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Abstract

In this paper, we study the problem of maximizing continuous submodular func-
tions that naturally arise in many learning applications such as those involving
utility functions in active learning and sensing, matrix approximations and network
inference. Despite the apparent lack of convexity in such functions, we prove that
stochastic projected gradient methods can provide strong approximation guarantees
for maximizing continuous submodular functions with convex constraints. More
specifically, we prove that for monotone continuous DR-submodular functions, all
fixed points of projected gradient ascent provide a factor 1/2 approximation to the
global maxima. We also study stochastic gradient methods and show that after
O(1/ε2) iterations these methods reach solutions which achieve in expectation
objective values exceeding (OPT

2
− ε). An immediate application of our results is to

maximize submodular functions that are defined stochastically, i.e. the submodular
function is defined as an expectation over a family of submodular functions with an
unknown distribution. We will show how stochastic gradient methods are naturally
well-suited for this setting, leading to a factor 1/2 approximation when the func-
tion is monotone. In particular, it allows us to approximately maximize discrete,
monotone submodular optimization problems via projected gradient ascent on a
continuous relaxation, directly connecting the discrete and continuous domains.
Finally, experiments on real data demonstrate that our projected gradient methods
consistently achieve the best utility compared to other continuous baselines while
remaining competitive in terms of computational effort.

1 Introduction

Submodular set functions exhibit a natural diminishing returns property, resembling concave functions
in continuous domains. At the same time, they can be minimized exactly in polynomial time (while
can only be maximized approximately), which makes them similar to convex functions. They have
found numerous applications in machine learning, including viral marketing [1], dictionary learning
[2] network monitoring [3, 4], sensor placement [5], product recommendation [6, 7], document and
corpus summarization [8] data summarization [9], crowd teaching [10, 11], and probabilistic models
[12, 13]. However, submodularity is in general a property that goes beyond set functions and can
be defined for continuous functions. In this paper, we consider the following stochastic continuous
submodular optimization problem

max
x∈K

F (x) ≐ Eθ∼D[Fθ(x)], (1.1)

where K is a bounded convex body, D is generally an unknown distribution, and Fθ’s are continuous
submodular functions for every θ ∈ D. We also use OPT ≜ maxx∈K F (x) to denote the optimum
value. We note that the function F (x) is itself also continuous submodular, as a non-negative
combination of submodular functions are still submodular [14]. The formulation covers popular
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instances of submodular optimization. For instance, when D puts all the probability mass on a single
function, (1.1) reduces to deterministic continuous submodular optimization. Another common
objective is the finite-sum continuous submodular optimization where D is uniformly distributed over
m instances, i.e., F (x) ≐ 1

m ∑
m
θ=1 Fθ(x).

A natural approach to solving problems of the form (1.1) is to use projected stochastic methods.
As we shall see in Section 5, these local search heuristics are surprisingly effective. However, the
reasons for this empirical success is completely unclear. The main challenge is that maximizing F
corresponds to a nonconvex optimization problem (as the function F is not concave), and a priori it is
not clear why gradient methods should yield a reliable solution. This leads us to the main challenge
of this paper

Do projected gradient methods lead to provably good solutions for continuous
submodular maximization with general convex constraints?

We answer the above question in the affirmative, proving that projected gradient methods produce a
competitive solution with respect to the optimum. More specifically, given a general bounded convex
body K and a continuous function F that is monotone, smooth, and (weakly) DR-submodular we
show that

• All stationary points of a DR-submodular function F over K provide a 1/2 approximation
to the global maximum. Thus, projected gradient methods with sufficiently small step sizes
(a.k.a. gradient flows) always lead to a solutions with 1/2 approximation guarantees.

• Projected gradient ascent after O (L2

ε
) iterations produces a solution with objective value

larger than (OPT/2 − ε). When calculating the gradient is difficult but an unbiased estimate
can be easily obtained, the stochastic projected gradient ascent in O (L2

ε
+ σ2

ε2
) iterations

finds a solution with objective value exceeding (OPT/2 − ε). Here, L2 is the smoothness
of the continuous submodular function measured in the `2-norm, σ2 is the variance of the
stochastic gradient with respect to the true gradient and OPT is the function value at the
global optimum.

• More generally, for weakly continuous DR-submodular functions with parameter γ (define
in (2.6)) we prove the above results with γ2/(1 + γ2) approximation guarantee.

Our result have some important implications. First, they show that projected gradient methods are an
efficient way of maximizing the multilinear extension of (weakly) submodular set functions for any
submodularity ratio γ (note that γ = 1 corresponds to submodular functions) [2]. Second, in contrast
to conditional gradient methods for submodular maximization that require the initial point to be the
origin [15, 16], projected gradient methods can start from any initial point in the constraint set K
and still produce a competitive solution. Third, such conditional gradient methods, when applied
to the stochastic setting (with a fixed batch size), perform poorly and can produce arbitrarily bad
solutions when applied to continuous submodular functions (see [17, Appendix B] in the long version
of this paper for an example and further discussion on why conditional gradient methods do not easily
admit stochastic variants). In contrast, stochastic projected gradient methods are stable by design
and provide a solution with an approximation ratio of at least 1/2 in expectation. Finally, our work
provides a unifying approach for solving the stochastic submodular maximization problem [18]

f(S) ≐ Eθ∼D[fθ(S)], (1.2)

where the functions fθ ∶ 2V → R+ are submodular set functions defined over the ground set V . Such
objective functions naturally arise in many data summarization applications [19] and have been
recently introduced and studied in [18]. Since D is unknown, problem (1.2) cannot be directly solved.
Instead, [18] showed that in the case of coverage functions, it is possible to efficiently maximize f by
lifting the problem to the continuous domain and using stochastic gradient methods on a continuous
relaxation to reach a solution that is within a factor (1 − 1/e) of the optimum. In contrast, our work
provides a general recipe with 1/2 approximation guarantee for problem (1.2) in which fθ’s can be
any monotone submodular function.
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2 Continuous Submodular Maximization

A set function f ∶ 2V → R+, defined on the ground set V , is called submodular if for all subsets
A,B ⊆ V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

Even though submodularity is mostly considered on discrete domains, the notion can be naturally
extended to arbitrary lattices [20]. To this aim, let us consider a subset of Rn+ of the form X = ∏

n
i=1Xi

where each Xi is a compact subset of R+. A function F ∶ X → R+ is submodular [21] if for all
(x,y) ∈ X × X , we have

F (x) + F (y) ≥ F (x ∨ y) + F (x ∧ y), (2.1)

wherex∨y ≐max(x,y) (component-wise) andx∧y ≐min(x,y) (component-wise). A submodular
function is monotone if for any x,y ∈ X obeying x ≤ y, we have F (x) ≤ F (y) (here, by x ≤ y we
mean that every element of x is less than that of y). Like set functions, we can define submodularity in
an equivalent way, reminiscent of diminishing returns, as follows [14]: the function F is submodular
if for any x ∈ X , any two distinct basis vectors ei, ej ∈ Rn, and any two non-negative real numbers
zi, zj ∈ R+ obeying xi + zi ∈ Xi and xj + zj ∈ Xj we have

F (x + ziei) + F (x + zjej) ≥ F (x) + F (x + ziei + zjej). (2.2)

Clearly, the above definition includes submodularity over a set (by restricting Xi’s to {0,1}) or over
an integer lattice (by restricting Xi’s to Z+) as special cases. However, in the remainder of this paper
we consider continuous submodular functions defined on product of sub-intervals of R+. We note that
when twice differentiable, F is submodular if and only if all cross-second-derivatives are non-positive
[14], i.e.,

∀i ≠ j,∀x ∈ X ,
∂2F (x)

∂xi∂xj
≤ 0. (2.3)

The above expression makes it clear that continuous submodular functions are not convex nor concave
in general as concavity (convexity) implies that ∇2F ⪯ 0 (resp.▽2F ⪰ 0). Indeed, we can have
functions that are both submodular and convex/concave. For instance, for a concave function g
and non-negative weights λi ≥ 0, the function F (x) = g(∑

n
i=1 λixi) is submodular and concave.

Trivially, affine functions are submodular, concave, and convex. A proper subclass of submodular
functions are called DR-submodular [16, 22] if for any x,y ∈ X obeying x ≤ y, any standard basis
vector ei ∈ Rn, and any non-negative number z ∈ R+ obeying zei +x ∈ X and zei + y ∈ X , we have

F (zei +x) − F (x) ≥ F (zei + y) − F (y). (2.4)

One can easily verify that for a differentiable DR-submodular functions the gradient is an antitone
mapping, i.e., for all x,y ∈ X such that x ≤ y we have ∇F (x) ≥ ∇F (y) [16]. When twice
differentiable, DR-submodularity is equivalent to

∀i & j,∀x ∈ X ,
∂2F (x)

∂xi∂xj
≤ 0. (2.5)

The above twice differentiable functions are sometimes called smooth submodular functions in the
literature [23]. However, in this paper, we say a differentiable submodular function F is L-smooth
w.r.t a norm ∥ ⋅ ∥ (and its dual norm ∥ ⋅ ∥∗) if for all x,y ∈ X we have

∥∇F (x) − ∇F (x)∥∗ ≤ L∥x − y∥.

Here, ∥ ⋅ ∥∗ is the dual norm of ∥ ⋅ ∥ defined as ∥g∥∗ = supx∈Rn∶ ∥x∥≤1 g
Tx. When the function is

smooth w.r.t the `2-norm we use L2 (note that the `2 norm is self-dual). We say that a function is
weakly DR-submodular with parameter γ if

γ = inf
x,y∈X
x≤y

inf
i∈[n]

[∇F (x)]i
[∇F (y)]i

. (2.6)

See [24] for related definitions. Clearly, for a differentiable DR-submodular function we have γ = 1.
An important example of a DR-submodular function is the multilinear extension [15] F ∶ [0,1]n → R
of a discrete submodular function f , namely,

F (x) = ∑
S⊆V
∏
i∈S
xi∏
j/∈S

(1 − xj)f(S).
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We note that for set functions, DR-submodularity (i.e., Eq. 2.4) and submodularity (i.e., Eq. 2.1) are
equivalent. However, this is not true for the general submodular functions defined on integer lattices
or product of sub-intervals [16, 22].

The focus of this paper is on continuous submodular maximization defined in Problem (1.1). More
specifically, we assume that K ⊂ X is a a general bounded convex set (not necessarily down-closed
as considered in [16]) with diameter R. Moreover, we consider Fθ’s to be monotone (weakly)
DR-submodular functions with parameter γ.

3 Background and Related Work

Submodular set functions [25, 20] originated in combinatorial optimization and operations research,
but they have recently attracted significant interest in machine learning. Even though they are usually
considered over discrete domains, their optimization is inherently related to continuous optimization
methods. In particular, Lovasz [26] showed that the Lovasz extension is convex if and only if
the corresponding set function is submodular. Moreover, minimizing a submodular set-function is
equivalent to minimizing the Lovasz extension.1 This idea has been recently extended to minimization
of strict continuous submodular functions (i.e., cross-order derivatives in (2.3) are strictly negative)
[14]. Similarly, approximate submodular maximization is linked to a different continuous extension
known as multilinear extension [28]. Multilinear extension (which is an example of DR-submodular
functions studied in this paper) is not concave nor convex in general. However, a variant of conditional
gradient method, called continuous greedy, can be used to approximately maximize them. Recently,
Chekuri et al [23] proposed an interesting multiplicative weight update algorithm that achieves
(1 − 1/e − ε) approximation guarantee after Õ(n2/ε2) steps for twice differentiable monotone DR-
submodular functions (they are also called smooth submodular functions) subject to a polytope
constraint. Similarly, Bian et al [16] proved that a conditional gradient method, similar to the
continuous greedy algorithm, achieves (1−1/e−ε) approximation guarantee afterO(L2/ε) iterations
for maximizing a monotone DR-submodular functions subject to special convex constraints called
down-closed convex bodies. A few remarks are in order. First, the proposed conditional gradient
methods cannot handle the general stochastic setting we consider in Problem (1.1) (in fact, projection
is the key). Second, there is no near-optimality guarantee if conditional gradient methods do not start
from the origin. More precisely, for the continuous greedy algorithm it is necessary to start from
the 0 vector (to be able to remain in the convex constraint set at each iteration). Furthermore, the
0 vector must be a feasible point of the constraint set. Otherwise, the iterates of the algorithm may
fall out of the convex constraint set leading to an infeasible final solution. Third, due to the starting
point requirement, they can only handle special convex constraints, called down-closed. And finally,
the dependency on L2 is very subomptimal as it can be as large as the dimension n (e.g., for the
multilinear extensions of some submodular set functions, see [17, Appendix B] in the long version of
this paper). Our work resolves all of these issues by showing that projected gradient methods can also
approximately maximize monotone DR-submodular functions subject to general convex constraints,
albeit, with a lower 1/2 approximation guarantee.

Generalization of submodular set functions has lately received a lot of attention. For instance, a line
of recent work considered DR-submodular function maximization over an integer lattice [29, 30, 22].
Interestingly, Ene and Nguyen [31] provided an efficient reduction from an integer-lattice DR-
submodular to a submodular set function, thus suggesting a simple way to solve integer-lattice
DR-submodular maximization. Note that such reductions cannot be applied to the optimization
problem (1.1) as expressing general convex body constraints may require solving a continuous
optimization problem.

4 Algorithms and Main Results

In this section we discuss our algorithms together with the corresponding theoretical guarantees. In
what follows, we assume that F is a weakly DR-submodular function with parameter γ.

1The idea of using stochastic methods for submodular minimization has recently been used in [27].
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4.1 Characterizing the quality of stationary points

We begin with the definition of a stationary point.

Definition 4.1 A vector x ∈ K is called a stationary point of a function F ∶ X → R+ over the set
K ⊂ X if maxy∈K⟨∇F (x),y −x⟩ ≤ 0.

Stationary points are of interest because they characterize the fixed points of the Gradient Ascent
(GA) method. Furthermore, (projected) gradient ascent with a sufficiently small step size is known
to converge to a stationary point for smooth functions [32]. To gain some intuition regarding this
connection, let us consider the GA procedure. Roughly speaking, at any iteration t of the GA
procedure, the value of F increases (to the first order) by ⟨∇F (xt),xt+1 − xt⟩. Hence, the progress
at time t is at most maxy∈K⟨∇F (xt),y−xt⟩. If at any time t we have maxy∈K⟨∇F (xt),y−xt⟩ ≤ 0,
then the GA procedure will not make any progress and it will be stuck once it falls into a stationary
point.

The next natural question is how small can the value of F be at a stationary point compared to the
global maximum? The following lemma relates the value of F at a stationary point to OPT.

Theorem 4.2 Let F ∶ X → R+ be monotone and weakly DR-submodular with parameter γ and
assume K ⊆ X is a convex set. Then,

(i) If x is a stationary point of F in K, then F (x) ≥ γ2

1+γ2OPT.

(ii) Furthermore, if F is L-smooth, gradient ascent with a step size smaller than 1/L will
converge to a stationary point.

The theorem above guarantees that all fixed points of the GA method yield a solution whose function
value is at least γ2

1+γ2 OPT. Thus, all fixed point of GA provide a factor γ2

1+γ2 approximation ratio. The
particular case of γ = 1, i.e., when F is DR-submodular, asserts that at any stationary point F is at
least OPT/2. This lower bound is in fact tight. In the long version of this paper (in particular [17,
Appendix A]) we provide a simple instance of a differentiable DR-Submodular function that attains
OPT/2 at a stationary point that is also a local maximum.

We would like to note that our result on the quality of stationary points (i.e., first part of Theorem 4.2
above) can be viewed as a simple extension of the results in [33]. In particular, the special case of
γ = 1 follows directly from [28, Lemma 3.2]. See the long version of this paper [17, Section 7] for
how this lemma is used in our proofs. However, we note that the main focus of this paper is whether
such a stationary point can be found efficiently using stochastic schemes that do not require exact
evaluations of gradients. This is the subject of the next section.

4.2 (Stochastic) gradient methods

We now discuss our first algorithmic approach. For simplicity we focus our exposition on the DR
submodular case, i.e., γ = 1, and discuss how this extends to the more general case in the long version
of this paper ([17, Section 7]). A simple approach to maximizing DR submodular functions is to use
the (projected) Gradient Ascent (GA) method. Starting from an initial estimate x1 ∈ K obeying the
constraints, GA iteratively applies the following update

xt+1 = PK (xt + µt∇F (xt)) . (4.1)

Here, µt is the learning rate and PK(v) denotes the Euclidean projection of v onto the set K.
However, in many problems of practical interest we do not have direct access to the gradient of F . In
these cases it is natural to use a stochastic estimate of the gradient in lieu of the actual gradient. This
leads to the Stochastic Gradient Method (SGM). Starting from an initial estimate x0 ∈ K obeying the
constraints, SGM iteratively applies the following updates

xt+1 = PK (xt + µtgt) . (4.2)

Specifically, at every iteration t, the current iterate xt is updated by adding µtgt, where gt is an
unbiased estimate of the gradient ∇F (xt) and µt is the learning rate. The result is then projected onto
the set K. We note that when gt = ∇F (xt), i.e., when there is no randomness in the updates, then
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Algorithm 1 (Stochastic) Gradient Method for Maximizing F (x) over a convex set K

Parameters: Integer T > 0 and scalars ηt > 0, t ∈ [T ]

Initialize: x1 ∈ K

for t = 1 to T do
yt+1 ← xt + ηtgt,

where gt is a random vector s.t. E[gt∣xt] = ∇F (xt)
xt+1 = argminx∈K ∣∣x − yt+1∣∣2

end for
Pick τ uniformly at random from {1,2, . . . , T}.
Output xτ

the SGM updates (4.2) reduce to the GA updates (4.1). We detail the SGM method in Algorithm 1.
As we shall see in our experiments detained in Section 5, the SGM method is surprisingly effective
for maximizing monotone DR-submodular functions. However, the reasons for this empirical success
was previously unclear. The main challenge is that maximizing F corresponds to a nonconvex
optimization problem (as the function F is not concave), and a priori it is not clear why gradient
methods should yield a competitive ratio. Thus, studying gradient methods for such nonconvex
problems poses new challenges:

Do (stochastic) gradient methods converge to a stationary point?

The next theorem addresses some of these challenges. To be able to state this theorem let us recall the
standard definition of smoothness. We say that a continuously differentiable function F is L-smooth
(in Euclidean norm) if the gradient ∇F is L-Lipschitz, that is ∥∇F (x) − ∇F (y)∥`2 ≤ L ∥x − y∥`2 .

We also defined the diameter (in Euclidean norm) as R2 = supx,y∈K
1
2
∥x − y∥

2
`2

. We now have all
the elements in place to state our first theorem.

Theorem 4.3 (Stochastic Gradient Method) Let us assume that F is L-smooth w.r.t. the Euclidean
norm ∥⋅∥`2 , monotone and DR-submodular. Furthermore, assume that we have access to a stochastic
oracle gt obeying

E[gt] = ∇F (xt) and E[ ∥gt −∇F (xt)∥
2
`2

] ≤ σ2.

We run stochastic gradient updates of the form (4.2) with µt = 1

L+ σR
√
t
. Let τ be a random variable

taking values in {1,2, . . . , T} with equal probability. Then,

E[F (xτ)] ≥
OPT

2
− (

R2L +OPT
2T

+
Rσ
√
T
) . (4.3)

Remark 4.4 We would like to note that if we pick τ to be a random variable taking values in
{2, . . . , T − 1} with probability 1

(T−1) and 1 and T each with probability 1
2(T−1) then

E[F (xτ)] ≥
OPT

2
− (

R2L

2T
+
Rσ
√
T
) .

The above results roughly state that T = O (R
2L
ε

+ R2σ2

ε2
) iterations of the stochastic gradient method

from any initial point, yields a solution whose objective value is at least OPT
2
− ε. Stated differently,

T = O (R
2L
ε

+ R2σ2

ε2
) iterations of the stochastic gradient method provides in expectation a value

that exceeds OPT
2
− ε approximation ratio for DR-submodular maximization. As explained in Section

4.1, it is not possible to go beyond the factor 1/2 approximation ratio using gradient ascent from an
arbitrary initialization.

An important aspect of the above result is that it only requires an unbiased estimate of the gradient.
This flexibility is crucial for many DR-submodular maximization problems (see, (1.1)) as in many
cases calculating the function F and its derivative is not feasible. However, it is possible to provide a
good un-biased estimator for these quantities.
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We would like to point out that our results are similar in nature to known results about stochastic
methods for convex optimization. Indeed, this result interpolates between the 1√

T
for stochastic

smooth optimization, and the 1/T for deterministic smooth optimization. The special case of σ = 0
which corresponds to Gradient Ascent deserves particular attention. In this case, and under the
assumptions of Theorem 4.3, it is possible to show that F (xT ) ≥

OPT
2

− R2L
T

, without the need for a
randomized choice of τ ∈ [T ].

Finally, we would like to note that while the first term in (4.3) decreases as 1/T , the pre-factor L
could be rather large in many applications. For instance, this quantity may depend on the dimension
of the input n (see [17, Appendix C] in the extended version of this paper). Thus, the number of
iterations for reaching a desirable accuracy may be very large. Such a large computational load causes
(stochastic) gradient methods infeasible in some application domains. It is possible to overcome this
deficiency by using stochastic mirror methods (see [17, Section 4.3] in the extended version of this
paper).

5 Experiments

In our experiments, we consider a movie recommendation application [19] consisting of N users and
n movies. Each user i has a user-specific utility function fi for evaluating sets of movies. The goal is
to find a set of k movies such that in expectation over users’ preferences it provides the highest utility,
i.e., max∣S∣≤k f(S), where f(S) ≐ Ei∼D[fi(S)]. This is an instance of the stochastic submodular
maximization problem defined in (1.2). We consider a setting that consists of N users and consider
the empirical objective function 1

N ∑
N
j=1 fi. In other words, the distribution D is assumed to be

uniform on the integers between 1 and N . We can then run the (discrete) greedy algorithm on the
empirical objective function to find a good set of size k. However, as N is a large number, the greedy
algorithm will require a high computational complexity. Another way of solving this problem is
to evaluate the multilinear extension Fi of any sampled function fi and solve the problem in the
continuous domain as follows. Let F (x) = Ei∼D[Fi(x)] for x ∈ [0,1]n and define the constraint set
Pk = {x ∈ [0,1]m ∶ ∑

n
i=1 xi ≤ k}. The discrete and continuous optimization formulations lead to the

same optimal value [15]:

max
S∶∣S∣≤k

f(S) =max
x∈Pk

F (x).

Therefore, by running the stochastic versions of projected gradient methods, we can find a solution
in the continuous domain that is at least 1/2 approximation to the optimal value. By rounding that
fractional solution (for instance via randomized Pipage rounding [15]) we obtain a set whose utility is
at least 1/2 of the optimum solution set of size k. We note that randomized Pipage rounding does not
need access to the value of f . We also remark that projection onto Pk can be done very efficiently in
O(n) time (see [18, 34, 35]). Therefore, such an approach easily scales to big data scenarios where
the size of the data set (e.g. number of users) or the number of items n (e.g. number of movies) are
very large.

In our experiments, we consider the following baselines:

(i) Stochastic Gradient Ascent (SG): We use the step size µt = c/
√
t and mini-batch size B.

The details for computing an unbiased estimator for the gradient of F are given in [17,
Appendix D] of the extended version of this paper.

(ii) Frank-Wolfe (FW) variant of [16]: We use T to denote the total number of iterations and
B to denote mini-batch sizes (we further let α = 1, δ = 0, see Algorithm 1 in [16] for more
details).

(iii) Batch-mode Greedy (Greedy): We run the vanilla greedy algorithm (in the discrete domain)
in the following way. At each round of the algorithm (for selecting a new element), B
random users are picked and the function f is estimated by the average over the B selected
users.

To run the experiments we use the MovieLens data set. It consists of 1 million ratings (from 1 to 5) by
N = 6041 users for n = 4000 movies. Let ri,j denote the rating of user i for movie j (if such a rating
does not exist we assign ri,j to 0). In our experiments, we consider two well motivated objective
functions. The first one is called “facility location" where the valuation function by user i is defined
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Figure 1: (a) shows the performance of the algorithms w.r.t. the cardinality constraint k for the
concave over modular objective. Each of the continuous algorithms (i.e., SG and FW) run for
T = 2000 iterations. (b) shows the performance of the SG algorithm versus the number of iterations
for fixed k = 20 for the concave over modular objective. The green dashed line indicates the value
obtained by Greedy (with B = 1000). Recall that the step size of SG is c/

√
t. (c) shows the

performance of the algorithms w.r.t. the cardinality constraint k for the facility location objective
function. Each of the continuous algorithms (SG and FW) run for T = 2000 iterations. (d) shows
the performance of different algorithms versus the number of simple function computations (i.e. the
number of fi’s evaluated during the algorithm) for the facility location objective function. For the
greedy algorithm, larger number of function computations corresponds to a larger batch size. For SG
larger time corresponds to larger iterations.

as f(S, i) = maxj∈S ri,j . In words, the way user i evaluates a set S is by picking the highest rated
movie in S. Thus, the objective function is equal to

ffac(S) =
1

N

N

∑
i=1

max
j∈S

ri,j .

In our second experiment, we consider a different user-specific valuation function which is a concave
function composed with a modular function, i.e., f(S, i) = (∑j∈S ri,j)1/2. Again, by considering the
uniform distribution over the set of users, we obtain

fcon(S) =
1

N

N

∑
i=1

( ∑
j∈S

ri,j)
1/2
.

Note that the multilinear extensions of f1 and f2 are neither concave nor convex.

Figure 1 depicts the performance of different algorithms for the two proposed objective functions. As
Figures 1a and 1c show, the FW algorithm needs a much higher mini-batch size to be comparable
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in performance to our stochastic gradient methods. Note that a smaller batch size leads to less
computational effort (using the same value for B and T , the computational complexity of FW and
SGA is almost the same). Figure 1b shows that after a few hundred iterations SG with B = 20 obtains
almost the same utility as the Greedy method with a large batch size (B = 1000). Finally, Figure 1d
shows the performance of the algorithms with respect to the number of times the single functions
(fi’s) are evaluated. This further shows that gradient based methods have comparable complexity
w.r.t. the Greedy algorithm in the discrete domain.

6 Conclusion

In this paper we studied gradient methods for submodular maximization. Despite the lack of
convexity of the objective function we demonstrated that local search heuristics are effective at
finding approximately optimal solutions. In particular, we showed that all fixed point of projected
gradient ascent provide a factor 1/2 approximation to the global maxima. We also demonstrated that
stochastic gradient and mirror methods achieve an objective value of OPT/2 − ε, in O( 1

ε2
) iterations.

We further demonstrated the effectiveness of our methods with experiments on real data.

While in this paper we have focused on convex constraints, our framework may allow non-convex
constraints as well. For instance it may be possible to combine our framework with recent results in
[36, 37, 38] to deal with general nonconvex constraints. Furthermore, in some cases projection onto
the constraint set may be computationally intensive or even intractable but calculating an approximate
projection may be possible with significantly less effort. One of the advantages of gradient descent-
based proofs is that they continue to work even when some perturbations are introduced in the updates.
Therefore, we believe that our framework can deal with approximate projections and we hope to
pursue this in future work.
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