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A Proof of Theorem

We will need the following definitions for this proof inspired by [6].

Definition. If the number of queries is m and the number of input labels is n then we define rate as
the relative number of queries or R = *

Definition. The Rate-Distortion function R(¢) is the infimum of the feasible rates such that the
scheme is (1 — §)-good.

Definition. The Distortion-Rate function §(R) is the infimum of all ¢, for (1 — §)-good schemes,
when the rate is R.

Definition. The set of reconstructed label vectors are called codewords. Since the rate is R, our
problem is to define the querying scheme @ : {0,1}" — {0,1}"¥ and a recovery {0,1}"%® —
{0,1}™. We have a bijective mapping from query answers Y to X. Hence the total number of
possible codewords is 2.

Proof of Theorem |3} We are interested in finding a lower bound on the distortion that we will achieve
if we use arate R(0) for the model where R(0) is the minimum rate for distortion § achieved optimally

in the unconstrained case. Now suppose that the distortion achieved in the model at rate R(9) is
0 =  + € and hence we want a lower bound on € . Since our input labels are typical sequences and it
is mapped to a unique codeword, the reconstructed sequence must be having a per symbol distortion
of less than § + ¢ . We will be counting the number of label vector-codeword pairs (S, T") where
S € {0,1}™ is alabel vector and T' € {0, 1}" is the corresponding codeword for S. Let us allow a
small extra distortion of y. Now, we have 2 ways to count the number of possible pairs. Firstly, from
the perspective of the codewords , the number of possible pairs will be 2"#Vol(§ + € + ) where
Vol(é + € + ) is the number of label sequences present in the ball of radius n(d + € 4 ) from a
particular codeword. Since there might be repetitions hence we are overcounting and hence this value
is definitely an upper bound on the number of pairs. Again we can try to see from the perspective of
the label sequences. Now let us say that we have a label sequence S and a corresponding compressed
sequence C' and the codeword 7" when no extra distortion is allowed. We will be trying to find out the
number of other different codewords S could have mapped to when this extra distortion is allowed.
Let us take ball of n-y around S and take another label sequence in that ball and call it S. Let the
codeword it was initially mapped to be T Now,

T -S| <|T =S| +|5S—8<n(@+e+7)

Hence 7' is a possible candidate codeword for S if we allow this extra bit of more distortion .
Hence we want a lower bound on the number of possible different codewords that can be candidate
codewords for S when this extra distortion is allowed. Now we know that there is a bijective mapping
from the compressed sequences to the codewords. Let x denote the fraction of bits in C' that we
can perturb. Then if, nRxA < ny or x < & , then there exists label vectors mapped to those
compressed sequences which will be within a ball of ny from S and all the codewords corresponding
to those perturbed compressed sequences must be different because of the bijective mapping. Since
the total number of label sequences is 2""(), the total number of pairs that can be calculated in

v
such a way will be orh(p)+nRh(Rx) which is a lower bound on the actual number of pairs. Since
Llog(Vol(6 + €+ 7)) = h(p) — R(6 + € + ) we have
N N 2
R(5) — R( > Rh(—=—
(4) ~ R +e+7) > Rh(z)
Using the fact that R(d) = h(p) — h(J), we have

h(b+e+7) —h(d) > Rh(RlA).
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Now since entropy is a concave function of the distribution we must have h(g +e+y)> h(<§ ) +

(€ + )N (8) where I (z) = log (=z) z) is the derivative of the binary entropy function. Plugging it
into the formula, we have

h'(8) 2 Rh(55) =71 (3)

Now we want the value of  in order to get the tightest lower bound Hence, differentiating w.r.t y

and setting it to 0 in order to maximize it, we will have v = m Using this value of v, we plug

in the original equation and we get
RA 1 1
€> — — + ——Rh( _
1 + A (9) h’(5) 14+ eAR(3)

Expanding the entropy function we have

)

€>— RA_ ;= —Jog(1 + AN @)y 4 R log(1 + %)
1+ eArE©)  h/(8)(1 + eAN(9)) W (8)(1 4 eAh'(9) el (9)
Now if use the facts that log(1 + eAh'(S)) > AW(6), log(1 + eMl’@) > M,(é) and R(8) =
h(p) — h(5), we get that )
) -hG)
TOR(O)(1+ eAN @)
O

B Exact Relation between 6, p, ¢, k and d in Theorem

It is evident from the scheme that when the true label of wis ¢ # 0, E[N, ;] = ﬂ + dpi( qu1)

and when it is anything else, E[N,, ;] = k % and hence the threshold that we have described. Now
let us calculate the probability of error under this scheme. It is evident that the error is symmetric
Vi # 0. Now there are two kinds of errors that are possible when the true label is ¢. The first type of
error occurs when N, ; > C); for some j # 4, 0 and the second type of error occurs when NV, ; < C;.
Hence when the true label is 7 # 0, the first type of decoding error can be written as follows

/4 . .
Pr(Nu,k>Ck|k‘7é0,k75i)= Z (j)(kql)](l_kq1>d_j
J=ICk]

and hence taking a union bound over k& — 2 labels, we have

Zi1 = Pr(Ugzio Nug > Cr) < Z Z ()

kek#1,0 j=[C1,]

4 \a—j

Y (1 — J
V(A=)

We define element v to be a two-hop-neighbor of w if there is at least one query which involved both

the elements u and v. For the second part of the error we have to condition on the number of two-hop

neighbors of u having label ¢ for u when the true label is ¢. Let us denote the neighbor set of u by

Nbr(u) and denote the number of nodes of label ¢ in its neighbor set as Nbr;(u). The probability of
second type of error (N,; < [C;]) is

Ziy = ZPr (Nbrz(u) = k) Pr(N,; < [C;] | Nbr(u) = k)

—Z( )pl (1= p)*F Pr(X, # X, | Nbri(u) = §)
Now we take two cases for the value of k. When k < |C;] then

Pr(N,; < [Ci] | Nbr;(u f:() i1 - 9y

=
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Figure 7: Comparison of performance of ‘same cluster’ query with AND queries on a randomly
generated dataset for varying probability of erroneous answers and varying number of queries. The
AND querying methods performs well with higher probability of erroneous answers.

and secondly when k > [C;] then

—

Ci
Pr(N,,; < [Ci] | Nbr;(u) = Z
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Now, if the true label of u is 0

ZOZU]C?goPr( ulc>Ck Z Z () 1j(1_k31)d_j‘

=[Ck]

The total probability of error is going to be

0 =poZo + Zpi(zm + Zi2).
i#0

C Proof of Theorem

Proof. Let us consider k = 2. The proof can be extended for general k. We generate the d-regular
graph on a n nodes is the following way:

1. If d = 2/ is even, put all the vertices around a circle, and join each to its ¢ nearest neighbors on
either side.

2.If d = 2¢ + 1is odd, and n is even, put the vertices on a circle, join each to its £ nearest neighbors
on each side, and also to the vertex directly opposite.

Now suppose we are given ng and n;. Let us consider all random permutations of these sets of points
on a circle. Fixing a node u of label 1(say), it becomes a random permutation on a line by making u
a reference point. The probability that there are exactly k£ neighbors of w having label 1 among the d
neighbors is

(Z) w ~ (Z) Hf_ol(nln—?;())l?j_:@ki;(no — i) < <Z> (%)k(nrﬁ) k)d—k.

All the rest of the conditional probabilities used in the analysis in Appendix |B|stays the same. Now, &k
is just a constant < d and hence n — k =~ n and hence asymptotically this distribution is equivalent to
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the binomial distribution. Hence we can simply set C' = dq+ ‘12% (1—2q) and then use the Algorithm
Our final probability of incorrect labeling is going to be § = "2 P(X # X|X=1+ nP(X #
X |X = 0). Thus for large n its behavior is exactly the same as with using priors. [

15



	Proof of Theorem 3
	Exact Relation between ,p,q,k and d in Theorem 5
	Proof of Theorem 6

