global terrorism database from the University of
Maryland [LDMN16] and explore how well we can forecast the number of terrorist incidents in
different cities. The data contains the record of more than 50, 000 terror incidents between the
years 1992 and 2010, in more than 12, 000 different cities around the world. First, we display in
Figure 3(a) the frequency of incidents across the entire dataset versus the activity rank of the city in
log-log scale, showing a striking adherence to a power-law (see [CSN09] for more on this).

The forecasting problem that we solve is to estimate the number of total incidents in a subset of
the cities over the coming year, using the current year’s data from all cities. In order to emulate
the various dimension regimes, we look at three subsets: (1) low-activity cities with no incidents
in the current year and less than 20 incidents in the whole data, (2) medium-activity cities, with
some incidents in the current year and less than 20 incidents in the whole data, and (3) high-activity
individual cities with a large number of overall incidents.

The results for (1) are in Figure 3(b). The frequency estimator trivially estimates zero. Braess-Sauer
does something meaningful. But absolute discounting and Good–Turing estimators, indistinguish-
able from each other, are remarkably on spot. And this, without having observed any of the cities!
This nicely captures the importance of using structure when dimensionality is so high and data is
so scarce. The results for (2) are in Figure 3(c). The frequency estimator markedly overestimates.
But now absolute discounting, Good–Turing, and Braess-Sauer, perform similarly. This is a lower
dimensional regime than in (1), but still not adequate for simply using frequencies. This changes in
case (3), illustrated in Figure 4. To take advantage of the abundance of data, in this case at each time
point we used the previous 2, 000 incidents for learning, and predicted the share of each city for the
next 2, 000 incidents. In fact, incidents are so abundant that we can simply rely on the previous win-
dow’s count. Note how Braess-Sauer over-penalizes such abundant categories and suffers, whereas
absolute discounting and Good–Turing continue to hold their own, mimicking the performance of
the empirical counts. This is a very low-dimensional regime.

The closeness of the Good–Turing estimator to absolute discounting in all of our experiments vali-
dates the equivalence result of Lemma 5. The robustness in various regimes and the improvement in
performance over such minimax optimal estimators as Braess-Sauer’s and Paninski’s are evidence
that absolute discounting truly molds to both the raw dimension and effective dimension / structure.
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Figure 3: (a) power-law behavior of frequency vs rank in terror incidents, (b), and (c) comparing
forecasts of the number of incidents in unobserved cities and observed ones, respectively.

9 Conclusion

In this paper, we offered a rigorous analysis of the absolute discounting estimator for categorical dis-
tributions. We showed that it recovers classical minimax optimality. The true reason for its success,
however, is in adapting to distributions much more intimately, by recovering the right dependence
on the distinct observed categories d, which can be regarded as an effective dimension, and opti-
mally tracking structure such as power-laws. We also tightened its relationship with the celebrated
Good–Turing estimator.
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Figure 4: Estimating the number of incidents based on previous data for different cities

Some of our analysis could possibly be tightened, in particular in terms of the range of applicability
over n, k, and d. Also, the limiting case of α = 1 (very heavy tails, known as “fast variation”
[BBO17]) to which our results don’t directly apply, merits investigation. But more importantly,
absolute discounting is often a module. For example, we already note how it is widely used in
N -gram back-off models [KN95]. Also, recently, it has been successfully applied to smoothing
low-rank probability matrices [FOO16]. Perhaps to further understand its power, it is worthwhile to
study how it interacts with such larger systems.
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A Proof of Theorem 1, upper bound

We start with a technical note. Though we presented the framework for a fixed sample size n, the
entirety of the paper analyzes the “Poissonized” version. In the Poisson sampling model, the number
of samples is in fact N ∼ POI(n), a Poisson random variable with mean n. This is often the more
natural model when data is collected within a fixed time window, in contrast to until a certain number
of samples are collected. Or we can think of Poisson sampling as a convenience because it makes all
counts independent and distributed according to µj ∼ POI(npj). It is possible to “de-Poissonize”
the results, but we omit this for brevity.

In proof of the theorem, we show a more general upper bound. We upper bound the instantaneous
risk of a class of distributions based on d, E[Φ1], and E[Φ2], the expected number of distinct cate-
gories, categories that appeared once, and twice respectively. Namely, we show for some constant
c,

max
p∈Pd

Exn [KL(p||q(xn))] ≤ E[Φ1]

n
log

2k − d
dδ

+
E[Φ1]

n
+

2E[Φ2]

n
log

1

1− δ
+
c · d
n
.

Proof.

EXn∼pn [KL(p||q(Xn))]

= EXn∼pn

 k∑
j=1

pj log
pj

qj(Xn)


= E

 k∑
j=1

1
0
jpj log

npj(k −D)

Dδ
+

k∑
j=1

∞∑
i=1

1
i
jpj log

npj
i− δ


= E

 k∑
j=1

1
0
jpj log npj + 1

0
jpj log

(k −D)

Dδ
+

k∑
j=1

∞∑
i=1

1
i
jpj log

npj
i− δ


(a)
=

1

n

k∑
j=1

e−λjλj log λj +
1

n

k∑
j=1

λjE
[
1

0
j log

k −D
Dδ

]
+

1

n

k∑
j=1

∞∑
i=1

λj log
λj
i− δ

poi(npj , i)

(b)
=

1

n

k∑
j=1

λjE
[
1

0
j log

k −D
Dδ

]
+

1

n

k∑
j=1

(
λj log λj +

∞∑
i=1

λj log
1

i− δ
poi(λj , i)

)
(5)

where (a) is by Poisson sampling and replacing λj := npj , and (b) is by combining the first and last
expressions. Now we state two lemmas that are helpful in bounding each of the two terms in (5).

Lemma 7. For all p ∈ Pd and with the assumption of D > 2, for d > 10 log log k,

E
Xn∼pn

[
1

0
j log

k −D
D

]
≤ e−λj

(
1 + log

k − d
2

d
2

)
and for d < 10 log log k,

E
Xn∼pn

[
1

0
j log

k −D
D

]
≤ e−λj log k.

Lemma 8. For x > 0 and for 0 < δ < 1, x log x+
∑∞
i=2 x log 1

i−δpoi(x, i) < c′ for some constant
c′.

We can write the second part in (5) as

1

n

k∑
j=1

λj log
1

1− δ
poi(λj , 1) +

1

n

k∑
j=1

(
λj log λj +

∞∑
i=2

λj log
1

i− δ
poi(λj , i)

)
, (6)
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and since the second term in (6) is negative for all λj < 1, (6) is upper bounded by

1

n

k∑
j=1

λ2
je
−λj log

1

1− δ
+

1

n

∑
λj≥1

(
λj log λj +

∞∑
i=2

λj log
1

i− δ
poi(λj , i)

)
.

Continuing from (5), using Lemmas 7, 8 and the definitions of E[Φ1] =
∑k
j=1 e

−λjλj and E[Φ2] =∑k
j=1 e

−λj λ
2
j

2 ,

E
Xn∼pn

[KL(p||q(Xn))] ≤ E[Φ1]

n

(
log

2k − d
dδ

+ 1

)
+

2E[Φ2]

n
log

1

1− δ
+

1

n

∑
j:λj≥1

c′

≤ E[Φ1]

n

(
log

2k − d
dδ

+ 1

)
+

2E[Φ2]

n
log

1

1− δ
+

c′ · d
n(1− e−1)

,

where the last line is because d =
∑
j(1−eλj ) ≥

∑
λj≥1(1−eλj ) ≥ |{j : λj ≥ 1}|(1−e−0.7)

A.1 Proof of Lemma 7

Proof. Using Lemma 17,

E
Xn∼pn

[10
j log

k −D
D

] = e−λjE
[
log

k −D
D

∣∣∣D < d−
√

2vs, µj = 0

]
Pr(D < d−

√
2vs)

+ e−λjE
[
log

k −D
D

∣∣∣D > d−
√

2vs, µj = 0

]
Pr(D > d−

√
2vs)

≤ e−λj
(
e−s log(k − 1) + log

k − d+
√

2vs

d−
√

2vs

)
.

Choosing s = log log k and assuming D ≥ 2 and d > 10 log log k yield the results. Note that if
µj = 0, it can change D by at most one and its effect can be ignored. Also when d < 10 log log k

we can use the naive bound of log k, since log k−D
D < log k for D > 1.

A.2 Proof of Lemma 8

Proof. We first assume x > 100 and prove the lemma.
∞∑
i=2

poi(x, i) log(i− δ) (7)

≥
x+x0∑
i=x−x0

poi(x, i) log(i− δ)

= poi(x, x) log(x− δ) +

x0∑
a=1

poi(x, x− a) log(x− a− δ) + poi(x, x+ a) log(x+ a− δ)

≥ poi(x, x) log(x− δ) +

x0∑
a=1

poi(x, x− a)
[

log(x− a− δ) + log(x+ a− δ)
]

=

x0∑
a=0

poi(x, x− a) + poi(x, x+ a)

2

[
log(x− a− δ) + log(x+ a− δ)

]
+

x0∑
a=1

poi(x, x− a)− poi(x, x+ a)

2

[
log(x− a− δ) + log( x+ a− δ)

]
(8)

By Lemma 18,
x0∑
a=0

poi(x, x− a) + poi(x, x+ a) = poi(x, x) + 1− Pr(POI(x) > x+ x0)− Pr(POI(x) < x− x0)

≥ 1

e
√
x

+ 1− 2 · ex0−(x+x0) ln(1+
x0
x ),
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Also we can lower bound the bracket in (8) as

log(x+ a− δ) + log(x− a+ δ) = log
(
(x− δ)2 − a2

)
= log(x2 − 2xδ + δ2 − a2)

= log

(
x2(1− 2δ

x
+
δ2 − a2

x2
)

)
= 2 log x+ log(1− 2δ

x
+
δ2 − a2

x2
)

≥ 2 log x− 4δ

x
− 2(a2 − δ2)

x2
.

Thus for some constant c1 and x0 = x0.8,

x0∑
a=0

poi(x, x− a) + poi(x, x+ a)

2

[
log(x− a− δ) + log(x+ a− δ)

]
≥
(

1 +
1

e
√
x
− 2ex0−(x+x0) ln(1+

x0
x )
)(

log x− 2δ

x

)
−

x0∑
a=0

(
poi(x, x− a) + poi(x, x+ a)

)(a2

x2

)
= log x− 2δ

x
− 2ex0−(x+x0) ln(1+

x0
x )(log x− 2δ

x
)

−
x0∑
a=0

(
poi(x, x− a) + poi(x, x+ a)

)(a2

x2

)
≥ log x− c1

x
. (9)

where the last line is due to the following lemma.

Lemma 9. For x0 = x0.8 there exists a constant c1 such that

x0∑
a=0

[
poi(x, x− a) + poi(x, x+ a)

]
(
a2

x2
) ≤ c1

x
.

The difference in probabilities of two equidistant points from the mean of a Poisson distribution is
bounded by

poi(x, x+ a)− poi(x, x− a) =
e−xxx−a

(x− a)!

[ 1

(1 + a
x )(1 + a−1

x ) . . . (1 + 1−a
x )
− 1
]

=
e−xxx−aex−a

(x− a)x−a
√

2π(x− a)

[ 1

(1 + a
x )(1 + a−1

x ) . . . (1 + 1−a
x )
− 1
]

=
e−a√

2π(x− a)

[ 1

(1 + a
x )(1 + a−1

x ) . . . (1 + 1−a
x )
− 1
]

≈ e−a√
2π(x− a)

4

x
,
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and therefore for x0 = x0.8 and some constant c5,

x0∑
a=1

poi(x, x− a)− poi(x, x+ a)

2

[
log(x− a− δ) + log(x+ a− δ)

]
≥ −

x0∑
a=1

e−a√
2π(x− a)

2

x
log
(
(x− δ)2 − a2

)
≥ −

x0∑
a=1

e−a√
2π(x− a)

2

x
log x2

≥ −
∑∞
a=1 e

−a√
2π(x− x0)

4

x
log x

≥ − 4 log x

x
√

2π(x− x0)

≥ −c5
x
. (10)

Selecting c > c1 + c5 leads to the Lemma. It can be shown that the lemma is valid for x < 100 by
plotting the function.

A.3 Proof of Lemma 9

Proof.

x0∑
a=0

[
poi(x, x− a) + poi(x, x+ a)

]
(
a2

x2
)

≤
x0∑
a=0

2a2

x2
poi(x, x− a)

=

x0∑
a=0

2a2

x2

e−xxx−a

(x− a)!

(a)

≤
x0∑
a=0

2a2

x2

[ e−x+x−axx−a

(x− a)x−a
√

2π(x− a)

]
=

x0∑
a=0

2a2

x2

[ e−a√
2π(x− a)

(
1 +

a

x− a

)x−a ]
=

x0∑
a=0

2a2

x2

[ e−a√
2π(x− a)

e(x−a) ln(1+ a
x−a )

]
(b)

≤
x0∑
a=0

2a2

x2

[ e−
a2

4(x−a)√
2π(x− a)

]
,

where (a) is by Stirling’s approximation and (b) is because ln(1 + x) < x− x2

4 for x < 1. We can
decompose the last summation to three different summations as

x0∑
a=0

2a2

x2

[ e−
a2

4(x−a)√
2π(x− a)

]

=

√
x∑

a=0

2a2

x2

[ e−
a2

4(x−a)√
2π(x− a)

]
+

√
x ln x∑

a=
√
x+1

2a2

x2

[ e−
a2

4(x−a)√
2π(x− a)

]
+

x0∑
a=
√
x ln x

2a2

x2

[ e−
a2

4(x−a)√
2π(x− a)

]
(11)

14



Now we bound each term in (11). For the first term and for some constant c2:
√
x∑

a=0

2a2

x2

[ e−
a2

4(x−a)√
2π(x− a)

]
≤ 2
√
x
x

x2

1√
2π(x−

√
x)

≤
√

2

π

1

x

1√
1−

√
x
x

≤
√

2

π

1

x
(1 +

√
x

2x
) ≤ c2

x
.

Also for the middle term in (11) and some constant c4:
√
x ln x∑

a=
√
x+1

2a2

x2

[ e−
a2

4(x−a)√
2π(x− a)

]

≤
√

2

π

1

x2

1√
x−
√
x lnx

√
x ln x∑

a=
√
x+1

a2e−
a2

4x

≤
√

2

π

1

x2

1√
x−
√
x lnx

∫ √x ln x

√
x

a2e−
a2

4x da

=

√
2

π

1

x2

1√
x−
√
x lnx

2
[
x
√
xe−

1
4 − x

√
xe−

x ln2 x
4x lnx+ 2

√
π

(
Erf(

lnx

2
)− Erf(

1

2
)

)]
≤
√

2

π

1

x2
√
x

1√
1−

√
x ln x
x

(4x
3
2 e−

1
4 )

≤ c4
x
.

Similarly for the third term in (11) and for some constant c3, we can write

x0∑
a=
√
x ln x

2a2

x2

[ e−
a2

4(x−a)√
2π(x− a)

]
≤ (x0 −

√
x lnx)

2x2
0

x2

[ e−
(
√
x ln x)2

4x√
2π(x− x0)

]

≤
√

2

π

1

x2

x3
0√

x− x0
e−

ln2 x
4

=

√
2

π

1

x2

x3
0√

x− x0

1

x
ln x
4

≤ c3
x
.

Choosing c1 ≥ c2 + c3 + c4 leads to the lemma.

B Proofs of lower bound

In this part we provide the proofs of Theorem 2 as well as Corollaries 3 and 4. In order to lower
bound the minimax risk of a given class P , we can resort to two simplifications. First, we consider
classes at a much a finer granularity than the Pd classes described in Section 5. In particular, let Pp
be the permutation class of distributions consisting of a single distribution p and all of its permu-
tations. Note that the multiset of probabilities is the same for all distributions in Pp, and since the
expected number of distinct categories only depends on the multiset (d =

∑
j [1 − (1 − pj)n]) it

follows that Pp ⊂ Pd. 2. To find a good lower bound for Pd, we need a p that is “worst case” among
all those who have the same value of d and then use the corresponding lower bound for Pp. In what
follows, we start by giving a lower bound for Pp, and then specialize it for Pd.

2We abuse notation by distinguishing the classes by the letter used, while at the same time using the letters
to denote actual quantities. From the context we understand that d is the expected number of distinct categories
for p, at the given n.
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We also assume that an oracle specifies the true probability of all observed categories. With this
side-information, the best estimator has to use the true probabilities for the observed categories.
For the unobserved categories, it needs to redistribute all the missing mass (the total probability
of unobserved categories). Since the multiset of probabilities is fixed and any permutation of the
remaining categories is equally probable, by symmetry there is no advantage in favoring one over
the other. Therefore the best oracle-aided estimator is uniquely specified: exact probabilities for
seen categories and uniform redistribution of the missing mass (S0) over the unobserved categories.
This argument can be proven formally via the maximin trick: substitute the maximum with a mean
against an arbitrary prior over p, at which point the optimal q is the posterior, and then optimize over
priors. It then suffices to use the convexity of p log p

q with respect to q.

B.1 Proof of Theorem 2

Proof. Without loss of generality assume that p1 ≥ p2 ≥ p3 ≥ . . . ≥ pk. Let γ > 1, we have:

rn(Pp) = min
q

max
p∈Pp

E

 k∑
j=1

pj log
pj
qj

 ≥ E

 k∑
j=D+1

pj log
pj∑k

j=D+1 pj

k−D


= E

 k∑
j=D+1

pj log
pj(k −D)

n
∑k
j=D+1 pj

∣∣∣∣∣ D < γd

Pr (D < γd)

+ E

 k∑
j=D+1

pj log
pj(k −D)∑k
j=D+1 pj

∣∣∣∣∣ D ≥ γd
Pr (D ≥ γd)

(a)

≥
(

1− 1

γ

) k∑
j=γd

pj log
pj(k − γd)∑k

j=γd pj

where (a) is by the following arguments: By Markov’s inequality we have Pr (D ≥ γd) ≤ 1
γ . Also,∑k

j=D+1 pj log
npj(k−D)

n
∑k
j=D+1 pj

is positive and decreasing in D (in the extreme case, when D = k is

zero). Therefore,

rn(Pp) ≥
(

1− 1

γ

) k∑
j=γd

pj

 log
k − γd∑k
j=γd pj

+
∑
i=γd

pj log pj

This completes the proof. For any specific classes of distributions, we can find a lower bound by
calculating d,

∑k
j=γd pj , and

∑k
j=γd pj log pj for some γ > 1.

B.2 Proof of Corollary 3

Proof. To use Theorem 2, we first calculate d,
∑
j>L pj , and

∑
j>L pj log pj and then let L = γd

for γ = 2.
k∑

j=L+1

pj =

k∑
j=L+1

c

jα

(a)

≥
∫ k+1

L+1

c

xα
dx

=
c

α− 1

[
(L+ 1)1−α − (k + 1)1−α

]
,

where (a) is by integration bound for monotone series. Similarly, we can show:
k∑

j=L+1

pj ≤
∫ k

L

c

xα
dx =

c

α− 1

[
L1−α − k1−α

]
.
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For the last summation in the lower bound of Theorem 2 we have:
k∑

j=L+1

pj log pj

=

k∑
j=L+1

c

jα
log

c

jα

= c

k∑
j=L+1

1

jα
log

1

jα
+ log c

k∑
j=L+1

c

jα

(a)

≥ c

∫ k+1

L+1

1

jα
log

1

jα
dj + log c

k∑
j=L+1

pj

(b)
=

c

α

∫ (L+1)−α

(k+1)−α
x−

1
α log x dx+ log c

k∑
j=L+1

pj

≥ c

α− 1

[
x1− 1

α log x
](L+1)−α

(k+1)−α
− c

α− 1

∫ (L+1)−α

(k+1)−α
x−

1
α +

c log c

α− 1

[
(L+ 1)1−α − (k + 1)1−α

]
Using Theorem 2, if k > max{n,

(
10
9

1
α−1

)
n

1
α } we have,

rn(P)

≥ c

α− 1
(L+ 1)1−α log

k − 2d
c

α−1 (L+ 1)1−α + (L+ 1)1−α

[
c

α− 1
log(L+ 1)−α − cα

(α− 1)2
+
c log c

α− 1

]

≥ c

10(α− 1)
(L+ 1)1−α log

k − 2d

(L+ 1)
+

c

α− 1
(L+ 1)1−α

[
1

10
log(α− 1)− α

α− 1

]
where (a) is by integration bound for monotone series, and (b) is by change of variable x = 1

jα .
Using Equation (3) , choosing L = 2d,

rn(P) ≥ 21−αc

α− 1
d1−α log

k − 2d

2d
+

21−αc

α− 1
d1−α

[
log(α− 1)− α

α− 1

]
,

and since for power-law distributions, d grows proportionally to n
1
α , we can write

rn(P) ≥ c1
d

n
log

k − 2d

2d
(1− o(1)),

for some constants c1 and c2. To compare this with the upper bound in the proof of Theorem 1, note
that we always have E[Φ1] ≤ d, but for power law distributions both expressions grow proportionally
to n

1
α and furthermore E[Φ1]/d converges to a constant, 1

α . This shows that the upper and lower
bounds for power-law distributions are tight in the first order term, when k is large.

B.3 proof of Corollary 4

Proof. To use Theorem 2, we first calculate d,
∑
j>γd pj , and

∑
j>γd pj log pj . For the expected

number of distinct categories,

d =

k′∑
j=1

1− e−npj = k′(1− e− n
k′ ) =

1− e−ρ

ρ
n.

For the sum of probabilities of unobserved categories,∑
j>γd

pj =
k′ − γd
k′

= 1− γn(1− e−ρ)
ρk′

= 1− γ(1− e−ρ),
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and for the last summation in (3),

k∑
j=γd+1

pj log pj =
k′ − γd
k′

log(
1

k′
) =

(
1− γ(1− e−ρ)

)
log
( ρ
n

)
.

Therefore, by (3) we have rn(P) ≥
(

1− 1
γ

)
(1− γ(1− e−ρ)) log k−γd

1−γ(1−e−ρ) +

(1− γ(1− e−ρ)) log
(
ρ
n

)
, which can also be written as rn(P) ≥(

1− 1
γ

)
ρ(1−γ(1−e−ρ))

1−e−ρ
d
n log k−γd

d + (1− γ(1− e−ρ)) log 1−e−ρ
(1−γ(1−e−ρ)) +

1
γ (1− γ(1− e−ρ)) log 1−e−ρ

d . Choosing γ = 1.2 and having k > n5, the corollary follows
for ρ ≤ 1.75.

C Proofs of Good–Turing and absolute-discount relationship

C.1 Proof of Lemma 5

Proof. For notational simplicity we define C(µ) :=
c

1
α Γ(µ− 1

α )

αµ! n
1
α . Using Lemma 15,

E[Φµ+1]

E[Φµ]

(a)

≤ C(µ+ 1) +O(µ−
1
2 )

C(µ)
(

1−O(µ−1n−
1
α )
)
−O(µ−

1
2 )

≤ C(µ+ 1)

C(µ)

(
1 +O(µ−

1
2C−1(µ+ 1))

1−O(µ−1n−
1
α )−O(µ−

1
2C−1(µ))

)

≤ C(µ+ 1)

C(µ)

(
1 +O(µ−

1
2C−1(µ+ 1)) +O(µ−1n−

1
α )
)

(b)

≤ C(µ+ 1)

C(µ)

(
1 +O(µ−

1
2 +1+ 1

αn
−1
α )
)

(c)
=
µ− 1

α

µ+ 1

(
1 +O(n

−3
2(2α+1) )

)

The inequality in (a) and (b) are by Lemma 15 and (c) is by the fact that µ < n
1

2α+1 .

C.2 Proof of Theorem 6

Recall that Sµ denotes the total probability of symbols appearing µ times, and let Ŝµ be the probabil-
ity assigned to those symbols by an estimator. Note that, given the samples, we may think of S and
Ŝ as legitimate probability distributions on the set µ = 0, 1, · · · , n. In [OS15], it was shown that the
competitive loss of an estimator over a class defined by a single distribution p and its permutations
can be bounded by:

εn(Pp, q) = rn(p, q)− rn(Pp) ≤ E[KL(S||Ŝ)].

This is well defined, since S and Ŝ only refer to the multiset probabilities, which stays invari-
ant over all distributions in the class. Using this bound and the equivalence of Lemma 5, we can
proceed with the proof. In the proof, we analyze the absolute-discount estimator with discount
δ = min{max{Φ1,1}

D , δmax}.
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Proof. We have:

KL(S||Ŝ)

=

∞∑
µ=0

Sµ log
Sµ

Ŝµ

(a)

≤

∞∑
µ=0

(Sµ − Ŝµ)2

Ŝµ

=
(S0 − Ŝ0)2

Ŝ0

+

µ0∑
µ=1

(Sµ − Ŝµ)2

Ŝµ
+

∞∑
µ=µ0+1

(Sµ − Ŝµ)2

Ŝµ

=
(S0 − Dδ

n )2

Dδ
n

+

µ0∑
µ=1

(Sµ −
µ− 1

α

n Φµ +
µ− 1

α

n Φµ − µ−δ
n Φµ)2

µ−δ
n Φµ

+

∞∑
µ=µ0+1

(Sµ − µ−δ
n Φµ)2

µ−δ
n Φµ

(b)

≤
(S0 − Dδ

n )2

Dδ
n

+ 2

µ0∑
µ=1

(Sµ −
µ− 1

α

n Φµ)2

µ−δ
n Φµ

+ 2

µ0∑
µ=1

(
µ− 1

α

n − µ−δ
n )2Φ2

µ

µ−δ
n Φµ

+

∞∑
µ=µ0+1

(Sµ − µ−δ
n Φµ)2

µ−δ
n Φµ

(12)

where (a) is by Lemma 14 and (b) is by (a + b)2 ≤ 2a2 + 2b2. We choose µ0 = n
1

2α+1 and
show the proof for the case when n

1
2α+1 ≥ 20 log n, namely, α ≤ logn

2(log logn+log 20) −
1
2 . For

α > logn
2(log logn+log 20) −

1
2 , the proof follows the same lines, but by a different choice of µ0. Lem-

mas 10, 11, 12, and 13 bound each term in Equation (12) separately, and hence

E[KL(S||Ŝ)] = O
(

1

n
2α−1
2α+1

)
.

Lemma 10. For a power-law distribution with exponent α > α0 > 1, and the choice of δ =

min{max{Φ1,1}
D , δmax},

E
[ (S0 − Dδ

n )2

Dδ
n

]
= O

(
1

n

)
.

Proof. To upper bound the first term of the KL loss in Equation (12), namely the loss of proposed
estimator for the missing mass, letA be the event (1−t)E[Φ1] ≤ Φ1 ≤ (1+t)E[Φ1] and 1−t

1+t
E[Φ1]
d ≤
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Φ1

D ≤
1+t
1−t

E[Φ1]
d for some 0 < t < 1,

E
[ (S0 − Dδ

n )2

Dδ
n

]
= E

[ (S0 − Dδ
n )2

Dδ
n

∣∣∣ A]Pr(A) + E
[ (S0 − Dδ

n )2

Dδ
n

∣∣∣ Ac]Pr(Ac)

(a)

≤ E
[ (S0 − Dδ

n )2

Dδ
n

∣∣∣ A]Pr(A) + 4 exp

(
− t2E[Φ1]

2(1 + t/3)

)
n2

(b)

≤ E
[2(S0 − E[Φ1]

n )2 + 2(E[Φ1]
n − Φ1

n )2

Φ1

n

∣∣∣ A]Pr(A) + 4n2 exp

(
− t2E[Φ1]

2(1 + t/3)

)
(c)

≤
E
[
2(S0 − E[Φ1]

n )2 + 2(E[Φ1]
n − Φ1

n )2
∣∣∣ A]Pr(A)

(1−t)E[Φ1]
n

+ 4n2 exp

(
− t2E[Φ1]

2(1 + t/3)

)
(d)

≤
2Var(S0) + 2

n2 Var(Φ1)
E[Φ1]

2n

+ o

(
1

n

)
(e)

≤
4
n2E[Φ2] + 2

n2E[Φ1]
E[Φ1]

2n

+ o

(
1

n

)
= O

(
1

n

)
,

where (b) is by choosing t such that 1+t
1−t

1
α0

< δmax and therefore conditioned on A, δ = Φ1

D . Also,
(c) is by concentration of Φ1 (see Lemma 16), (d) is by choosing t = n−

1
4α , and (e) is because

Var(Φ1) ≤ E[Φ1] and Var(S0) ≤ 2
n2E[Φ2] (see Lemma 21).

Lemma 11. For a power-law distribution with exponent α and choice of µ0 = O(n
1

2α+1 ),

E
[ µ0∑
µ=1

(Sµ −
µ− 1

α

n Φµ)2

µ−δ
n Φµ

]
= O

(
n

1−2α
2α+1

)
Proof. Using Lemma 5 and (a+ b)2 ≤ 2a2 + 2b2, we bound the second term in (12):

E
[ µ0∑
µ=1

(Sµ −
µ− 1

α

n Φµ)2

µ−δ
n Φµ

]

≤ 2E

[ µ0∑
µ=1

(µ+1
n

E[Φµ+1]
E[Φµ] ΦµO(n

−3
2(2α+1) ))2

µ−δ
n Φµ

]
+ 2E

[ µ0∑
µ=1

(Sµ − µ+1
n

E[Φµ+1]
E[Φµ] Φµ)2

µ−δ
n Φµ

]
(13)

For the first term in right hand side of Equation (13),

E

[ µ0∑
µ=1

(µ+1
n

E[Φµ+1]
E[Φµ] ΦµO(n

−3
2(2α+1) ))2

µ−δ
n Φµ

]
≤ n−1− 3

2α+1

µ0∑
µ=1

(µ+ 1)2
(

E[Φµ+1]
E[Φµ]

)2

E[Φµ]

µ− δ

≤ 4

1− δmax
n

1
α−1− 3

2α+1

µ0∑
µ=1

µ−
1
α

≤ 4

1− δmax
n

1
α−1− 3

2α+1µ
1− 1

α
0 = O

(
1

n

)
,
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where the last line is by choosing µ0 = n
1

2α+1 . For the second term in Equation 13, using (a+b)2 ≤
2a2 + 2b2 we have,(
Sµ −

µ+ 1

n

E[Φµ+1]

E[Φµ]
Φµ

)2

=
[
Sµ −

µ+ 1

n
E[Φµ+1] +

µ+ 1

n
E[Φµ+1]− µ+ 1

n

E[Φµ+1]

E[Φµ]
Φµ

]2
≤ 2

(
Sµ −

µ+ 1

n
E[Φµ+1]

)2

+ 2

(
µ+ 1

n

E[Φµ+1]

E[Φµ]
Φµ −

µ+ 1

n
E[Φµ+1]

)2

,

and therefore:

E

[ µ0∑
µ=1

(Sµ − µ+1
n

E[Φµ+1]
E[Φµ] Φµ)2

µ−δ
n Φµ

]

= E

[ µ0∑
µ=1

(Sµ − µ+1
n

E[Φµ+1]
E[Φµ] Φµ)2

µ−δ
n Φµ

∣∣∣ Φµ ≥ E[Φµ]

2

]
Pr

(
Φµ ≥

E[Φµ]

2

)
+

E

[ µ0∑
µ=1

(Sµ − µ+1
n

E[Φµ+1]
E[Φµ] Φµ)2

µ−δ
n Φµ

∣∣∣ Φµ < E[Φµ]

2

]
Pr

(
Φµ <

E[Φµ]

2

)

(a)

≤ E

[ µ0∑
µ=1

(Sµ − µ+1
n

E[Φµ+1]
E[Φµ] Φµ)2

µ−δ
n Φµ

∣∣∣ Φµ ≥ E[Φµ]

2

]
Pr

(
Φµ ≥

E[Φµ]

2

)
+ n2 exp

(
− 1

6µ0

(
n

µ0

) 1
α

)

≤


µ0∑
µ=1

E[(Sµ − µ+1
n

E[Φµ+1]
E[Φµ] Φµ)2]

µ−δ
2n E[Φµ]

∣∣∣ Φµ ≥ E[Φµ]

2

Pr

(
Φµ ≥

E[Φµ]

2

)
+ n2 exp

(
− 1

6µ0

(
n

µ0

) 1
α

)

(b)

≤

µ0∑
µ=1

E
[
2
(
Sµ − µ+1

n E[Φµ+1]
)2

+ 2
(
µ+1
n

E[Φµ+1]
E[Φµ] Φµ −

µ+1
n E[Φµ+1]

)2 ]
µ−δ
2n E[Φµ]

+ n2 exp

(
− 1

6µ0

(
n

µ0

) 1
α

)

≤

µ0∑
µ=1

2Var(Sµ) + 2
(
µ+1
n

E[Φµ+1]
E[Φµ]

)2

Var(Φµ)

µ−δmax

2n E[Φµ]
+ n2 exp

(
− 1

6µ0

(
n

µ0

) 1
α

)

(d)

≤

µ0∑
µ=1

2 (µ+2)2

n2 E[Φµ+2] + 2 (µ+1)2

n2

E2[Φµ+1]
E[Φµ]

µ−δmax

2n E[Φµ]
+ n2 exp

(
− 1

6µ0

(
n

µ0

) 1
α

)

(e)

≤

µ0∑
µ=1

3

1− δmax

µ

n
+ o

(
1

n

)

(f)

≤ 3

n(1− δmax)

(
µ2

0

2
+ 2µ0

)
+ o

(
1

n

)
= O

(
n

1−2α
2α+1

)
.

Note that (a) follows from Lemma 16, (b) from (x + y)2 ≤ 2x2 + 2y2, and (c) from
E[Sµ] = µ+1

n E[Φµ+1] and δ < δmax. Also, (d) results from Var[Φµ] ≤ E[Φµ] and Var[Sµ] ≤
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(µ+2)2

n2 E[Φµ+2] (see Lemma 21), (e) is by Lemma 15, and (f) results from the choice of µ0 =

n
1

2α+1 .

Lemma 12. For a power-law distribution with exponent α and the choice of µ0 = n
1

2α+1 ,

E

[ µ0∑
µ=1

(
µ− 1

α

n − µ−δ
n

)2

Φ2
µ

µ−δ
n Φµ

]
= O

(
n

1
2α

n

)
.

Proof.

E

[ µ0∑
µ=1

(
µ− 1

α

n − µ−δ
n

)2

Φ2
µ

µ−δ
n Φµ

]
≤ 1

n

µ0∑
µ=1

E
[
( 1
α − δ)

2Φµ

]
µ− δmax

.

Similar to the proof of Lemma 10, let A be the event (1 − t)E[Φ1] ≤ Φ1 ≤ (1 + t)E[Φ1] and
1−t
1+t

E[Φ1]
d ≤ Φ1

D ≤
1+t
1−t

E[Φ1]
d for some 0 < t < 1. Thus,

E
[
(

1

α
− δ)2Φµ

]
= E

[
(

1

α
− δ)2Φµ

∣∣∣ A]Pr (A) + E
[
(

1

α
− δ)2Φµ

∣∣∣ Ac]Pr (Ac)

≤ t2 Pr (A)E
[
Φµ

∣∣∣ A]+ Pr (Ac)E
[
Φµ

∣∣∣ Ac]
≤ n− 1

2αE
[
Φµ

]
where the last line is by choosing t = n−

1
4α and using Lemma 22. Hence, we have

E

[ µ0∑
µ=1

(
µ− 1

α

n − µ−δ
n

)2

Φ2
µ

µ−δ
n Φµ

]
≤ n−

1
2α

n

µ0∑
µ=1

E
[
Φµ

]
µ− δmax

= O

(
n

1
2α

n

)
,

where the constant depends on δmax and therefore on α0.

Lemma 13. For a power-law distribution with exponent α, and µ0 = n
1−2α
2α+1 ,

E

[ ∞∑
µ=µ0+1

(Sµ − µ−δ
n Φµ)2

µ−δ
n Φµ

]
= O

(
n

1−2α
2α+1

)

Proof. For the last part in Equation 12:

E

[ ∞∑
µ=µ0+1

(Sµ − µ−δ
n Φµ)2

µ−δ
n Φµ

]
≤ E

[ ∞∑
µ=µ0+1

2(Sµ − µ
nΦµ)2 + 2(

δΦµ
n )2

µ−δ
n Φµ

]
.

We bound both terms in the above expression separately. For the second term, we have:

E

[ ∞∑
µ=µ0+1

(
δΦµ
n )2

µ−δ
n Φµ

]
≤ 1

n

∞∑
µ=µ0+1

E[Φµ]

µ− δmax
≤

2c
1
αΓ
(
1− 1

α

)
αn

1

µ0

(
n

µ0

) 1
α

+
2

n
√
µ0

= O
(
n−

2α
2α+1

)
,
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and for the first part, we have:

∞∑
µ=µ0+1

(Sµ − µ
nΦµ)2

µ−δ
n Φµ

(a)

≤

∞∑
µ=µ0+1

∑
x

1
µ
x

(px − µ
n )2

µ−1
n

≤ 2

∑
x: npx≥µ0

2

∞∑
µ=µ0+1

1
µ
x

(px − µ
n )2

µ
n

+ 2

∑
x: npx<

µ0
2

∞∑
µ=µ0+1

1
µ
x

(px − µ
n )2

µ
n

≤ 2

∑
x: npx≥µ0

2

∞∑
µ=1

1
µ
x

(px − µ
n )2

µ
n

+ 2

∑
x: npx<

µ0
2

n

µ0
1
>µ0
x ,

where (a) follows from (
∑n
i=1 ai)

2 ≤ n(
∑n
i=1 a

2
i ). Taking expectations of both sides:

E

[ ∞∑
µ=µ0+1

(Sµ − µ
nΦµ)2

µ−δ
n Φµ

]
(a)

≤ 2

(
2nc

µ0

) 1
α 1

n
E
[ (npx)2 − 2µnpx + µ2

µ

]
+ 2

∑
x: npx<

µ0
2

n

µ0
E[1>µ0

x ]

(b)

≤ 2

(
2nc

µ0

) 1
α 3

n
+ 2

∑
x: npx<

µ0
2

n

µ0
E[1>µ0

x ]

(c)

≤
(

2nc

µ0

) 1
α 6

n
+ 2

∑
x: npx<

µ0
2

n

µ0
exp

(
µ0 − npx − µ0 ln

(
µ0

npx

))

(d)

≤
(

2nc

µ0

) 1
α 6

n
+ 2

∑
x: npx<

µ0
2

n

µ0
exp

(
npx − µ0

3

)

(e)

≤
(

2nc

µ0

) 1
α 4

n
+ 2e−

µ0
6

(
n

µ0

)2

= O(n
1−2α
2α+1 ),

where (a) is by bounding the number of elements with probability greater than µ0/2n, (b) follows
from the fact that E[ 1

µ ] when µ is a Poisson distribution with mean λ, is bounded by 1
λ + 3

λ2 (note that
µ = 0 is excluded). Also, (c) follows from Lemma 18, (d) follows from 3(x− 1− x lnx) ≤ 1− x
for x > 2, and (e) is by convexity of the exponential term in px and the fact that a convex function
is maximized at the boundaries.

D Tools

This section provides a summary of tools used in the proofs throughout the paper.
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Lemma 14. For two distributions p and q,

KL(p||q) :=

∑
i

pi log
pi
qi
≤
∑
i

(pi − qi)2

qi

Lemma 15. For a power-law distribution with power α > α0 > 1 and normalization factor c, for
µ ≥ 1

E[Φµ] ≤
c

1
αΓ
(
µ− 1

α

)
αµ!

n
1
α +

1√
2πµ

≤
c

1
αΓ(1− 1

α )

µα

(
n

µ

) 1
α

+
1√
2πµ

.

Also, for 1 ≤ µ < n
1

α+1 , and k > n
1

α−1 ,

E[Φµ] ≥
c

1
αΓ
(
µ− 1

α

)
αµ!

n
1
α − 1√

2πµ
.

Proof. For the upper bound on the expected number of elements that appeared µ times:

E[Φµ] = E

[
k∑
x=1

1
µ
x

]

=

k∑
x=1

e−npx
(npx)µ

µ!

=

k∑
x=1

e−
nc
xα

( ncxα )µ

µ!

(a)

≤
∫ k

1

e−
nc
xα

( ncxα )µ

µ!
dx+ max

x
{e− nc

xα
( ncxα )µ

µ!
}

(b)
=

(nc)
1
α

αµ!

∫ nc

nc
kα

e−yyµ−1− 1
α dy + max

x
{e− nc

xα
( ncxα )µ

µ!
}

(c)

≤ (nc)
1
α

αµ!

[
Γ

(
µ− 1

α
,
nc

kα

)
− Γ

(
µ− 1

α
, nc

)]
+

1√
2πµ

=
c

1
αΓ
(
µ− 1

α

)
αµ!

n
1
α +

1√
2πµ

, (14)

where (a) is followed by the integration bound for a uni-modal series, (b) is by changing of variables
nc
xα = y. Also (c) is by the definition of Gamma function and the fact that e−ttµ is maximized at
t = µ followed by Stirling’s approximation. By further simplifying the Gamma function term:

Γ(µ− 1
α )

µ!
=

(µ− 1− 1
α )(µ− 2− 1

α ) . . . (1− 1
α )Γ(1− 1

α )

µ!

=
1

µ

µ−1∏
j=1

(
1− 1

jα

)
Γ

(
1− 1

α

)

=
1

µ
exp

(
µ−1∑
j=1

log

(
1− 1

jα

))
Γ

(
1− 1

α

)
(a)

≤ 1

µ
exp

(
− 1

α

µ−1∑
j=1

1

j

)
Γ

(
1− 1

α

)
(b)

≤ 1

µ
µ−

1
αΓ

(
1− 1

α

)
.
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where (a) is by log(1−x) ≤ −x for 0 < x < 1, and (b) is because
∑t
j=1

1
j ≥ log(t+1). Similarly

for the lower bound we have:

E[Φµ] = E

[
k∑
x=1

1
µ
x

]

=

k∑
x=1

e−npx
(npx)µ

µ!

=

k∑
x=1

e−
nc
xα

( ncxα )µ

µ!

(a)

≥
∫ k

1

e−
nc
xα

( ncxα )µ

µ!
dx−max

x
{e− nc

xα
( ncxα )µ

µ!
}

(b)
=

(nc)
1
α

αµ!

∫ nc

nc
kα

e−yyµ−1− 1
α dy − 1√

2πµ

(c)
=

(nc)
1
α

αµ!

[
Γ

(
µ− 1

α

)
− γ

(
µ− 1

α
,
nc

kα

)
− Γ

(
µ− 1

α
, nc

)]
− 1√

2πµ

(d)

≥
c

1
αΓ
(
µ− 1

α

)
αµ!

n
1
α

(
1−O

(
µ−1n−

1
α

))
− 1√

2πµ
, (15)

By Lemma 20 we have γ
(
µ− 1

α ,
nc
k α

)
≤ 1

µ+1− 1
α

(
1 + (µ− 1

α )e−
nc
kα
) ( nckα )

µ− 1
α

µ− 1
α

which leads to

γ
(
µ− 1

α ,
nc
k α

)
= O(µ−1n−

1
α ) when k > n

1
α−1 . Lemma 19 implies that Γ

(
µ− 1

α , nc
)
≤

B(nc)µ−
1
α e−nc for some constant B and for every 1 < µ < n

1
α+1 . This and the recursion

Γ(s + 1, t) = sΓ(s, x) + xse−x lead to Γ
(
µ− 1

α , nc
)

= O( 1
n ) for 1 ≤ µ < n

1
α+1 and there-

fore (d). Also, (a) is followed by the integration bound for a uni-modal series, (b) is by changing
of variables nc

xα = y, and (c) is by the definition of Gamma function and the fact that e−ttµ is
maximized at t = µ followed by Stirling’s approximation.

Lemma 16. For a power-law distribution with power α and µ < n
1

α+1 ,

Pr

[
Φµ <

E[Φµ]

2

]
≤ exp

(
− 1

6µ

(
n

µ

) 1
α

)

Proof. Φµ =
∑
x 1

µ
x , and therefore is a sum of independent random variables 1µx . By Bernstein’s

inequality

Pr

[∣∣∣Φµ − E[Φµ]
∣∣∣ > t

]
≤ 2 exp

(
− t2/2

Var(Φµ) + t/3

)
Substituting E[Φµ] from Lemma 15 and using Var(Φµ) ≤ E[Φµ], for t =

E[Φµ]
2 we have the lemma.

Lemma 17 ( [OD12]). LetD be the number of distinct categories and d = E[D]. Also let v = E[Φ1]
be the expected number of categories that appeared once. Then,

Pr[D < d−
√

2vs] ≤ e−s

Lemma 18. Let X ∼ POI(x), then for x0 > 0, Pr(X ≥ x+ x0) ≤ ex0−(x+x0) ln(1+
x0
x ), and Also

Pr(X ≤ x− x0) ≤ ex0−(x+x0) ln(1+
x0
x ).
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Proof. Chernoff bound suggests that for every t > 0

Pr(X ≥ a) ≤ E[etX ]

et·a
,

and similarly for every t < 0,

Pr(X ≤ a) ≤ E[etX ]

et·a
.

Moment generating function, E[etX ] for X distributed according to POI(x) is ex(et−1). Therefore,

Pr(X ≥ a) ≤ inf
t>0

ex(et−1)

et·a

= inf
t>0

ex(et−1)−t·a

= ea−x−a ln a
x .

Substituting a by x+ x0 leads to the lemma.

Lemma 19 ( [NP00]). For a > 1, B > 1, and x > B
B−1 (a− 1), we have

xa−1e−x < |Γ(a, x)| < Bxa−1e−x.

Lemma 20 (Theorem 4.1 in [Neu13]). For a > 0 and x > 0, we have

exp

(
− ax

a+ 1

)
≤ a

xa
γ (a, x) ≤ 1

a+ 1
(1 + ae−x).

Lemma 21. For every distribution, µ ≥ 1, and in the presence of Poisson sampling,

Var(Φµ) ≤ E[Φµ], Var(Sµ) ≤ (µ+ 1)(µ+ 2)

n2
E[Φµ+2], E[Sµ] =

µ+ 1

n
E[Φµ+1]

Proof. We use the property of the Poisson sampling that the counts are independent. For the variance
of Φµ we can write:

Var(Φµ) = Var

∑
j

1
µ
j


=
∑
j

Var(1µj )

≤
∑
j

E[1µj ]

= E[Φµ].

Also, for the expected value of the sum of probabilities that appeared µ times, we have:

E[Sµ] = E
[∑

j

pj1
µ
j

]
=
∑
j

pje
−npj (npj)

µ

µ!

=
µ+ 1

n

∑
j

e−npj
(npj)

µ+1

(µ+ 1)!

=
µ+ 1

n

∑
j

E[1µ+1
j ]

=
µ+ 1

n
E[Φµ+1],
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and for their variance, we can write:

Var[Sµ] = Var
[∑

j

pj1
µ
j

]
=
∑
j

p2
jVar(1µj )

=
∑
j

p2
jE[1µj ]

=
∑
j

p2
je
−npj (npj)

µ

µ!

=
(µ+ 1)(µ+ 2)

n2

∑
j

e−npj
(npj)

µ+2

(µ+ 2)!

=
(µ+ 1)(µ+ 2)

n2

∑
j

E[1µ+2
j ]

=
(µ+ 1)(µ+ 2)

n
E[Φµ+2].

Lemma 22. Let Φ1 be number of categories appeared once. Also let D be the number of distinct
categories observed and d = E[D], then for 0 < t < 1,

Pr

(∣∣∣Φ1

D
− E[Φ1]

d

∣∣∣ > 2t

1− t

)
≤ 4 exp

(
− t2E[Φ1]

2(1 + t/3)

)
Proof. Using Lemma 16 we have

Pr

(∣∣∣ Φ1

E[Φ1]
− 1
∣∣∣ > t

)
= Pr

(∣∣∣Φ1 − E[Φ1]
∣∣∣ > tE[Φ1]

)
≤ exp

(
− t2E[Φ1]

2(1 + t/3)

)
Similarly for number of distinct elements we have

Pr

(∣∣∣D
d
− 1
∣∣∣ > t

)
= Pr (|D − d| > td)

(a)

≤ Pr (|D − d| > tE[Φ1])

(b)

≤ exp

(
− t2E[Φ1]

2(1 + t/3)

)
where (a) is because E[Φ1] ≤ d and (b) is because Var(D) = E[Φ1]. Hence, with probability at
least 1−4 exp

(
− t2E[Φ1]

2(1+t/3)

)
we have 1−t ≤ Φ1

E[Φ1] ≤ 1+t and 1−t ≤ D
d ≤ 1+t. With probability≥

1−4 exp
(
− t2E[Φ1]

2(1+t/3)

)
, 1−t

1+t ≤
Φ1

D
d

E[Φ1] ≤
1+t
1−t , namely

∣∣∣Φ1

D −
E[Φ1]
d

∣∣∣ ≤ max
(

1+t
1−t − 1, 1− 1−t

1+t

)
=

2t
1−t .
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