
Sharpness, Restart and Acceleration
Supplementary Material

Overview

This Supplementary Material is organized as follows. An analysis of simple gradient descent under
the sharpness assumption is provided in Section 6. Restart schemes are extended to composite
problems and non-Euclidean settings in Section 7. In Section 8 we precise the convergence results
for integer schedules. Finally section 9 is dedicated to a complete presentation of the algorithms that
we restart and missing proofs of convergence rates can be found in Section 10.

6 Comparison to gradient descent

Given only the smoothness hypothesis (Smooth) with parameters (2, L), the gradient descent al-
gorithm, recalled in Appendix 9.3, starts from a point x0 and outputs iterates xt = G(x0, t) such
that

f(xt)− f∗ ≤ L

t
d(x0, X

∗)2,

While accelerated methods use the last two iterates to compute the next one, simple gradient descent
algorithms use only the last iterate, so the algorithm can be seen as (implicitly) restarting at each
iteration. Its convergence can therefore be written for k ≥ 1,

f(xk+t)− f∗ ≤ L

t
d(xk, X

∗)2. (14)

and we analyze it in light of the restart interpretation using the sharpness assumption in the following
proposition.

Proposition 6.1. Let f be a smooth convex function satisfying (Smooth) with parameters (2, L)
and (Sharp) with parameters (r, µ) on a set K. Assume that we are given x0 ∈ Rn such that
{x| f(x) ≤ f(x0)} ⊂ K. Denote xt = G(x0, t) the iterate sequence generated by the gradient
descent algorithm started at x0 to solve (P). Define

tk = e1−τ cκ(f(x0)− f∗)τeτk,

with κ and τ defined in (2) and c = e2/e here. The precision reached after N =
�n

k=1 tk iterations
is given by,

f(xN)− f∗ ≤ exp
�
−e−1(cκ)−1N

�
(f(x0)− f∗) = O

�
exp(−κ−1N)

�
, when τ = 0,

while,

f(xN)− f∗ ≤ f(x0)− f∗

(τe−1(cκ)−1(f(x0)− f∗)τN + 1)
1
τ

= O
�
N− 1

τ

�
, when τ > 0.

Proof. For a given γ ≥ 0, we construct a subsequence xφ(k) of xt such that

f(xφ(k))− f∗ ≤ e−γk(f(x0)− f∗). (15)

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Define xφ(0) = x0. Assume that (15) is true at iteration k−1, then combining complexity bound (14)
and (Sharp), for any t ≥ 1,

f(xφ(k−1)+t)− f∗ ≤ cκ

t
(f(xφ(k−1))− f∗)

2
r

≤ cκ

t
e−γ 2

r (k−1)(f(x0)− f∗)
2
r .

where c = e2/e, using that r2/r ≤ e2/e. Taking tk = eγ(1−τ)cκ(f(x0) − f∗)−τeγτk and φ(k) =
φ(k − 1) + tk, (15) holds at iteration k. Using Lemma 2.1, we obtain at iteration N = φ(n) =�n

k=1 tk,
f(xN)− f∗ ≤ exp

�
−γe−γ(cκ)−1N

�
(f(x0)− f∗), if τ = 0,

and

f(xN)− f∗ ≤ f(x0)− f∗

(τγe−γ(cκ)−1(f(x0)− f∗)τN + 1)
1
τ

, if τ > 0.

These bounds are minimal for γ = 1 and the results follow.

We observe that restarting accelerated gradient methods reduces complexity from O(1/�τ) to
O(1/�τ/2) compared to simple gradient descent. More general results on the convergence of
(sub)gradient descent algorithms under a Łojasiewicz inequality assumption were developed by
Bolte et al. [2015].

7 Composite problems & Bregman divergences

The restart schemes detailed so far focused on unconstrained problems in an Euclidean setting. Here,
we extend them to more general convex optimization problems of the form

minimize f(x) � φ(x) + g(x), (Composite)

where φ is a convex function whose smoothness is described by parameters (L, s), such that

�∇φ(x)−∇φ(y)�∗ ≤ L�x− y�s−1 for every x, y ∈ J, (Generic Smooth)

for a given norm � · � where � · �∗ is its dual norm, and g is a simple convex function (the meaning of
simple will be clarified later).

To exploit the smoothness of φ with respect to a generic norm, we assume that we have access to
a prox function h with dom(f) ⊂ dom(h), strongly convex with respect to the norm � · � with
convexity parameter equal to one, which means

h(y) ≥ h(x) +∇h(x)T (y − x) +
1

2
�x− y�2, for any x, y ∈ dom(h).

We define the Bregman divergence associated to h as

Dh(y, x) = h(y)− h(x)−∇h(x)T (y − x), for x, y ∈ dom(h),

so that Dh(y, x) ≥ 1
2�x− y�2. For h(x) = 1

2�x�22, we get Dh(y, x) =
1
2�x− y�22 and recover the

Euclidean setting. Given the problem geometry, appropriate choices of prox functions and associated
Bregman divergences can lead to significant performance gains in high dimensional settings.

We now formally state the assumption that g is simple. Given x, y ∈ dom(f) and λ ≥ 0 we assume
that

min
z

�
yT z + g(z) + λDh(z, x)

�

can be solved either in a closed form or by some fast computational procedure. Examples of such
settings include sparse optimization problems, such as the LASSO, where φ(x) = �Ax− b�22, with
A ∈ Rm×n, b ∈ Rm, g(x) = λ�x�1, with λ ≥ 0 and h(x) = 1

2�x�22. This setting also includes
constrained optimization problems, where g is the indicator function of a closed convex set. We
see in numerical experiments that restart schemes applied in these two settings lead to significant
performance improvements.

To apply our analysis of restart schemes we need two things: an accelerated algorithm that tackles
such setting and an appropriate notion of sharpness. We first introduce the notion of relative error
bound.

2

Definition 7.1. A convex function f is called relatively sharp with respect to a strongly convex
function h on a set K ⊂ dom(f) iff there exist r ≥ 1, µ > 0 such that

µ

r
Dh(x,X

∗)
r
2 ≤ f(x)− f∗ for any x ∈ K (Relative Sharp)

where Dh(x,X
∗) = minx∗∈X∗ Dh(x, x

∗) and Dh is the Bregman divergence associated to h.

If h = 1
2�x�22 we recover the definition of sharpness in the Euclidean setting (with slightly modified

constants). This assumption is as generic as our first one in (Sharp) as it is satisfied if f and h are
subanalytic [Bierstone and Milman, 1988, Th. 6.4].

The universal fast gradient is then the candidate in this setting. Given a target accuracy � and an initial
point x0, it outputs, after t iterations, a point x = U(x0, �, t) such that

f(x)− f∗ ≤ �

2
+

cL
2
sDh(x0, X

∗)

�
2
s t

2ρ
s

�

2
,

where c = 16 here. All our previous results can then directly be transposed to the setting here, as
their proofs rely only on this convergence bound. We restate them in this setting below. First if φ
is known to be smooth (s = 2) the universal fast gradient algorithm simplifies as the accelerated
gradient algorithm (see Appendix 9.2) and the next Corollary generalizes Proposition 2.2.
Corollary 7.2. Let φ, g, h defining the composite problem (Composite) described above with φ
satisfying (Generic Smooth) with parameters (2, L) and f = φ + g satisfies the (Relative Sharp)
condition with respect to h with parameters (r, µ) on a set K. Assume that we are given x0 ∈ Rn

such that {x| f(x) ≤ f(x0)} ⊂ K. Run Algorithm 1 from x0 with iteration schedule tk = C∗
κ,τe

τk,
for k = 1, . . . , R, where

C∗
κ,τ � e1−τ (cκ)

1
2 (f(x0)− f∗)−

τ
2 ,

with κ and τ defined in (2) and c = 8e2/e. The precision reached at the last point x̂ is given by,

f(x̂)− f∗ ≤ exp
�
−2e−1(cκ)−

1
2N

�
(f(x0)− f∗) = O

�
exp(−κ− 1

2N)
�
, when τ = 0,

while,

f(x̂)− f∗ ≤ f(x0)− f∗
�
τe−1(f(x0)− f∗)

τ
2 (cκ)−

1
2N + 1

� 2
τ

= O
�
κ

1
τ N− 2

τ

�
, when τ > 0,

where N =
�R

k=1 tk is the total number of iterations.

For general convex functions, the following Corollary generalizes Proposition 3.1.
Corollary 7.3. Let φ, g, h defining the composite problem (Composite) described above with φ satis-
fying (Generic Smooth) with parameters (s, L) on a set J and f = φ+ g satisfying (Relative Sharp)
with respect to h with parameters (r, µ) on a set K. Given x0 ∈ Rn assume that {x| f(x) ≤
f(x0)} ⊂ Q ∩K. Run Algorithm 2 from x0 for given �0 ≥ f(x0)− f∗,

γ = ρ, tk = C∗
κ,τ,ρe

τk, where C∗
κ,τ,ρ � e1−τ (cκ)

s
2ρ �

− τ
ρ

0

where ρ is defined in (12), κ and τ are defined in (2) and c = 16e2/e. The precision reached at the
last point x̂ is given by,

f(x̂)− f∗ ≤ exp
�
−ρe−1(cκ)−

s
2ρN

�
�0 = O

�
exp(−κ− s

2ρN)
�
, when τ = 0,

while,

f(x̂)− f∗ ≤ �0�
τe−1(cκ)−

s
2ρ �

τ
ρ

0 N + 1
� ρ

τ

= O
�
κ

s
2τ N− ρ

τ

�
, when τ > 0,

where N =
�R

k=1 tk is total number of iterations.

The results regarding adaptive schemes and those with termination criterion generalize similarly
under the relative sharpness assumption.

3

8 Rounding issues

We presented convergence bounds for real sequences of iterate counts (tk)∞k=1 but in practice these are
integer sequences. The following Lemma details the convergence of our schemes for an approximate
choice t̃k = �tk�.
Lemma 8.1. Let xk be a sequence whose kth iterate is generated from previous one by an algorithm
that needs tk iterations and denote N =

�R
k=1 tk the total number of iterations to output a point

x̂ = xR. Suppose setting
tk = �Ceαk�, k = 1, . . . , R

for some C > 0 and α ≥ 0 ensures that objective values f(xk) converge linearly, i.e.

f (xk)− f∗ ≤ νe−γk, (16)

for all k ≥ 0 with ν ≥ 0 and γ ≥ 0. Then precision at the output is given by,

f(x̂)− f∗ ≤ ν exp(−γN/(C + 1)), when α = 0,

and
f(x̂)− f∗ ≤ ν

(αe−αC−1N � + 1)
γ
α

, when α > 0,

where N � = N − log((eα−1)e−αC−1N+1)
α .

Proof. At the Rth point generated, N =
�R

k=1 tk. If tk = �C�, define � = �C� − C such that
0 ≤ � < 1. Then N = R(C + �), injecting it in (16) at the Rth point, we get

f(x̂)− f∗ ≤ νe−γ N
C+� ≤ νe−γ N

C+1 .

Now, if tk = �Ceαk�, define �k = �Ceαk� − Ceαk, such that 0 ≤ �k < 1. On one hand

N ≥
R�

k=1

Ceαk,

such that

R ≤ log
�
(eα − 1)e−αC−1N + 1

�

α
.

On the other hand,

N =

R�

k=1

tk =
Ceα

eα − 1
(eαR − 1) +

R�

k=1

�k

≤ Ceα

eα − 1
(eαR − 1) +R

≤ Ceα

eα − 1
(eαR − 1) +

log
�
(eα − 1)e−αC−1N + 1

�

α
,

such that

R ≥ log
�
αe−αC−1N � + 1

�

α
.

Injecting it in (16) at the Rth point we get the result.

9 Algorithms & Complexity Bounds

We present here the classical algorithms for convex optimization that we restart. We present their
general form to solve composite optimization problems of the form

minimize f(x) = φ(x) + g(x) (Composite)

where φ, g are convex functions and g is assumed simple. This setting is detailed in Section 7.

4

9.1 Universal fast gradient method

An optimal algorithm to solve the (Composite) problem is then the universal fast gradient method
[Nesterov, 2015]. It is detailed in Algorithm 4. Given a target accuracy �, it starts at a point x0 and
outputs after t iterations a point x � U(x0, �, t), such that

f(x)− f∗ ≤ �

2
+

cL
2
sDh(x0, X

∗)

�
2
s t

2ρ
s

�

2
,

where Dh(x;X
∗) = minx∗∈X∗ Dh(x;x

∗) is the Bregman distance from x to the set of minimizers,
c is a constant (c = 2

5s−2
s) and ρ = 3s−2

2 is the optimal rate of convergence as presented in Section 3.
In the Euclidean setting, h = 1

2�x�22, Dh(y;x) =
1
2�x− y�2, such that we get the bound given in

(13).

The method does not need to know the smoothness parameters (s, L), but the target accuracy � is
used to parametrize the algorithm. The universal fast gradient method requires an estimate L0 of
the smoothness parameter L to start a line search on L. This line search is proven to increase the
complexity of the algorithm by at most a constant factor plus a logarithmic term and ensures that the
overall complexity does not depend on L0 but on L. In our restart schemes we use a first estimate L0

when running the algorithm for the first time and we use the last estimate found by the algorithm
when restarting it.

Finally if the problem is feasible (X∗ �= ∅), the universal fast gradient method produces a convergent
sequence of iterates. Therefore if the Łojasiewicz inequality is satisfied on a compact set K, it will
be valid for all our iterates after perhaps reducing µ.

Algorithm 4 Universal fast gradient method
Inputs : x0, L0, �
Initialize : y0 := x0, A0 := 0, L̂ := L0

for t = 0, . . . , T do

zt := argmin
z

t�

i=1

ai∇φ(xi)
T z +Atg(z) +Dh(z;x0)

repeat
Find a ≥ 0, such that

a2 =
1

L̂
(At + a)

Choose

τ :=
a

At + a

x := τzt + (1− τ)yt

x̂ := argmin
z

a∇φ(x)T z + aψ(z) +Dh(z; zt)

y := τ x̂+ (1− τ)yt

if φ(y) ≥ φ(x) + �∇φ(x), y − x�+ L̂
2 �y − x�22 + τ�

2 then L̂ := 2L̂ end if

until φ(y) ≤ φ(x) + �∇φ(x), y − x�+ ˆ̂
L
2 �y − x�22 + τ�

2
Set

xt+1 := x, yt+1 := y, at+1 := a,

At+1 := At + at+1, L̂ := L̂/2,

end for
Output : x = yT

5

Algorithm 5 Gradient descent method
Inputs : x0, L0

Initialize : L̂ := L0

for t = 0, . . . do
repeat

x := argminz ∇φ(x)T z + g(z) + L̂Dh(z;x)

if φ(x) ≥ φ(xt) + �∇φ(xt), x− xt�+ L̂
2 �x− xt�22 then L̂ = 2L̂ end if

until φ(x) ≤ φ(xt) + �∇φ(xt), x− xt�+ L̂
2 �x− xt�22

Set
xt+1 := x, L̂ := L̂/2

end for

9.2 Accelerated gradient method

The accelerated gradient method is a special instance of the universal fast gradient method when
the function φ is known to be smooth (i.e. satisfies (Generic Smooth) with s = 2). In that case, the
optimal � to run the Universal Fast Gradient method is 0 (otherwise it depends on the parameters of
the function). Given an initial point x0, accelerated gradient method outputs, after t iterations, a point
x � A(x0, t) = U(x0, 0, t) such that

f(y)− f∗ ≤ cL

t2
Dh(x0, X

∗),

where Dh(x;X
∗) = minx∗∈X∗ Dh(x;x

∗) is the Bregman distance from x to the set of minimizers
and c = 8. In the Euclidean setting, Dh(y;x) =

1
2�x− y�22, such that we get the bound given in (3).

Here again smoothness parameter L is found by a backtracking line search such that we only need a
first estimate of its value.

9.3 Gradient descent method

We recall in Algorithm 5 the simple gradient descent method when the function φ is smooth with
constant L. It starts at a point x0 and outputs iterates xt = G(x0, t) such that

f(xt)− f∗ ≤ 2L

t
Dh(x0, X

∗),

where Dh(x;X
∗) = minx∗∈X∗ Dh(x;x

∗) is the Bregman distance from x to the set of minimizers.
In the Euclidean setting, Dh(y;x) =

1
2�x− y�22, such that we get the bound in (14). Once again it

performs a line search on the smoothness parameter L such that L0 can be chosen arbitrarily.

10 Missing Proofs

10.1 Proof for adaptive scheduled restarts

To prove adaptivity with the log-scale grid search strategy we need first the following Corollary of
Proposition 2.2. This also shows that scheduled restart schemes are theoretically efficient only if the
algorithm itself makes a sufficient number of iterations to decrease the objective value.

Corollary 10.1. Let f be a smooth convex function satisfying (Smooth) with parameters (2, L)
and (Sharp) with parameters (r, µ) on a set K. Assume that we are given x0 ∈ Rn such that
{x : f(x) ≤ f(x0)} ⊂ K. Run Algorithm 1 from x0 with general schedules of the form

�
tk = C if τ = 0,
tk = Ceαk if τ > 0,

we have the following complexity bounds, if τ = 0 and C ≥ C∗
κ,0,

f(x̂)− f∗ ≤
� cκ

C2

�N
C

(f(x0)− f∗), (17)

6

while, if τ > 0 and C ≥ C(α),

f(x̂)− f∗ ≤ f(x0)− f∗

(αe−αC−1N + 1)
2
τ

, (18)

where
C(α) � e

α(1−τ)
τ (cκ)

1
2 (f(x0)− f∗)−

τ
2 , (19)

and N =
�R

k=1 tk is the total number of iterations.

Proof. Given general schedules of the form
�

tk = C if τ = 0,
tk = Ceαk if τ > 0,

the best value of γ satisfying condition (9) for any k ≥ 0 in Proposition 2.2 are given by
�

γ = log
�

C2

cκ

�
if τ = 0 and C ≥ C∗

κ,0,
γ = 2α

τ if τ > 0 and C ≥ C(α).

As in Proposition 2.2, plugging these values into the bounds of Lemma 2.1 yields the desired result.

We can now prove Proposition 2.3 that we recall here. Notations are the same as in Proposition 2.2
Proposition. Let f be a smooth convex function satisfying (Smooth) with parameters (2, L) and
(Sharp) with parameters (r, µ) on a set K. Assume that we are given x0 ∈ Rn such that {x| f(x) ≤
f(x0)} ⊂ K and denote N a given number of iterations. Run schemes Si,j defined in (11) to solve
(P) for i ∈ [1, . . . , �log2 N�] and j ∈ [0, . . . , �log2 N�], stopping each time after N total inner
algorithm iterations i.e. for R such that

�R
k=1 tk ≥ N .

Assume N is large enough, so N ≥ 2C∗
κ,τ , and if 1

N > τ > 0, C∗
κ,τ > 1.

If τ = 0, there exists i ∈ [1, . . . , �log2 N�] such that scheme Si,0 achieves a precision given by

f(x̂)− f∗ ≤ exp
�
−e−1(cκ)−

1
2N

�
(f(x0)− f∗).

If τ > 0, there exist i ∈ [1, . . . , �log2 N�] and j ∈ [1, . . . , �log2 N�] such that scheme Si,j achieves
a precision given by

f(x̂)− f∗ ≤ f(x0)−f∗
�
τe−1(cκ)−

1
2 (f(x0)−f∗)

τ
2 (N−1)/4+1

� 2
τ
.

Overall, running the logarithmic grid search has a complexity (log2 N)2 times higher than running
N iterations using the optimal (oracle) scheme.

Proof. Denote N � =
�R

k=1 tk ≥ N the number of iterations of a scheme Si,j . We necessarily
have N � ≤ 2N for our choice of Ci and τj . Hence the cost of running all methods is of the order
(log2 N)2.

If τ = 0 and N ≥ 2C∗
κ,0, we have i = �log2 C∗

κ,0� ≤ �log2 N�. Therefore Si,0 has been run and we
can use bound (17) to show that the last iterate x̂ satisfies

f(x̂)− f∗ ≤
�
cκ

C2
i

� N
Ci

(f(x0)− f∗).

Using that C∗
κ,0 ≤ Ci ≤ 2C∗

κ,0, we get

f(x̂)− f∗ ≤
�

cκ

(C∗
κ,0)

2

� N
2C∗

κ,0

(f(x0)− f∗)

≤ exp
�
−e−1(cκ)−

1
2N

�
(f(x0)− f∗).

7

If τ ≥ 1
N and N ≥ 2C∗

κ,τ , we have j = �− log2 τ� ≤ �log2 N� and i = �log2 C∗
κ,τ� ≤ �log2 N�.

Therefore scheme Si,j has been run. As Ci ≥ C∗
κ,τ ≥ C(τj), where C(τj) is defined in (19), we can

use bound (18) to show that the last iterate x̂ of scheme Si,j satisfies

f(x̂)− f∗ ≤ f(x0)− f∗
�
τje−τjC−1

i N + 1
� 2

τ

.

Finally, by definition of i and j, 2τj ≥ τ and Ci ≤ 2C∗
κ,τ , so

f(x̂)− f∗ ≤ f(x0)− f∗
�
τe−τj (C∗

κ,τ)
−1N/4 + 1

� 2
τ

=
f(x0)− f∗

�
τe−1(cκ)−

1
2 (f(x0)− f∗)

τ
2 N/4 + 1

� 2
τ

,

where we concluded by expanding C∗
κ,τ = e1−τ (cκ)

1
2 (f(x0)− f∗)−

τ
2 and using that τ ≥ τj .

If 1
N > τ > 0 and N > 2C∗

κ,τ , we have i = �log2 C∗
κ,τ� ≤ �log2 N�, so scheme Si,0 has been run.

Its iterates xk satisfy, with 1− τ = 2/r,

f(xk)− f∗ ≤ cκ

C2
i

(f(xk−1)− f∗)
2
r

≤
�
cκ

C2
i

�(1−(1−τ)k)/τ
(f(x0)− f∗)(1−τ)k

≤
�
cκ(f(x0)− f∗)−τ

C2
i

�(1−(1−τ)k)/τ
(f(x0)− f∗).

Now Ci ≥ C∗
κ,τ = e1−τ (cκ)

1
2 (f(x0)− f∗)−

τ
2 and CiR ≥ N , therefore last iterate x̂ satisfies

f(x̂)− f∗ ≤ exp

�
−2(1− τ)

1− (1− τ)N/Ci

τ

�
(f(x0)− f∗).

As N ≥ Ci, since

h(τ) =
(1− τ)

�
1− (1− τ)

N
Ci

�

1− (1− τ)

is decreasing with τ and 1
N > τ > 0, we have

f(x̂)− f∗ ≤ exp

�
−2(N − 1)

�
1−

�
1− 1

N

�N/Ci
��

(f(x0)− f∗)

≤ exp

�
−2(N − 1)

�
1− exp

�
− 1

Ci

���
(f(x0)− f∗)

≤ exp

�
−2

N − 1

Ci

�
1− 1

2Ci

��
(f(x0)− f∗).

having used the facts that (1 + ax)
b
x ≤ exp(ab) if ax ≥ −1, b

x ≥ 0 and 1 − x + x2

2 ≥ exp(−x)
when x ≥ 0. By assumption C∗

κ,τ ≥ 1, so Ci ≥ 1 and finally

f(x̂)− f∗ ≤ exp

�
−N − 1

Ci

�
(f(x0)− f∗)

≤ exp

�
−N − 1

2C∗
κ,τ

�
(f(x0)− f∗)

≤ f(x0)− f∗
�
τ(C∗

κ,τ)
−1(N − 1)/4 + 1

� 2
τ

≤ f(x0)− f∗
�
τ(f(x0)− f∗)

τ
2 e−1(cκ)−

1
2 (N − 1)/4 + 1

� 2
τ

.

8

using the fact that eτ ≥ 1.

10.2 Proof for universal scheduled restarts

Proposition. Let f be a convex function satisfying (Smooth) with parameters (s, L) on a set J and
(Sharp) with parameters (r, µ) on a set K. Given x0 ∈ Rn assume that {x|f(x) ≤ f(x0)} ⊂ J ∩K.
Run Algorithm 2 from x0 for a given �0 ≥ f(x0)− f∗ with

γ = ρ, tk = C∗
κ,τ,ρe

τk, where C∗
κ,τ,ρ � e1−τ (cκ)

s
2ρ �

− τ
ρ

0

where ρ is defined in (12), κ and τ are defined in (2) and c = 8e2/e here. The precision reached at
the last point x̂ is given by,

f(x̂)− f∗ ≤ exp
�
−ρe−1(cκ)−

s
2ρN

�
�0 = O

�
exp(−κ− s

2ρN)
�
, when τ = 0,

while,

f(x̂)− f∗ ≤ �0�
τe−1(cκ)−

s
2ρ �

τ
ρ

0 N + 1
�− ρ

τ

= O
�
κ

s
2τ N− ρ

τ

�
, when τ > 0,

where N =
�R

k=1 tk is total number of iterations.

Proof. Our goal is to ensure that the target accuracy is reached at each restart, i.e.

f(xk)− f∗ ≤ �k. (20)

By assumption, (20) holds for k = 0. Assume that (20) is true at iteration k − 1, combining (Sharp)
with the complexity bound in (13), then

f(xk)− f∗ ≤ �k
2

+
cκ(f(xk−1)− f∗)

2
r

�
2
s

k t
2ρ
s

k

�k
2

≤ �k
2

+
cκ

t
2ρ
s

k

�
2
r

k−1

�
2
s

k

�k
2
,

where c = 8e2/e using that r2/r ≤ e2/e. By definition �k = e−γk�0, so to ensure (20) at iteration k
this imposes

cκeγ
2
r e−γ(2

r− 2
s)k

t
2ρ
s

k

�
2
r− 2

s
0 ≤ 1.

Rearranging terms in last inequality, using τ defined in (2),

tk ≥ eγ
1−τ
ρ (cκ)

s
2ρ �

− τ
ρ

0 e
γτ
ρ k.

Choosing tk = Ceαk, where

C = eγ
1−τ
ρ (cκ)

s
2ρ �

− τ
ρ

0 and α =
γτ

ρ
,

and using Lemma 2.1 then yields,

f(x̂)− f∗ ≤ exp(−γe−
γ
ρ (cκ)−

s
2ρN)�0, (21)

when τ = 0, while,
f(x̂)− f∗ ≤ �0�

γτ
ρ e−

γ
ρ (cκ)−

s
2ρ �

τ
ρ

0 N + 1
� ρ

τ

. (22)

when τ > 0. These bounds are minimal for γ = ρ and the results follow.

9

10.3 Proof for restarts with termination criterion

Proposition. Let f be a convex function satisfying (Smooth) with parameters (s, L) on a set J
and (Sharp) with parameters (r, µ) on a set K. Given x0 ∈ Rn assume that {x, f(x) ≤ f(x0)} ⊂
J ∩K. Run Algorithm 3 from x0 with parameter γ = ρ. The precision reached at the point xR is
given by,

f(x̂)− f∗ ≤ exp
�
−ρe−1(cκ)−

s
2ρN

�
(f(x0)− f∗) = O

�
exp(−κ− s

2ρN)
�
, when τ = 0,

while,

f(x̂)− f∗ ≤ f(x0)− f∗
�
τe−1(cκ)−

s
2ρ (f(x0)− f∗)

τ
ρ N + 1

� ρ
τ

= O
�
κ

s
2τ N− ρ

τ

�
, when τ > 0,

where N is the total number of iterations, ρ is defined in (12), κ and τ are defined in (2) and c = 8e2/e

here.

Proof. Given γ ≥ 0, linear convergence of our scheme is ensured by our choice of target accuracies
�k. It remains to compute the number of iterations t�k needed by the algorithm before the kth restart.
Following proof of Proposition 3.1, for k ≥ 1 we know that target accuracy is necessarily reached
after

t̄k = eγ
1−τ
ρ (cκ)

s
2ρ �

− τ
ρ

0 e
γτ
ρ k

iterations, such that t�k ≤ t̄k. So Algorithm 3 achieves linear convergence while needing less inner
iterates than the scheduled restart presented in Proposition 3.1, its convergence is therefore at least as
good. For a given γ bounds (21) and (22) follow with �0 = f(x0)− f∗ and taking γ = ρ is optimal.

10

References
Arjevani, Y. and Shamir, O. [2016], On the iteration complexity of oblivious first-order optimization

algorithms, in ‘International Conference on Machine Learning’, pp. 908–916.

Asuncion, A. and Newman, D. [2007], ‘Uci machine learning repository’.

Attouch, H., Bolte, J., Redont, P. and Soubeyran, A. [2010], ‘Proximal alternating minimization
and projection methods for nonconvex problems: An approach based on the kurdyka-łojasiewicz
inequality’, Mathematics of Operations Research 35(2), 438–457.

Auslender, A. and Crouzeix, J.-P. [1988], ‘Global regularity theorems’, Mathematics of Operations
Research 13(2), 243–253.

Bierstone, E. and Milman, P. D. [1988], ‘Semianalytic and subanalytic sets’, Publications Mathéma-
tiques de l’IHÉS 67, 5–42.

Bolte, J., Daniilidis, A. and Lewis, A. [2007], ‘The łojasiewicz inequality for nonsmooth subanalytic
functions with applications to subgradient dynamical systems’, SIAM Journal on Optimization
17(4), 1205–1223.

Bolte, J., Nguyen, T. P., Peypouquet, J. and Suter, B. W. [2015], ‘From error bounds to the complexity
of first-order descent methods for convex functions’, Mathematical Programming pp. 1–37.

Bolte, J., Sabach, S. and Teboulle, M. [2014], ‘Proximal alternating linearized minimization for
nonconvex and nonsmooth problems’, Mathematical Programming 146(1-2), 459–494.

Burke, J. and Deng, S. [2002], ‘Weak sharp minima revisited part i: basic theory’, Control and
Cybernetics 31, 439–469.

Burke, J. and Ferris, M. C. [1993], ‘Weak sharp minima in mathematical programming’, SIAM
Journal on Control and Optimization 31(5), 1340–1359.

Fercoq, O. and Qu, Z. [2016], ‘Restarting accelerated gradient methods with a rough strong convexity
estimate’, arXiv preprint arXiv:1609.07358 .

Fercoq, O. and Qu, Z. [2017], ‘Adaptive restart of accelerated gradient methods under local quadratic
growth condition’, arXiv preprint arXiv:1709.02300 .

Frankel, P., Garrigos, G. and Peypouquet, J. [2015], ‘Splitting methods with variable metric for
kurdyka–łojasiewicz functions and general convergence rates’, Journal of Optimization Theory
and Applications 165(3), 874–900.

Freund, R. M. and Lu, H. [2015], ‘New computational guarantees for solving convex optimization
problems with first order methods, via a function growth condition measure’, arXiv preprint
arXiv:1511.02974 .

Gilpin, A., Pena, J. and Sandholm, T. [2012], ‘First-order algorithm with O(log 1/�) convergence for
�-equilibrium in two-person zero-sum games’, Mathematical programming 133(1-2), 279–298.

Giselsson, P. and Boyd, S. [2014], Monotonicity and restart in fast gradient methods, in ‘53rd IEEE
Conference on Decision and Control’, IEEE, pp. 5058–5063.

Hoffman, A. J. [1952], ‘On approximate solutions of systems of linear inequalities’, Journal of
Research of the National Bureau of Standards 49(4).

Juditski, A. and Nesterov, Y. [2014], ‘Primal-dual subgradient methods for minimizing uniformly
convex functions’, arXiv preprint arXiv:1401.1792 .

Karimi, H., Nutini, J. and Schmidt, M. [2016], Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition, in ‘Joint European Conference on Machine
Learning and Knowledge Discovery in Databases’, Springer, pp. 795–811.

Lin, Q. and Xiao, L. [2014], An adaptive accelerated proximal gradient method and its homotopy
continuation for sparse optimization., in ‘ICML’, pp. 73–81.

11

Łojasiewicz, S. [1963], ‘Une propriété topologique des sous-ensembles analytiques réels’, Les
équations aux dérivées partielles pp. 87–89.

Łojasiewicz, S. [1993], ‘Sur la géométrie semi-et sous-analytique’, Annales de l’institut Fourier
43(5), 1575–1595.

Mangasarian, O. L. [1985], ‘A condition number for differentiable convex inequalities’, Mathematics
of Operations Research 10(2), 175–179.

Nemirovskii, A. and Nesterov, Y. [1985], ‘Optimal methods of smooth convex minimization’, USSR
Computational Mathematics and Mathematical Physics 25(2), 21–30.

Nesterov, Y. [1983], ‘A method of solving a convex programming problem with convergence rate
O(1/k2)’, Soviet Mathematics Doklady 27(2), 372–376.

Nesterov, Y. [2013a], ‘Gradient methods for minimizing composite functions’, Mathematical Pro-
gramming 140(1), 125–161.

Nesterov, Y. [2013b], Introductory lectures on convex optimization: A basic course, Vol. 87, Springer
Science & Business Media.

Nesterov, Y. [2015], ‘Universal gradient methods for convex optimization problems’, Mathematical
Programming 152(1-2), 381–404.

O’Donoghue, B. and Candes, E. [2015], ‘Adaptive restart for accelerated gradient schemes’, Founda-
tions of computational mathematics 15(3), 715–732.

Polyak, B. [1979], Sharp minima institute of control sciences lecture notes, moscow, ussr, 1979, in
‘IIASA workshop on generalized Lagrangians and their applications, IIASA, Laxenburg, Austria’.

Polyak, B. [1987], Introduction to optimization, Optimization Software.

Renegar, J. [2014], ‘Efficient first-order methods for linear programming and semidefinite program-
ming’, arXiv preprint arXiv:1409.5832 .

Robinson, S. M. [1975], ‘An application of error bounds for convex programming in a linear space’,
SIAM Journal on Control 13(2), 271–273.

Roulet, V., Boumal, N. and d’Aspremont, A. [2015], ‘Renegar’s condition number, shaprness and
compressed sensing performance’, arXiv preprint arXiv:1506.03295 .

Su, W., Boyd, S. and Candes, E. [2014], A differential equation for modeling nesterov’s accelerated
gradient method: Theory and insights, in ‘Advances in Neural Information Processing Systems’,
pp. 2510–2518.

12

