A Learning HSE-PSRs with Two-Stage Regression

In this section we derive the initialization algorithm described in section[3.2] We follow the two-stage
regression formulation described in [7]. We denote by wy, 1;, and ¢, the feature representation of the
observation at time ¢, a window of past observations ending at time ¢ — 1 and a window of future
observations starting at ¢. In this work, the feature representation is obtained by applying random
Fourier features[28]] for an RBF kernel followed by linear projection through PCA.

A.1 Hilbert Space Embedding of Distributions

We will briefly describe the concept of Hilbert space embedding of distributions, which is the
machinery that we use to represent distributions and perform Bayesian state updates. We refer the
reader to [26] for more details on this topic.

Let ¢(.) be the feature map of a kernel such that k(x1,z2) = (P(x1), d(x2)). For a random
variable X with a distribution P(X), the corresponding mean map is defined as

px = Epp[o(2)]

For a universal kernel such as RBF kernel on a compact set, it can be shown that P(X) uniquely
determines the mean map p x. In other words, py is a sufficient representation of the distribution
P(X).

Another important quantity is the covariance operator Cy x = E, ,p(x,v)[¢x (z) ® ¢y (y)]. The
covariance operator is a sufficient representation of the joint distribution P(X,Y"). Note that we can
use different kernels with different feature maps for X and Y.

The covariance operator allows us to perform conditioning. Given that X = x we can compute the
mean map for the distribution P(Y'|X = x) using kernel Bayes rule:

fy s = Cy xCxxox () (10)

It is beneficial to consider these concepts in the special case of discrete variables and delta kernel. In
this case, the feature function ¢ is the indicator function, the mean map is a probability vector and the
covariance operator is a matrix encoding a joint probability table.

A.2 Random Fourier Features

Random Fourier features is a method for obtaining an approximate finite-dimensional feature map gf)
such that ¢(x1) T ¢(22) ~ k(z1, o). For the Gaussian RBF kernel this function is given by:

o(x) = \/g[cos(xTv(l)), sin(z o), ... (11)
cos(z o), sin(z TP T (12)

where v(*) are i.i.d Gaussian variables. In order to reduce dimensionality, we use the feature map
é(x) = UT ¢(z) where U T is a projection matrix obtained via PCA.

A.3 State Representation and Updates

In this we consider k-observable systems, where it is sufficient to maintain the distribution of future k
observations in order to make future predictions without the need to look back into history. We write
¢ = ¢(04.14+1—1) to indicate the application of future feature function on a window of k& observations
starting at ¢. We define the predictive state g; = E[¢: | 01.¢—1]. As discussed in the previous section,
this is a sufficient representation of the distribution of future observations.

An HSE-PSR is parameterized by two linear operators represented by tensors W and Z such that
C =W Xxsq 13)
C =7 X3 q (14)
By plugging in into kernel Bayes rule we easily get the state update equation (1.

orPey1]01:0—1

0tpt41]01:6—1

13

A4 Two Stage Regression

We now derive the algorithm for initializing W. Initializing Z is similar. Define (; = vec(d;+1 @wy),
where vec denotes reshaping into a vector. With an sbuse of notation we can write

E(t | 01:4-1] = WE[¢y | 01:4—1]

Taking the expectation of both sides w.r.t 7, gives

E[Ge [m] = WE[t | m]
Cg,,C;nlm = WC¢,,C,771177t Ve
Cen = WCey
CQ,C;? =W

Equation (3) is the simply the result of replacing the above covariances with their empirical estimates
and using a tensor notation instead of vectorizing outer products.

B On the Consistency of Initialization

In this section we provide a theoretical justification for the PSRNN. Specifically, we show that in
the case of discrete observations and a single layer the PSRNN provides a good approximation to a
consistent model. We first show that in the discrete setting using a matrix inverse is equivalent to a
sum normalization. We subsequently show that, under certain conditions, two-norm normalization
has the same effect as sum-normalization. .

Let ¢; be the PSR state at time ¢, and o, be the observation at time ¢ (as an indicator vector). In
this setting the covariance matrix C; = E[o; X ot|o1.+—1] will be diagonal. By assumption, the
normalization term Z in PSRs is defined as a linear function from ¢; to Cy, and when we learn PSRN
by 2-stage regression we estimate this linear function consistently. Hence, for all ¢;, Z x3 ¢; is a
diagonal matrix, and (Z x3 qt)_1 is also a diagonal matrix. Furthermore, since o; is an indicator
vector, (Z x5 ;)" X2 0p = 0;/P(0;) in the limit. We also know that as a probability distribution,
@ should sum to one. This is equivalent to dividing the unnormalized update ¢;; by its sum. i.e.

Qi+1 = Gi+1/P(0r)
= Gi11/(1 " Gi11)

Now consider the difference between the sum normalization G;1/(1"Gs+1) and the two-norm
normalization §¢11/ ||¢e+1]|,. Since g; is a probability distribution, all elements will be positive,
hence the sum norm is equivalent to the 1-norm. In both settings, normalization is equivalent to
projection onto a norm ball. Now let S be the set of all valid states. Then if the diameter of S is small
compared to the distance from (the convex hull of) S to the origin then the local curvature of the
2-norm ball will be negligible, and both cases will be approximately equivalent to projection onto a
plane. We note we can obtain an S with this property by augmenting our state with a set of constant
features.

C A Summary of Learning PSRNNs

Here we provide a concise summary of the training steps for PSRNNs. A Python implementation is
available at https://github. com/cmdowney/psrnn.

1. Collect training data as triplets (h¢, 0¢, Oty k—1, Ot4+1:4+k) (i.€. history, observation, future
and shifted future).
2. Determine observation kernel bandwidth s using median trick.

3. Sample i.i.d Gaussian vectors v@ fori = 1,2,..., D with standard deviation 1/s. Use
these vectors to computer RFF feature map for observations using (I2)). Use PCA to obtain
a lower-dimensional feature map w.

14

https://github.com/cmdowney/psrnn

4. Repeat the previous step on futures and histories to obtain feature maps ¢ and 7).

5. Use (@) to initialize the parameter tensor .

W X3qtX20¢

. Use backpropagation through time through the update equation ¢, 11 = TWagexcaod]

refine W.

15

	Learning HSE-PSRs with Two-Stage Regression
	Hilbert Space Embedding of Distributions
	Random Fourier Features
	State Representation and Updates
	Two Stage Regression

	On the Consistency of Initialization
	A Summary of Learning PSRNNs

